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Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.

Consider the polynomial optimization problem

(P ) minimize f(x) subject to x ∈ Rn and

g1(x) ≥ 0, . . . , gm(x) ≥ 0

with objective f ∈ V , constraining gi ∈ V and feasible set

S := {x ∈ Rn | g1(x), . . . , gm(x) ≥ 0}

(such sets are called basic closed semialgebraic in real algebraic

geometry). Set g0 := 1 ∈ V .
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Sums of squares

A key concept are sums of squares (sos)

s =
r∑

i=1

p2
i

where pi ∈ V . Easy to see: deg(p2
i ) ≤ deg(s) for all i.

For each integer k, introduce the vector space

Vk := {p ∈ V | deg p ≤ k}

and the convex cone

Mk :=

{
m∑

i=0

sigi | si sos and sigi ∈ Vk for all i

}
⊆ Vk

of polynomials which are“certifiably nonnegative on S”with“degree k

sos certificates”.
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Lasserre relaxations

For each integer k with f ∈ Vk, we consider the following degree k

Lasserre relaxation of (P ):

(Pk) minimize L(f) subject to L : Vk → R linear,

L(Mk) ⊆ R≥0 and

L(1) = 1

Because p ≥ 0 on S for all p ∈ M , every x ∈ S induces a feasible

solution Lx : Vk → R, p 7→ p(x) of (Pk) with same objective value

f(x) = Lx(f). Moreover, if L is feasible for (Pk+1), L|Vk
is feasible

for (Pk). For the optimal values, we have therefore:

P ∗
k ≤ P ∗

k+1 ≤ . . . ≤ P ∗

Question: How good are the approximations?
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For each integer k with f ∈ Vk, we consider the following degree k

Lasserre relaxation of (P ):

(Pk) minimize L(f) subject to L : Vk → R linear,

L(Mk) ⊆ R≥0 and

L(1) = 1

The idea behind (Pk) is that it can be expressed as an SDP since the

objective function L 7→ L(f) is linear and the constraint

L(Mk) ⊆ R≥0 can be expressed by m + 1 linear matrix inequalities

saying that the bilinear forms

V`i
× V`i

→ R, (p, q) 7→ L(pqgi)

are positive semidefinite for all i ∈ {0, . . . ,m} where `i is maximal

such that 2`i + deg(gi) ≤ k. → Localizing matrix for 1 ≤ i ≤ m.
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As an example, we consider the NP-complete MAXCUT problem for a

graph with vertex set {1, . . . , n} and edge set E. The problem is to

assign to each vertex a sign (i.e., +1 or −1) such that the number of

edges connecting“positive”and“negative”vertices gets maximal. In

other words, the problem is:

(P ) maximize 1
2

∑
{i,j}∈E,i<j(1− xixj)

subject to x ∈ Rn,

x2
1 − 1 ≥ 0, 1− x2

1 ≥ 0,
...

x2
n − 1 ≥ 0, 1− x2

n ≥ 0

We get corresponding Lasserre relaxations (P2), (P4), . . .

(P3), (P5), . . . need not be considered since M2 = M3, . . .

Note that now P ∗
k≥P ∗

k+1≥ . . .≥P ∗ since we maximize.
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(P2) is (essentially) the famous SDP relaxation of MAXCUT found by

Goemans and Williamson in 1995. By rounding a feasible solution (P2)
to a random feasible solution of (P ) (random hyperplane technique),

they show P ∗
2 ∈ [P ∗, P ∗%] where % ≈ 1.1382. Since for each fixed k,

(Pk) can be solved in polynomial time, this yields a polynomial time

approximation algorithm.

Its approximation ratio was shown to be exactly % by Karloff in 1999.

Moreover, for no polynomial time algorithm it could be shown ever

since that it achieves a better approximation ratio.

(P4) is exact, i.e., P ∗
4 = P ∗, for graphs with no K5 minor (in

particular, for all planar graphs). Monique Laurent observed that this

follows from a result of Barahona and Mahjoub from 1986.

(P2n) is exact for all graphs, i.e., P ∗
2n = P ∗. This is not hard to show

but it yields of course no polynomial time algorithm for MAXCUT

since the size of (P2n) grows too fast with n.
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Inapproximability of MAXCUT

Using PCP, Hastad showed in 2001 that there is no polynomial time

approximation algorithm with approximation ratio 17/16 unless P=NP.

Khot, Kindler, Mossel and O’Donnell showed that there is no

polynomial time approximation algorithm with approximation ratio

better than % if the following conjecture holds:

Unique Games Conjecture: For every ε > 0 there is c such that it is

NP-hard to distinguish instances of the Unique Label Cover Problem

with at most c colors in which at least a 1− ε fraction of the edges

can be satisfied from instances in which at most an ε fraction can be

satisfied.

Unique Label Cover Problem: Given a set of colors and a bipartite

graph whose edges are labeled by permutations of the colors, assign

colors to the nodes. Say an edge is “satisfied” if the coloring“respects”

the corresponding permutation.
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Suppose the Unique Games Conjecture holds.

Then for each k, there must be instances of MAXCUT on which

P ∗
k ≈ P ∗%.

Already for k = 4, I did not find any such instances by calculating

examples.

Suppose the Unique Games Conjecture does not hold.

Then (P4) might improve over %.

But how to prove it?

It seems very difficult to generalize the random hyperplane rounding.
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The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but

with compact feasible set S. Moreover, we assume not only that S is

compact but that there exists an sos certificate for S being contained

in a ball of radius R around the origin, i.e.,

(∗) R2 −
∑n

i=1 x2
i ∈ M for some R ∈ R.

There exists a lot of work on when (∗) holds (by Schmüdgen, Jacobi,

Prestel, Cabral, . . . ) but, from a practical point of view, one can always

satisfy (∗) by adding R2 −
∑

i=1 x2
i ≥ 0 to the constraints of (P ) if a

radius R is known such that S is contained in the ball with radius R.
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Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If (∗) holds and S 6= ∅,
then there is

• a constant c > 0 depending only on g1, . . . , gm and

• a constant c′ > 0 depending only on g1, . . . , gm and f
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If g1, . . . , gm consist of the m = 2s products
∏

i∈I pi (I ⊆ {1, . . . , s})
of some p1, . . . , ps ∈ V (exponentially many redundant constraints),

then (∗) follows already from the compactness of S by Schmüdgen’s

1991 theorem and the same result holds but now with the stronger

estimate

0 ≤ P ∗ − P ∗
k ≤

c′

c
√

k
for all large k ∈ N

(shown by myself in 2004). This is one of the ingredients for the

weaker estimate in the general case. It is not known if this stronger

version holds even in the general case.
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The Goemans-Williamson complexity analysis in the MAXCUT case is

based on a rounding procedure whereas the analysis in the general

polynomial case is based on algebraic theorems about positive

polynomials.

Use positive polynomials in combinatorial optimization?

Use rounding procedures in general polynomial optimization?
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(P∞) minimize L(f) subject to L : V → R linear,

L(M ) ⊆ R≥0 and

L(1) = 1

Note that P ∗
k ≤ P ∗

∞ ≤ P ∗.

( MP) Every L feasible for (P∞) comes from a probability measure µ

, i.e.,

L(p) =
∫

pdµ for all p ∈ V .

It is clear that (SMP) =⇒ P ∗
∞ = P ∗.

In 1993, Putinar proved (∗) =⇒ ( MP).

( MP) would be a good thing.
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L(M ∩Vk) ⊆ R≥0 and

L(1) = 1

Note that Pk
′∗ = P ∗ if (∗) holds.

(STAB) For each k, there is ` such that M ∩ Vk ⊆ M`.

If (∗) and (STAB) hold, then for all k there is ` such that

for all f ∈ Vk, P ∗
` = P ∗. However, we will see that (∗) and (STAB)

rarely hold at the same time.

(STAB) would be a good thing.
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(MP) Every L feasible for (P∞) comes from a probability measure µ

on Rn, i.e.,

L(p) =
∫

pdµ for all p ∈ V .

(STAB) For each k, there is ` such that M ∩ Vk ⊆ M`.

Theorem (Scheiderer 2004): If dim S ≥ 2, then (MP) and (STAB)

cannot hold at the same time.

Bad Corollary: Suppose (∗) holds, n ≥ 2 and S has nonempty interior.

Then there is k such that there is no ` such that for all f ∈ Vk,

P`
∗ = P ∗.
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Set S∗ := {x∗ ∈ S | f(x∗) ≤ f(x) for all x ∈ S}.

Theorem (2005): Suppose that Lk solves (Pk)“nearly to optimality”

for all k. Fix d and a norm on space of linear forms Vd → R. Then for

each ε > 0, there is k such that for all ` ≥ k, there exists a probability

measure µ on S∗ such that ‖(L` − Lµ)|Vd
‖ < ε where Lµ : V → R is

integration with respect to µ.

In particular, if S∗ = {x∗} is a singleton, then

lim
k→∞

(Lk(x1), . . . , Lk(xn)) = x∗.
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