Complexity aspects of SDP relaxations of polynomial optimization problems

Markus Schweighofer
Universität Konstanz

IMA, University of Minnesota
Minneapolis, January 17, 2007

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.
Consider the polynomial optimization problem

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.
Consider the polynomial optimization problem
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.
Consider the polynomial optimization problem
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

with objective $f \in V$, constraining $g_{i} \in V$ and feasible set

$$
S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x), \ldots, g_{m}(x) \geq 0\right\}
$$

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.
Consider the polynomial optimization problem
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

with objective $f \in V$, constraining $g_{i} \in V$ and feasible set

$$
S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x), \ldots, g_{m}(x) \geq 0\right\}
$$

(such sets are called basic closed semialgebraic in real algebraic geometry).

Polynomial optimization problems

Denote by V the ring of all real polynomials in n variables.
Consider the polynomial optimization problem
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

with objective $f \in V$, constraining $g_{i} \in V$ and feasible set

$$
S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x), \ldots, g_{m}(x) \geq 0\right\}
$$

(such sets are called basic closed semialgebraic in real algebraic geometry). Set $g_{0}:=1 \in V$.

Sums of squares

A key concept are sums of squares (sos)

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

where $p_{i} \in V$.

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

where $p_{i} \in V$. Easy to see: $\operatorname{deg}\left(p_{i}^{2}\right) \leq \operatorname{deg}(s)$ for all i.

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

where $p_{i} \in V$. Easy to see: $\operatorname{deg}\left(p_{i}^{2}\right) \leq \operatorname{deg}(s)$ for all i.
For each integer k, introduce the vector space

$$
V_{k}:=\{p \in V \mid \operatorname{deg} p \leq k\}
$$

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

where $p_{i} \in V$. Easy to see: $\operatorname{deg}\left(p_{i}^{2}\right) \leq \operatorname{deg}(s)$ for all i.
For each integer k, introduce the vector space

$$
V_{k}:=\{p \in V \mid \operatorname{deg} p \leq k\}
$$

and the convex cone

$$
M_{k}:=\left\{\sum_{i=0}^{m} s_{i} g_{i} \mid s_{i} \text { sos and } s_{i} g_{i} \in V_{k} \text { for all } i\right\} \subseteq V_{k}
$$

Sums of squares

A key concept are sums of squares (sos)

$$
s=\sum_{i=1}^{r} p_{i}^{2}
$$

where $p_{i} \in V$. Easy to see: $\operatorname{deg}\left(p_{i}^{2}\right) \leq \operatorname{deg}(s)$ for all i.
For each integer k, introduce the vector space

$$
V_{k}:=\{p \in V \mid \operatorname{deg} p \leq k\}
$$

and the convex cone

$$
M_{k}:=\left\{\sum_{i=0}^{m} s_{i} g_{i} \mid s_{i} \text { sos and } s_{i} g_{i} \in V_{k} \text { for all } i\right\} \subseteq V_{k}
$$

of polynomials which are "certifiably nonnegative on S " with "degree k sos certificates".

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :
$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
\begin{aligned}
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :
$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
\begin{aligned}
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Because $p \geq 0$ on S for all $p \in M$, every $x \in S$ induces a feasible solution $L_{x}: V_{k} \rightarrow \mathbb{R}, p \mapsto p(x)$ of $\left(P_{k}\right)$ with same objective value $f(x)=L_{x}(f)$.

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \text { minimize } L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Because $p \geq 0$ on S for all $p \in M$, every $x \in S$ induces a feasible solution $L_{x}: V_{k} \rightarrow \mathbb{R}, p \mapsto p(x)$ of $\left(P_{k}\right)$ with same objective value $f(x)=L_{x}(f)$.

For the optimal values, we have therefore:

$$
P_{k}^{*} \quad \leq P^{*}
$$

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{gathered}
\left(P_{k}\right) \quad \text { minimize } L(f) \text { subject to } \\
\\
\\
\\
\\
\\
\\
\\
L\left(M_{k}\right) \subseteq V_{k} \rightarrow \mathbb{R} \text { linear, } \\
\end{gathered}
$$

Because $p \geq 0$ on S for all $p \in M$, every $x \in S$ induces a feasible solution $L_{x}: V_{k} \rightarrow \mathbb{R}, p \mapsto p(x)$ of $\left(P_{k}\right)$ with same objective value $f(x)=L_{x}(f)$. Moreover, if L is feasible for $\left(P_{k+1}\right),\left.L\right|_{V_{k}}$ is feasible for $\left(P_{k}\right)$. For the optimal values, we have therefore:

$$
P_{k}^{*} \quad \leq P^{*}
$$

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \quad \text { minimize } \quad L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Because $p \geq 0$ on S for all $p \in M$, every $x \in S$ induces a feasible solution $L_{x}: V_{k} \rightarrow \mathbb{R}, p \mapsto p(x)$ of $\left(P_{k}\right)$ with same objective value $f(x)=L_{x}(f)$. Moreover, if L is feasible for $\left(P_{k+1}\right),\left.L\right|_{V_{k}}$ is feasible for $\left(P_{k}\right)$. For the optimal values, we have therefore:

$$
P_{k}^{*} \leq P_{k+1}^{*} \leq \ldots \leq P^{*}
$$

Lasserre relaxations

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \quad \text { minimize } \quad L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Because $p \geq 0$ on S for all $p \in M$, every $x \in S$ induces a feasible solution $L_{x}: V_{k} \rightarrow \mathbb{R}, p \mapsto p(x)$ of $\left(P_{k}\right)$ with same objective value $f(x)=L_{x}(f)$. Moreover, if L is feasible for $\left(P_{k+1}\right),\left.L\right|_{V_{k}}$ is feasible for $\left(P_{k}\right)$. For the optimal values, we have therefore:

$$
P_{k}^{*} \leq P_{k+1}^{*} \leq \ldots \leq P^{*}
$$

Question: How good are the approximations?

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :
$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear, $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \quad \text { minimize } \quad L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP since the objective function $L \mapsto L(f)$ is linear and the constraint $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ can be expressed by $m+1$ linear matrix inequalities

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \text { minimize } L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP since the objective function $L \mapsto L(f)$ is linear and the constraint $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ can be expressed by $m+1$ linear matrix inequalities saying that the bilinear forms

$$
V_{\ell_{i}} \times V_{\ell_{i}} \rightarrow \mathbb{R}, \quad(p, q) \mapsto L\left(p q g_{i}\right)
$$

are positive semidefinite for all $i \in\{0, \ldots, m\}$

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \text { minimize } L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP since the objective function $L \mapsto L(f)$ is linear and the constraint $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ can be expressed by $m+1$ linear matrix inequalities saying that the bilinear forms

$$
V_{\ell_{i}} \times V_{\ell_{i}} \rightarrow \mathbb{R}, \quad(p, q) \mapsto L\left(p q g_{i}\right)
$$

are positive semidefinite for all $i \in\{0, \ldots, m\}$ where ℓ_{i} is maximal such that $2 \ell_{i}+\operatorname{deg}\left(g_{i}\right) \leq k$.

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \text { minimize } L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP since the objective function $L \mapsto L(f)$ is linear and the constraint $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ can be expressed by $m+1$ linear matrix inequalities saying that the bilinear forms

$$
V_{\ell_{i}} \times V_{\ell_{i}} \rightarrow \mathbb{R}, \quad(p, q) \mapsto L\left(p q g_{i}\right)
$$

are positive semidefinite for all $i \in\{0, \ldots, m\}$ where ℓ_{i} is maximal such that $2 \ell_{i}+\operatorname{deg}\left(g_{i}\right) \leq k . \rightarrow$ Moment matrix for $i=0$.

Lasserre relaxations are SDPs

For each integer k with $f \in V_{k}$, we consider the following degree k Lasserre relaxation of (P) :

$$
\begin{aligned}
\left(P_{k}\right) \text { minimize } L(f) \text { subject to } & L: V_{k} \rightarrow \mathbb{R} \text { linear, } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

The idea behind $\left(P_{k}\right)$ is that it can be expressed as an SDP since the objective function $L \mapsto L(f)$ is linear and the constraint $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ can be expressed by $m+1$ linear matrix inequalities saying that the bilinear forms

$$
V_{\ell_{i}} \times V_{\ell_{i}} \rightarrow \mathbb{R}, \quad(p, q) \mapsto L\left(p q g_{i}\right)
$$

are positive semidefinite for all $i \in\{0, \ldots, m\}$ where ℓ_{i} is maximal such that $2 \ell_{i}+\operatorname{deg}\left(g_{i}\right) \leq k$. \rightarrow Localizing matrix for $1 \leq i \leq m$.

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E.

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal.

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{array}{ll}
\operatorname{maximize} & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n}, \\
& x_{1} \in\{+1,-1\} \\
& \vdots \\
& x_{n} \in\{+1,-1\}
\end{array}
$$

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{array}{ll}
\operatorname{maximize} & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& x_{1}^{2}=1 \\
& \vdots \\
& x_{n}^{2}=1
\end{array}
$$

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{aligned}
(P) \quad \text { maximize } & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& x_{1}^{2}-1 \geq 0,1-x_{1}^{2} \geq 0 \\
& \vdots \\
& x_{n}^{2}-1 \geq 0,1-x_{n}^{2} \geq 0
\end{aligned}
$$

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{aligned}
(P) \quad \text { maximize } & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& x_{1}^{2}-1 \geq 0,1-x_{1}^{2} \geq 0 \\
& \vdots \\
& x_{n}^{2}-1 \geq 0,1-x_{n}^{2} \geq 0
\end{aligned}
$$

We get corresponding Lasserre relaxations $\left(P_{2}\right),\left(P_{4}\right), \ldots$

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{aligned}
(P) \quad \text { maximize } & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& x_{1}^{2}-1 \geq 0,1-x_{1}^{2} \geq 0 \\
& \vdots \\
& x_{n}^{2}-1 \geq 0,1-x_{n}^{2} \geq 0
\end{aligned}
$$

We get corresponding Lasserre relaxations $\left(P_{2}\right),\left(P_{4}\right), \ldots$ $\left(P_{3}\right),\left(P_{5}\right), \ldots$ need not be considered since $M_{2}=M_{3}, \ldots$

Example: MAXCUT

As an example, we consider the NP-complete MAXCUT problem for a graph with vertex set $\{1, \ldots, n\}$ and edge set E. The problem is to assign to each vertex a sign (i.e., +1 or -1) such that the number of edges connecting "positive" and "negative" vertices gets maximal. In other words, the problem is:

$$
\begin{aligned}
(P) \quad \text { maximize } & \frac{1}{2} \sum_{\{i, j\} \in E, i<j}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& x_{1}^{2}-1 \geq 0,1-x_{1}^{2} \geq 0 \\
& \vdots \\
& x_{n}^{2}-1 \geq 0,1-x_{n}^{2} \geq 0
\end{aligned}
$$

We get corresponding Lasserre relaxations $\left(P_{2}\right),\left(P_{4}\right), \ldots$ $\left(P_{3}\right),\left(P_{5}\right), \ldots$ need not be considered since $M_{2}=M_{3}, \ldots$
Note that now $P_{k}^{*} \geq P_{k+1}^{*} \geq \ldots \geq P^{*}$ since we maximize.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.
Moreover, for no polynomial time algorithm it could be shown ever since that it achieves a better approximation ratio.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.
Moreover, for no polynomial time algorithm it could be shown ever since that it achieves a better approximation ratio.
$\left(P_{4}\right)$ is exact, i.e., $P_{4}^{*}=P^{*}$, for graphs with no K_{5} minor (in particular, for all planar graphs).

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.
Moreover, for no polynomial time algorithm it could be shown ever since that it achieves a better approximation ratio.
$\left(P_{4}\right)$ is exact, i.e., $P_{4}^{*}=P^{*}$, for graphs with no K_{5} minor (in particular, for all planar graphs). Monique Laurent observed that this follows from a result of Barahona and Mahjoub from 1986.

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.
Moreover, for no polynomial time algorithm it could be shown ever since that it achieves a better approximation ratio.
$\left(P_{4}\right)$ is exact, i.e., $P_{4}^{*}=P^{*}$, for graphs with no K_{5} minor (in particular, for all planar graphs). Monique Laurent observed that this follows from a result of Barahona and Mahjoub from 1986.
$\left(P_{2 n}\right)$ is exact for all graphs, i.e., $P_{2 n}^{*}=P^{*}$. This is not hard to show

Lasserre relaxations of MAXCUT

$\left(P_{2}\right)$ is (essentially) the famous SDP relaxation of MAXCUT found by Goemans and Williamson in 1995. By rounding a feasible solution $\left(P_{2}\right)$ to a random feasible solution of (P) (random hyperplane technique), they show $P_{2}^{*} \in\left[P^{*}, P^{*} \varrho\right]$ where $\varrho \approx 1.1382$. Since for each fixed k, $\left(P_{k}\right)$ can be solved in polynomial time, this yields a polynomial time approximation algorithm.
Its approximation ratio was shown to be exactly ϱ by Karloff in 1999.
Moreover, for no polynomial time algorithm it could be shown ever since that it achieves a better approximation ratio.
$\left(P_{4}\right)$ is exact, i.e., $P_{4}^{*}=P^{*}$, for graphs with no K_{5} minor (in particular, for all planar graphs). Monique Laurent observed that this follows from a result of Barahona and Mahjoub from 1986.
$\left(P_{2 n}\right)$ is exact for all graphs, i.e., $P_{2 n}^{*}=P^{*}$. This is not hard to show but it yields of course no polynomial time algorithm for MAXCUT since the size of $\left(P_{2 n}\right)$ grows too fast with n.

Inapproximability of MAXCUT

Using PCP, Hastad showed in 2001 that there is no polynomial time approximation algorithm with approximation ratio $17 / 16$ unless $\mathrm{P}=\mathrm{NP}$.

Inapproximability of MAXCUT

Using PCP, Hastad showed in 2001 that there is no polynomial time approximation algorithm with approximation ratio $17 / 16$ unless $\mathrm{P}=\mathrm{NP}$. Khot, Kindler, Mossel and O'Donnell showed that there is no polynomial time approximation algorithm with approximation ratio better than ϱ if the following conjecture holds:

Inapproximability of MAXCUT

Using PCP, Hastad showed in 2001 that there is no polynomial time approximation algorithm with approximation ratio $17 / 16$ unless $\mathrm{P}=\mathrm{NP}$. Khot, Kindler, Mossel and O'Donnell showed that there is no polynomial time approximation algorithm with approximation ratio better than ϱ if the following conjecture holds:
Unique Games Conjecture: For every $\varepsilon>0$ there is c such that it is NP-hard to distinguish instances of the Unique Label Cover Problem with at most c colors in which at least a $1-\varepsilon$ fraction of the edges can be satisfied from instances in which at most an ε fraction can be satisfied.

Inapproximability of MAXCUT

Using PCP, Hastad showed in 2001 that there is no polynomial time approximation algorithm with approximation ratio $17 / 16$ unless $\mathrm{P}=\mathrm{NP}$. Khot, Kindler, Mossel and O'Donnell showed that there is no polynomial time approximation algorithm with approximation ratio better than ϱ if the following conjecture holds:
Unique Games Conjecture: For every $\varepsilon>0$ there is c such that it is NP-hard to distinguish instances of the Unique Label Cover Problem with at most c colors in which at least a $1-\varepsilon$ fraction of the edges can be satisfied from instances in which at most an ε fraction can be satisfied.
Unique Label Cover Problem: Given a set of colors and a bipartite graph whose edges are labeled by permutations of the colors, assign colors to the nodes. Say an edge is "satisfied" if the coloring "respects" the corresponding permutation.

Suppose the Unique Games Conjecture holds.
Then for each k, there must be instances of MAXCUT on which $P_{k}^{*} \approx P^{*} \varrho$ 。

Suppose the Unique Games Conjecture holds.
Then for each k, there must be instances of MAXCUT on which $P_{k}^{*} \approx P^{*} \varrho$.
Already for $k=4$, I did not find any such instances by calculating examples.

Suppose the Unique Games Conjecture holds.
Then for each k, there must be instances of MAXCUT on which $P_{k}^{*} \approx P^{*} \varrho$.
Already for $k=4$, I did not find any such instances by calculating examples.

Suppose the Unique Games Conjecture does not hold.
Then $\left(P_{4}\right)$ might improve over ϱ.

Suppose the Unique Games Conjecture holds.
Then for each k, there must be instances of MAXCUT on which $P_{k}^{*} \approx P^{*} \varrho$.
Already for $k=4$, I did not find any such instances by calculating examples.

Suppose the Unique Games Conjecture does not hold.
Then $\left(P_{4}\right)$ might improve over ϱ.
But how to prove it?
It seems very difficult to generalize the random hyperplane rounding.

The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but with compact feasible set S.

The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin,

The general case: A technical condition
Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin, i.e.,

$$
\text { (*) } \quad R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in M \text { for some } R \in \mathbb{R} \text {. }
$$

The general case: A technical condition
Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin, i.e.,

$$
\text { (*) } \quad R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in M \text { for some } R \in \mathbb{R} \text {. }
$$

There exists a lot of work on when (*) holds (by Schmüdgen, Jacobi, Prestel, Cabral, ...)

The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin, i.e.,

$$
\text { (*) } \quad R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in M \text { for some } R \in \mathbb{R} \text {. }
$$

There exists a lot of work on when (*) holds (by Schmüdgen, Jacobi, Prestel, Cabral, ...) but, from a practical point of view, one can always satisfy (*)

The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin, i.e.,

$$
\text { (*) } \quad R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in M \text { for some } R \in \mathbb{R} \text {. }
$$

There exists a lot of work on when (*) holds (by Schmüdgen, Jacobi, Prestel, Cabral, ...) but, from a practical point of view, one can always satisfy ($*$) by adding $R^{2}-\sum_{i=1} x_{i}^{2} \geq 0$ to the constraints of (P)

The general case: A technical condition

Now we go back to a general polynomial optimization problem (P) but with compact feasible set S. Moreover, we assume not only that S is compact but that there exists an sos certificate for S being contained in a ball of radius R around the origin, i.e.,

$$
\text { (*) } \quad R^{2}-\sum_{i=1}^{n} x_{i}^{2} \in M \text { for some } R \in \mathbb{R} \text {. }
$$

There exists a lot of work on when (*) holds (by Schmüdgen, Jacobi, Prestel, Cabral, ...) but, from a practical point of view, one can always satisfy (*) by adding $R^{2}-\sum_{i=1} x_{i}^{2} \geq 0$ to the constraints of (P) if a radius R is known such that S is contained in the ball with radius R.

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If $(*)$ holds and $S \neq \emptyset$, then there is

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N}
$$

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If (*) holds and $S \neq \emptyset$, then there is

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N} \text {. }
$$

In particular, $\lim _{k \rightarrow \infty} P_{k}^{*}=P^{*}$

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If $(*)$ holds and $S \neq \emptyset$, then there is

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N}
$$

In particular, $\lim _{k \rightarrow \infty} P_{k}^{*}=P^{*}$ which follows (as observed by Lasserre) already from Putinar's 1993 theorem saying that $p>0$ on $S \Longrightarrow p \in M$ for all $p \in V$, provided (*) holds.

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If $(*)$ holds and $S \neq \emptyset$, then there is

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N}
$$

In particular, $\lim _{k \rightarrow \infty} P_{k}^{*}=P^{*}$ which follows (as observed by Lasserre) already from Putinar's 1993 theorem saying that $p>0$ on $S \Longrightarrow p \in M$ for all $p \in V$, provided $(*)$ holds. Our proof is algebraic and consists in determining k such that $p \in M_{k}$

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If $(*)$ holds and $S \neq \emptyset$, then there is

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N}
$$

In particular, $\lim _{k \rightarrow \infty} P_{k}^{*}=P^{*}$ which follows (as observed by Lasserre) already from Putinar's 1993 theorem saying that $p>0$ on $S \Longrightarrow p \in M$ for all $p \in V$, provided $(*)$ holds. Our proof is algebraic and consists in determining k such that $p \in M_{k}$ which is not possible from Putinar's original functional analytic proof.

Convergence of SDP relaxations

Theorem (joint with Jiawang Nie): If $(*)$ holds and $S \neq \emptyset$, then there is (more is known about the constants)

- a constant $c>0$ depending only on g_{1}, \ldots, g_{m} and
- a constant $c^{\prime}>0$ depending only on g_{1}, \ldots, g_{m} and f
such that

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{\log \frac{k}{c}}} \quad \text { for all large } k \in \mathbb{N}
$$

In particular, $\lim _{k \rightarrow \infty} P_{k}^{*}=P^{*}$ which follows (as observed by Lasserre) already from Putinar's 1993 theorem saying that $p>0$ on $S \Longrightarrow p \in M$ for all $p \in V$, provided $(*)$ holds. Our proof is algebraic and consists in determining k such that $p \in M_{k}$ which is not possible from Putinar's original functional analytic proof.

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$ (exponentially many redundant constraints),

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$ (exponentially many redundant constraints), then $(*)$ follows already from the compactness of S by Schmüdgen's 1991 theorem

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$ (exponentially many redundant constraints), then $(*)$ follows already from the compactness of S by Schmüdgen's 1991 theorem and the same result holds but now with the stronger estimate

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{k}} \quad \text { for all large } k \in \mathbb{N}
$$

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$ (exponentially many redundant constraints), then $(*)$ follows already from the compactness of S by Schmüdgen's 1991 theorem and the same result holds but now with the stronger estimate

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{k}} \quad \text { for all large } k \in \mathbb{N}
$$

(shown by myself in 2004). This is one of the ingredients for the weaker estimate in the general case.

Convergence of SDP relaxations

If g_{1}, \ldots, g_{m} consist of the $m=2^{s}$ products $\prod_{i \in I} p_{i}(I \subseteq\{1, \ldots, s\})$ of some $p_{1}, \ldots, p_{s} \in V$ (exponentially many redundant constraints), then $(*)$ follows already from the compactness of S by Schmüdgen's 1991 theorem and the same result holds but now with the stronger estimate

$$
0 \leq P^{*}-P_{k}^{*} \leq \frac{c^{\prime}}{\sqrt[c]{k}} \quad \text { for all large } k \in \mathbb{N}
$$

(shown by myself in 2004). This is one of the ingredients for the weaker estimate in the general case. It is not known if this stronger version holds even in the general case.

Two questions

The Goemans-Williamson complexity analysis in the MAXCUT case is based on a rounding procedure

Two questions

The Goemans-Williamson complexity analysis in the MAXCUT case is based on a rounding procedure whereas the analysis in the general polynomial case is based on algebraic theorems about positive polynomials.

Two questions

The Goemans-Williamson complexity analysis in the MAXCUT case is based on a rounding procedure whereas the analysis in the general polynomial case is based on algebraic theorems about positive polynomials.

Use positive polynomials in combinatorial optimization?

Two questions

The Goemans-Williamson complexity analysis in the MAXCUT case is based on a rounding procedure whereas the analysis in the general polynomial case is based on algebraic theorems about positive polynomials.

Use positive polynomials in combinatorial optimization?

Use rounding procedures in general polynomial optimization?

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear, $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
(SMP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on S, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V .
$$

$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
(SMP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on S, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V
$$

It is clear that $(\mathrm{SMP}) \Longrightarrow P_{\infty}^{*}=P^{*}$.
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
(SMP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on S, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V
$$

It is clear that $(\mathrm{SMP}) \Longrightarrow P_{\infty}^{*}=P^{*}$.
In 1993, Putinar proved $(*) \Longrightarrow$ (SMP).
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
(SMP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on S, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V .
$$

It is clear that $(\mathrm{SMP}) \Longrightarrow P_{\infty}^{*}=P^{*}$.
In 1993, Putinar proved $(*) \Longrightarrow$ (SMP).
(SMP) would be a good thing.
$(P) \quad$ minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{\infty}\right)$ minimize $L(f)$ subject to $L: V \rightarrow \mathbb{R}$ linear, $L(M) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$

Note that $P_{k}^{*} \leq P_{\infty}^{*} \leq P^{*}$.
(MP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ , i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V .
$$

It is clear that (SMP) $\Longrightarrow P_{\infty}^{*}=P^{*}$.
In 1993, Putinar proved $(*) \Longrightarrow(M P)$.
(MP) would be a good thing.
(P) minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
\begin{aligned}
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

(P) minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear, $L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ and $L(1)=1$
(P) minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and }
$$

$$
L(1)=1
$$

Note that $P_{k}{ }^{\prime *}=P^{*}$ if $(*)$ holds.
(P) minimize $f(x)$ subject to $x \in \mathbb{R}^{n}$ and

$$
g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
\begin{aligned}
& L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and } \\
& L(1)=1
\end{aligned}
$$

Note that $P_{k}{ }^{\prime *}=P^{*}$ if $(*)$ holds.
(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and }
$$

$$
L(1)=1
$$

Note that $P_{k}{ }^{\prime *}=P^{*}$ if $(*)$ holds.
(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.
If $(*)$ and (STAB) hold, then for all k there is ℓ such that for all $f \in V_{k}, P_{\ell}^{*}=P^{*}$.

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and }
$$

$$
L(1)=1
$$

Note that $P_{k}{ }^{\prime *}=P^{*}$ if $(*)$ holds.
(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.
If $(*)$ and (STAB) hold, then for all k there is ℓ such that for all $f \in V_{k}, P_{\ell}^{*}=P^{*}$. However, we will see that $(*)$ and (STAB) rarely hold at the same time.

$$
\begin{aligned}
(P) \quad \text { minimize } f(x) \text { subject to } & x \in \mathbb{R}^{n} \text { and } \\
& g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

$\left(P_{k}{ }^{\prime}\right)$ minimize $L(f)$ subject to $L: V_{k} \rightarrow \mathbb{R}$ linear,

$$
L\left(M \cap V_{k}\right) \subseteq \mathbb{R}_{\geq 0} \text { and }
$$

$$
L(1)=1
$$

Note that $P_{k}{ }^{\prime *}=P^{*}$ if $(*)$ holds.
(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.
If $(*)$ and (STAB) hold, then for all k there is ℓ such that for all $f \in V_{k}, P_{\ell}^{*}=P^{*}$. However, we will see that $(*)$ and (STAB) rarely hold at the same time.
(STAB) would be a good thing.
(MP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on \mathbb{R}^{n}, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V
$$

(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.
(MP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on \mathbb{R}^{n}, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V
$$

(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.

Theorem (Scheiderer 2004): If $\operatorname{dim} S \geq 2$, then (MP) and (STAB) cannot hold at the same time.
(MP) Every L feasible for $\left(P_{\infty}\right)$ comes from a probability measure μ on \mathbb{R}^{n}, i.e.,

$$
L(p)=\int p d \mu \quad \text { for all } p \in V
$$

(STAB) For each k, there is ℓ such that $M \cap V_{k} \subseteq M_{\ell}$.

Theorem (Scheiderer 2004): If $\operatorname{dim} S \geq 2$, then (MP) and (STAB) cannot hold at the same time.

Bad Corollary: Suppose ($*$) holds, $n \geq 2$ and S has nonempty interior. Then there is k such that there is no ℓ such that for all $f \in V_{k}$, $P_{\ell}{ }^{*}=P^{*}$.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k. Fix d and a norm on space of linear forms $V_{d} \rightarrow \mathbb{R}$.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k. Fix d and a norm on space of linear forms $V_{d} \rightarrow \mathbb{R}$. Then for each $\varepsilon>0$, there is k such that for all $\ell \geq k$, there exists a probability measure μ on S^{*} such that $\left\|\left.\left(L_{\ell}-L_{\mu}\right)\right|_{V_{d}}\right\|<\varepsilon$
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k. Fix d and a norm on space of linear forms $V_{d} \rightarrow \mathbb{R}$. Then for each $\varepsilon>0$, there is k such that for all $\ell \geq k$, there exists a probability measure μ on S^{*} such that $\left\|\left.\left(L_{\ell}-L_{\mu}\right)\right|_{V_{d}}\right\|<\varepsilon$ where $L_{\mu}: V \rightarrow \mathbb{R}$ is integration with respect to μ.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq[0, \infty)
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k. Fix d and a norm on space of linear forms $V_{d} \rightarrow \mathbb{R}$. Then for each $\varepsilon>0$, there is k such that for all $\ell \geq k$, there exists a probability measure μ on S^{*} such that $\left\|\left.\left(L_{\ell}-L_{\mu}\right)\right|_{V_{d}}\right\|<\varepsilon$ where $L_{\mu}: V \rightarrow \mathbb{R}$ is integration with respect to μ.
In particular, if $S^{*}=\left\{x^{*}\right\}$ is a singleton, then
$\left(P_{k}\right)$ minimize $L(f)$ subject to $L: \mathbb{R}[X]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq[0, \infty)
\end{aligned}
$$

Set $S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x)\right.$ for all $\left.x \in S\right\}$.
Theorem (2005): Suppose that L_{k} solves $\left(P_{k}\right)$ "nearly to optimality" for all k. Fix d and a norm on space of linear forms $V_{d} \rightarrow \mathbb{R}$. Then for each $\varepsilon>0$, there is k such that for all $\ell \geq k$, there exists a probability measure μ on S^{*} such that $\left\|\left.\left(L_{\ell}-L_{\mu}\right)\right|_{V_{d}}\right\|<\varepsilon$ where $L_{\mu}: V \rightarrow \mathbb{R}$ is integration with respect to μ.
In particular, if $S^{*}=\left\{x^{*}\right\}$ is a singleton, then

$$
\lim _{k \rightarrow \infty}\left(L_{k}\left(x_{1}\right), \ldots, L_{k}\left(x_{n}\right)\right)=x^{*}
$$

