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Definition. A subset K ⊆ E of a real vector space E is called a
convex cone if 0 ∈ K, K + K ⊆ K and R≥0K ⊆ K.
A convex cone K of an Euclidean space E is called self-dual if

K = {x ∈ E | 〈x, y〉 ≥ 0 for all y ∈ K}.

Examples of self-dual cones.

• E = Rn, 〈x, y〉 =
∑n

i=1 xiyi, K = (R≥0)n

• E = SRn×n (symmetric n× n matrices),
〈A,B〉 =

∑n
i,j=1 AijBij = tr(ABT ) = tr(AB),

K = SRn×n
+ (psd, positive semidefinite)
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Matrix scalar products

• Regard the Euclidean space Rm×n of all m× n matrices with

〈A,B〉 =
m∑

i=1

n∑
j=1

AijBij = tr(ABT ).

Then for all matrices A,B,C such that 〈AB,C〉 is defined,

〈AB,C〉 =tr(ABCT ) = tr(BCT A) = tr(B(AT C)T )= 〈B,AT C〉,

similarly if A “operates” on the right hand side.

• For every A ∈ SRn×n, there is an orthogonal P ∈ Rn×n and a
diagonal D ∈ Rn×n such that A = PT DP . Hence, by the
above, 〈A,A〉 = 〈D,D〉 showing that

‖A‖ = ‖λ(A)‖

where λ(A) is the diagonal of D containing the eigenvalues of
A.
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Some descriptions of the cone SRn×n
+

Proposition: For any matrix A ∈ SRn×n are equivalent:

(i) A is positive semidefinite.

(ii) 〈Ax, x〉 ≥ 0 for all x ∈ Rn

(iii) A has only nonnegative eigenvalues.

(iv) There are x1, . . . , xn ∈ Rn such that A =
∑n

i=1 xix
T
i .

(v) There is s ∈ N and x1, . . . , xs ∈ Rn such that A =
∑s

i=1 xix
T
i .

(vi) A is the Gram matrix of vectors v1, . . . , vn ∈ Rn, i.e.,
A = (〈vi, vj〉)i,j=1,...n.

(vii) A is the Gram matrix of vectors v1, . . . , vn in some Rs.

(viii) 〈A,B〉 ≥ 0 for all B ∈ SRn×n
+ . (shows self-duality)
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• Semidefinite programming is an extension of linear
programming.

• Linear programming: Optimization of a linear function
Rn → R on the intersection of the selfdual cone Rn

≥0 with an
affine subspace of Rn.

• Semidefinite programming: Optimization of a linear function
SRn×n → R on the intersection of the selfdual cone SRn×n

+

with an affine subspace.

• Most of the concepts for linear programming can be adapted to
semidefinite programming.

• In a certain sense (not restrictive in practice), semidefinite
programming is solvable in polynomial time.

• A lot of efficient semidefinite programming solvers are freely
available.
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Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces,
K ⊆ E a self-dual convex cone, c ∈ E, b ∈ F ,
A : E → F a linear map and A∗ : F → E its adjoint.

(P ) minimize 〈c, x〉
subject to x ∈ K

Ax = b

(D) maximize 〈b, y〉
subject to y ∈ F

c−A∗y ∈ K

Weak duality: If x is feasible for (P ) and y for (D), then

〈c, x〉 ≥〈A∗y, x〉 = 〈Ax, y〉 = 〈b, y〉.
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Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces,
K ⊆ E a self-dual convex cone, c ∈ E, b ∈ F ,
A : E → F a linear map and A∗ : F → E its adjoint.

(P ) minimize 〈c, x〉 (D) maximize 〈b, y〉
subject to x ∈ K subject to y ∈ F

Ax = b c−A∗y ∈ K

Write P ∗ := inf(P ) := inf{〈c, x〉 | x ∈ K,Ax = b} ∈ R ∪ {±∞} and
(analogously) D∗ := sup(D) for the optimal values of (P ) and (D).
Then we have:

Weak duality: P ∗ ≥ D∗

Strong duality P ∗ = D∗ holds often, for example if both problems
are feasible and one of them strictly, i.e., with K replaced by its
interior.
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Semidefinite Programming

Let A1, . . . , Am ∈ SRn×n, b ∈ Rm, C ∈ Rn×n,
A : SRn×n → Rm : X 7→ (〈Ai, X〉)i∈{1,...,m}. Then
A∗ : Rm → SRn×n : y 7→

∑m
i=1 yiAi since

〈AX, y〉 =
m∑

i=1

〈Ai, X〉yi =
m∑

i=1

yi〈X, Ai〉 = 〈X,
m∑

i=1

yiAi〉.

(P ) minimize 〈C,X〉 (D) maximize 〈b, y〉
subject to X ∈ SRn×n

+ subject to y ∈ Rm

〈Ai, X〉 = bi C −
∑m

i=1 yiAi psd

Weak duality: P ∗ ≥ D∗

Strong duality P ∗ = D∗ holds often, for example if both problems
are feasible and one of them strictly, i.e., with “psd” replaced by
“pd”.
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Positive semidefinite matrices and families of vectors

Recall the following fact.
A real symmetric n× n matrix A is psd if and only if there are
vectors v1, . . . , vn ∈ Rn such that

A =


〈v1, v1〉 . . . 〈v1, vn〉
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Positive semidefinite matrices and families of vectors

Recall the following fact.
A real symmetric n× n matrix A is psd if and only if there are
vectors v1, . . . , vn ∈ Rn such that

A =


〈v1, v1〉 . . . 〈v1, vn〉

...
...

〈vn, v1〉 . . . 〈vn, vn〉

 .

Therefore SDP can be seen as optimization over families of vectors
where the goal function and the constraints are linear in the scalar
products between these vectors.
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The maximum cut problem

Given a graph, i.e., an n ∈ N (number of nodes) and a set

E ⊆ {(i, j) ∈ {1, . . . , n}2 | i < j}

(of edges), find the maximum cut value, i.e., the maximal possible
number of edges that connect nodes with different signs when each
node is assigned a sign + or −.

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to xi ∈ R for all i ∈ {1, . . . , n}

x2
i = 1
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Vector version of first MAXCUT relaxation

(P1) maximize
∑

(i,j)∈E

1
2
(1− 〈vi, vj〉)

subject to vi ∈ Rn for all i ∈ {1, . . . , n}

〈vi, vi〉 = 1

Error analysis of Goemans & Williamson: Computing an optimal
solution v1, . . . , vn ∈ Sn−1

J. Assoc. Comput. Mach. 42, No.6, 1115–1145 (1995)
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Vector version of first MAXCUT relaxation

(P1) maximize
∑

(i,j)∈E

1
2
(1− 〈vi, vj〉)

subject to vi ∈ Rn for all i ∈ {1, . . . , n}

〈vi, vi〉 = 1

Error analysis of Goemans & Williamson: Computing an optimal
solution v1, . . . , vn ∈ Sn−1 and rounding it by a random hyperplane
H to a {−1, 1}-solution, shows that P ∗1 := sup(P1) overestimates
the maximum cut value of E at most by a factor of 1.1382.

J. Assoc. Comput. Mach. 42, No.6, 1115–1145 (1995)
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Vector version of first MAXCUT relaxation

(P1) maximize
∑

(i,j)∈E

1
2
(1− 〈vi, vj〉)

subject to vi ∈ Rn for all i ∈ {1, . . . , n}

〈vi, vi〉 = 1

E[value of random cut] =
∑

(i,j)∈E

P [H separates vi and vj ]

=
∑

(i,j)∈E

^(vi, vj)
π

≥ 1
1.1382

∑
(i,j)∈E

1
2
(1− 〈vi, vj〉).
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∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that
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...
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. . .
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First MAXCUT relaxation

(P1) maximize
∑

(i,j)∈E

1
2
(1− yij)

subject to yij ∈ R (1 ≤ i < j ≤ n)

X1 . . . . . . . . . Xn

X1

...

...

Xn


1 y12 . . . y1n

y12 1 y2n

...
. . .

...

y1n . . . . . . . . . . 1


is psd

Note: With obvious changes, one can allow affine linear goal
functions. From now on, it will be more efficient to implement all
our primals as duals and vice versa.
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What is the dual of the first relaxation?

An exercise shows that solving the dual SDP (D1) amounts to
minimizing µ ∈ R subject to the following constraint:

µ−
∑

(i,j)∈E
1
2 (1−XiXj) is congruent to a sum of squares of linear

forms modulo the ideal (X2
1 − 1, . . . , X2

n − 1).

This is typical for the duals, we will encounter!

Obviously, there is no duality gap between (P1) and (D1).

14



MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

15



MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that



1 x1x2 . . . . . . . . . . . .

x2x1 1
...

. . .
...

. . .

1


is psd
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MAXCUT

maximize
∑

(i,j)∈E

1
2
(1− xixj)

subject to x ∈ {−1, 1}n

Note that

1 X1X2 X1X3 . . . Xn−1Xn

1

X1X2

X1X3

...

Xn−1Xn



1 x1x2 . . . . . . . . . . . .

x2x1 1
...

. . .
...

. . .

1


is psd
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Second MAXCUT relaxation

(P2) maximize
∑

(i,j)∈E

1
2
(1− yij)

subject to yij ∈ R (1 ≤ i < j ≤ n)

1 X1X2 X1X3 . . . Xn−1Xn

1

X1X2

X1X3

...

Xn−1Xn



1 y12 . . . . . . . . . . . .

y12 1
...

. . .
...

. . .

1


is psd
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• The maximum cut problem is NP–complete

• The first relaxation gives a polynomial time algorithm which
overestimates the maximum cut value at most by a factor of
≈ 1.1382.

• The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial time algorithm it is known
that it has a better approximation ratio. Existence of such an
algorithm with ratio < 1.0625 implies P = NP (Hastad).

• Solving the second relaxation is a polynomial time algorithm
which yields the exact value for all planar graphs (consequence
of results of Seymour, Barahona, Mahjoub), and is conjectured
to improve over the GW–algorithm.

• The n–th relaxation yields the exact maximum cut value.

16



Exactness of the n-th MAXCUT relaxation
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Exactness of the n-th MAXCUT relaxation

Proposition. Suppose p ∈ R[X1, . . . , Xn] such that

p ≥ 0 on {−1, 1}n.

Then f is a square modulo the ideal

I := (X2
1 − 1, . . . , X2

n − 1) ⊆ R[X1, . . . , Xn].

Proof by algebra. By chinese remainder theorem

R[X1, . . . , Xn]/I ∼= R{−1,1}n ∼= R2n

.

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Corollary. D∗
n = P ∗n = f∗
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Notation

• X1, . . . , Xn variables

• X := X1 when n = 1, (X, Y ) := (X1, X2) when n = 2, . . .

• R[X̄] := R[X1, . . . , Xn] polynomial ring

• f ∈ R[X̄] an arbitrary polynomial

• g1, . . . , gm ∈ R[X̄] polynomials defining. . .

• . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
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Notation

• X1, . . . , Xn variables

• X := X1 when n = 1, (X, Y ) := (X1, X2) when n = 2, . . .

• R[X] := R[X1, . . . , Xn] polynomial ring

• f ∈ R[X̄] an arbitrary polynomial

• g1, . . . , gm ∈ R[X̄] polynomials defining. . .

• . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
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compute numerically the infimum
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Optimization

We consider the problem of minimizing f on S. So we want to
compute numerically the infimum

f∗ := inf{f(x) | x ∈ S} ∈ R ∪ {±∞}

and, if possible, a minimizer, i.e., an element of the set

S∗ := {x∗ ∈ S | f(x∗) ≤ f(x) for all x ∈ S}.
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Linear Programming

minimize f(x)

subject to x ∈ Rn

g1(x) ≥ 0
...

gm(x) ≥ 0

where all polynomials f and gi are linear, i.e.,
their degree is ≤ 1. In particular, S ⊆ Rn is a polyhedron.
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Linear Programming

minimize f(x)

subject to x ∈ Rn
g1(x)

. . .

gm(x)

 is psd

where all polynomials f and gi are linear, i.e.,
their degree is ≤ 1. In particular, S ⊆ Rn is a polyhedron.
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S D P

minimize f(x)

subject to x ∈ Rn
g11(x) . . . g1m(x)

...
. . .

...

. . . gmm(x)

 is psd

where all polynomials f and gij are linear, i.e.,
their degree is ≤ 1.



Semidefinite Programming

minimize f(x)

subject to x ∈ Rn
g11(x) . . . g1m(x)

...
. . .

...

. . . gmm(x)

 is psd

where all polynomials f and gij are linear, i.e.,
their degree is ≤ 1.
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Duality

• Every linear program (P ) has an optimal value P ∗.

• To every linear program (P ), one can define a dual
program (D) which is again a linear program.

• If (P ) is a minimization problem, then (D) is a maximization
problem and weak duality holds:

D∗ ≤ P ∗

• Strong duality is desired and often holds:

D∗ = P ∗

22



Duality

• Every semidefinite program (P ) has an optimal value P ∗.

• To every semidefinite program (P ), one can define a dual
program (D) which is again a semidefinite program.

• If (P ) is a minimization problem, then (D) is a maximization
problem and weak duality holds:

D∗ ≤ P ∗

• Strong duality is desired and often holds:

D∗ = P ∗
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minimize
2d∑

i=0

aix
i

subject to x ∈ R

where a0, . . . , a2d ∈ R.
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minimize
2d∑

i=0

aix
i

subject to x ∈ R

Note that



1 x x2 . . . xd

x x2 . . . . . .

x2 . . . . . .
...

. . .

xd x2d


is psd

where a0, . . . , a2d ∈ R.
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minimize
2d∑

i=0

aix
i

subject to x ∈ R

Note that

1 X X2 . . . Xd

1

X

X2

...

Xd



1 x x2 . . . xd

x x2 . . . . . .

x2 . . . . . .
...

. . .

xd x2d


is psd

where a0, . . . , a2d ∈ R.
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(P ) minimize
2d∑

i=1

aiyi + a0

subject to y ∈ R2d

1 X X2 . . . Xd

1

X

X2

...

Xd



1 y1 y2 yd

y1 y2
. . . . . .

y2
. . . . . .

...
. . .

yd y2d


is psd

where a0, . . . , a2d ∈ R.
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Set f :=
∑2d

i=0 aiX
i and denote by (D) the semidefinite program

dual to (P ). Then it is clear that

D∗ ≤ P ∗ ≤ f∗.

It turns out that (D) can be interpreted as:

(D) maximize µ

subject to f − µ is sos

Proposition. For every p ∈ R[X],

p ≥ 0 on R =⇒ p is a sum of two squares in R[X].

Corollary.
D∗ = P ∗ = f∗
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minimize
∑
i+j≤4

aijx
iyj

subject to x, y ∈ R

where aij ∈ R (i + j ≤ 4).
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minimize
∑
i+j≤4

aijx
iyj

subject to x, y ∈ R

Note that



1 x y x2 xy y2

x x2 xy x3 x2y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4


is psd

where aij ∈ R (i + j ≤ 4).
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minimize
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i+j≤4

aijx
iyj

subject to x, y ∈ R

Note that

1 X Y X2 XY Y 2

1

X

Y

X2

XY

Y 2



1 x y x2 xy y2

x x2 xy x3 x2y xy2

y xy y2 x2y xy2 y3

x2 x3 x2y x4 x3y x2y2

xy x2y xy2 x3y x2y2 xy3

y2 xy2 y3 x2y2 xy3 y4


is psd

where aij ∈ R (i + j ≤ 4).
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(P ) minimize
∑

1≤i+j≤4

aijyij + a00

subject to yij ∈ R (1 ≤ i + j ≤ 4)

1 X Y X2 XY Y 2

1

X

Y

X2

XY

Y 2



1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


is psd

where aij ∈ R (i + j ≤ 4).
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Set f :=
∑

i+j≤4 aijX
ij and denote by (D) the semidefinite

program dual to (P ).
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Set f :=
∑

i+j≤4 aijX
ij and denote by (D) the semidefinite

program dual to (P ). Then it is clear that

D∗ ≤ P ∗ ≤ f∗.

It turns out that (D) can be interpreted as:

(D) maximize µ

subject to f − µ is sos

Theorem (Hilbert). For every p ∈ R[X, Y ] of degree ≤ 4,

p ≥ 0 on R2 =⇒ p is a sum of three squares in R[X, Y ].

David Hilbert: Ueber die Darstellung definiter Formen als Summe
von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032
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Set f :=
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ij and denote by (D) the semidefinite

program dual to (P ). Then it is clear that

D∗ ≤ P ∗ ≤ f∗.

It turns out that (D) can be interpreted as:

(D) maximize µ

subject to f − µ is sos

Theorem (Hilbert). For every p ∈ R[X, Y ] of degree ≤ 4,

p ≥ 0 on R2 =⇒ p is a sum of three squares in R[X, Y ].

Corollary. D∗ = P ∗ = f∗

David Hilbert: Ueber die Darstellung definiter Formen als Summe
von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032
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The Motzkin polynomial

• Unfortunately, not every polynomial p ∈ R[X1, . . . , Xn] with
p ≥ 0 on Rn is a sum of squares of polynomials.

• The first explicit example was found in 1967 by Motzkin:

p := X4Y 2 + X2Y 4 − 3X2Y 2 + 1

• In fact, there is even no N ∈ N such that p + N is a sum of
squares in R[X, Y, Z].

• Described method always yields certified lower bounds, but
they might by −∞:

−∞ ≤ D∗ = P ∗ ≤ f∗

• But there are a lot of remedies...
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Case where S is compact.

For simplicity, we suppose m = 1 and write g := g1 (technical
difficulties which are however not very serious otherwise), i.e.

S = {x ∈ Rn | g(x) ≥ 0}.



Case where S is compact.

For simplicity, we suppose m = 1 and write g := g1 (technical
difficulties which are however not very serious otherwise), i.e.

S = {x ∈ Rn | g(x) ≥ 0}.

We will later present in detail Lasserre’s method which produces
now a sequence (Pk)2k≥d of relaxations such that

D∗
k ≤ P ∗k ≤ f∗ and lim

k→∞
D∗

k = lim
k→∞

P ∗k = f∗.
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minimize
∑
|α|≤d

aαxα1
1 · · ·xαn

n

subject to x ∈ S

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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minimize
∑
|α|≤d

aαxα1
1 · · ·xαn

n

subject to x ∈ S

Note that

1 X1 . . . Xk
n

1

X1

...

Xk
n




1 x1 . . . xk

n

x1

...
...

xk
n . . . . . . . . . x2k

n


“localization

matrix”




is psd

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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(Pk) minimize
∑

1≤|α|≤d

aαyα + a0

subject to yα ∈ R (|α| ≤ k)

1 X1 . . . Xk
n

1

X1

...

Xk
n




1 y10...0 . . .

y10...0

...


“localization

matrix”




is psd

where k ∈ N, 2k ≥ d, aα ∈ R (|α| ≤ k).
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Implementations

• Henrion, Lasserre: GloptiPoly
http://www.laas.fr/~henrion/software/gloptipoly/

• Loefberg: YALMIP
http://control.ee.ethz.ch/~joloef/yalmip.php

• Prajna, Papachristodoulou, Seiler, Parrilo: SOSTOOLS
http://www.cds.caltech.edu/sostools/

• Waki, Kim, Kojima, Muramatsu: SparsePOP
http://www.is.titech.ac.jp/~kojima/SparsePOP/

• All run under Matlab.

• All run with the free SeDuMi solver by Jos Sturm.

• Some support other solvers, too.
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Lasserre’s hierarchy of relaxations

for optimization of polynomials on
compact basic closed semialgebraic sets
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Notation

• X := (X1, . . . , Xn) variables

• R[X̄] := R[X1, . . . , Xn] polynomial ring

• f ∈ R[X̄] an arbitrary polynomial

• g1, . . . , gm ∈ R[X̄] polynomials defining. . .

• . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

• g0 := 1 ∈ R[X̄] for convenience

• M :=
∑m

i=0

∑
R[X̄]2gi =

{∑m
i=0 σigi | σi ∈

∑
R[X̄]2

}
the quadratic module generated by g1, . . . , gm
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Notation for the whole talk

• X := (X1, . . . , Xn) variables

• R[X] := R[X1, . . . , Xn] polynomial ring

• f ∈ R[X̄] an arbitrary polynomial

• g1, . . . , gm ∈ R[X̄] polynomials defining. . .

• . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

• g0 := 1 ∈ R[X̄] for convenience

• M :=
∑m

i=0

∑
R[X̄]2gi =

{∑m
i=0 σigi | σi ∈

∑
R[X̄]2

}
the quadratic module generated by g1, . . . , gm
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Assume that

N −
n∑

i=1

X2
i ∈ M

for some N ∈ N.



Assume that

N −
n∑

i=1

X2
i ∈ M

for some N ∈ N.

In particular, S is compact.
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Optimization

We consider the problem of minimizing f on S.



Optimization

We consider the problem of minimizing f on S. So we want to
compute numerically the infimum (minimum if S 6= ∅)

f∗ := inf{f(x) | x ∈ S} ∈ R ∪ {∞}



Optimization

We consider the problem of minimizing f on S. So we want to
compute numerically the infimum (minimum if S 6= ∅)

f∗ := inf{f(x) | x ∈ S} ∈ R ∪ {∞}

and, if possible, a minimizer, i.e., an element of the set

S∗ := {x∗ ∈ S | ∀x ∈ S : f(x∗) ≤ f(x)}.
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Convexification

Convexify the problem by brute force.
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}



Convexification

Convexify the problem by brute force. Two ways to do so:

• Generalize from points to probability measures:

f∗ = inf
{∫

fdµ | µ ∈M1(S)
}

• Take a dual standpoint:

f∗ = sup{a ∈ R | f−a ≥ 0 on S} = sup{a ∈ R | f−a > 0 on S}
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Describing measures and positive polynomials

Putinar’s solution to the moment problem. For every map
L : R[X̄] → R are equivalent:

(1) L is linear, L(1) = 1 and L(M) ⊆ R≥0

(2) ∃µ ∈M1(S) : ∀p ∈ R[X̄] : L(p) =
∫

pdµ

Mihai Putinar: Positive polynomials on compact semi-algebraic sets
Indiana Univ. Math. J. 42, No. 3, 969–984 (1993)
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Describing measures and positive polynomials

Putinar’s solution to the moment problem. For every map
L : R[X̄] → R are equivalent:

(1) L is linear, L(1) = 1 and L(M) ⊆ R≥0

(2) ∃µ ∈M1(S) : ∀p ∈ R[X̄] : L(p) =
∫

pdµ

Putinar’s Positivstellensatz. f > 0 on S =⇒ f ∈ M

Mihai Putinar: Positive polynomials on compact semi-algebraic sets
Indiana Univ. Math. J. 42, No. 3, 969–984 (1993)
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Describing measures and positive polynomials

Putinar’s solution to the moment problem. For every map
L : R[X̄] → R are equivalent:

(1) L is linear, L(1) = 1 and L(M) ⊆ R≥0

(2) ∃µ ∈M1(S) : ∀p ∈ R[X̄] : L(p) =
∫

pdµ

Stone-Weiserstrass Approximation ⇑ Riesz Representation

Putinar’s Positivstellensatz. f > 0 on S =⇒ f ∈ M

Mihai Putinar: Positive polynomials on compact semi-algebraic sets
Indiana Univ. Math. J. 42, No. 3, 969–984 (1993)
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f∗ = inf
{∫

fdµ | µ ∈M1(S)
}

Putinar’s solution ⇓ to the moment problem

f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ R≥0}



f∗ = inf
{∫

fdµ | µ ∈M1(S)
}

Putinar’s solution ⇓ to the moment problem

f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ R≥0}

f∗ = sup{a ∈ R | f − a ≥ 0 on S} = sup{a ∈ R | f − a > 0 on S}

Putinar’s ⇓ Positivstellensatz

f∗ = sup{a ∈ R | f − a ∈ M}
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R[X̄] polynomial ring

M :=
m∑

i=0

∑
R[X̄]2 gi quadratic module

=

{
m∑

i=0

σigi | σi ∈
∑

R[X̄]2
}
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R[X̄]k := {p | p ∈ R[X̄],deg p ≤ k} real vector space
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Introduce finite-dimensional analogues Mk ⊆ R[X̄]k of M ⊆ R[X̄].

R[X̄]k := {p | p ∈ R[X̄],deg p ≤ k} real vector space

Mk :=
m∑

i=0

∑
R[X̄]2

di
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=

{
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R[X̄]2,deg(σigi) ≤ k

}
for arbitrary
k ∈ N := {s ∈ N | s ≥ max{deg g0, . . . ,deg gm,deg f}}.

Here di := max{e ∈ N | 2e + deg gi ≤ k}.



Introduce finite-dimensional analogues Mk ⊆ R[X̄]k of M ⊆ R[X̄].

R[X̄]k := {p | p ∈ R[X̄],deg p ≤ k} real vector space

Mk :=
m∑

i=0

∑
R[X̄]2

di
gi convex cone

=

{
m∑

i=0

σigi | σi ∈
∑

R[X̄]2,deg(σigi) ≤ k

}
for arbitrary
k ∈ N := {s ∈ N | s ≥ max{deg g0, . . . ,deg gm,deg f}}.

Here di := max{e ∈ N | 2e + deg gi ≤ k}.

Warning: Never confuse Mk with M ∩ R[X̄]k⊇Mk.
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We saw that

f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ R≥0} and

f∗ = sup{a ∈ R | f − a ∈ M}.



We saw that

f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ R≥0} and

f∗ = sup{a ∈ R | f − a ∈ M}.

In analogy to this, we set

P ∗k = inf{L(f) | L : R[X̄]k → R is linear, L(1) = 1, L(Mk) ⊆ R≥0} and

D∗
k = sup{a ∈ R | f − a ∈ Mk}

for every k ∈ N .



We saw that

f∗ = inf{L(f) | L : R[X̄] → R is linear, L(1) = 1, L(M) ⊆ R≥0} and

f∗ = sup{a ∈ R | f − a ∈ M}.

In analogy to this, we set

P ∗k = inf{L(f) | L : R[X̄]k → R is linear, L(1) = 1, L(Mk) ⊆ R≥0} and

D∗
k = sup{a ∈ R | f − a ∈ Mk}

for every k ∈ N .

P ∗k ∈ R ∪ {±∞} and D∗
k ∈ R ∪ {±∞} are the optimal values of the

following pair of optimization problems. . .
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk
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L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and
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Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗.

Proof.
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k)k∈N increase.

limk→∞D∗
k → f∗ : If a < f∗, then f − a ∈ Mk for some k ∈ N by

Putinar’s Positivstellensatz.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗.

Proof. P ∗k ≤ f∗ because p 7→ p(x) feasible for (Pk) for x ∈ S.
D∗

k ≤ P ∗k : L(f)− a = L(f)− aL(1) = L(f − a) ⊆ L(Mk) ⊆ R≥0

Clear: (P ∗k )k∈N and (D∗
k)k∈N increase.

limk→∞D∗
k → f∗ : If a < f∗, then f − a ∈ Mk for some k ∈ N by

Putinar’s Positivstellensatz. Then a is feasible for (Dk) whence
a ≤ D∗

k.
Convergence of (D∗

k)k∈N implies convergence of (P ∗k )k∈N.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,
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k–th primal relaxation L(1) = 1 and

(primal relaxation of order k) L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

k–th dual relaxation f − a ∈ Mk
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

k–th primal relaxation L(1) = 1 and

(primal relaxation of order k) L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

k–th dual relaxation f − a ∈ Mk

Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗.

(Pk) and (Dk) can be formulated as a primal-dual pair of
semidefinite programs.

Jean Lasserre: Global optimization with polynomials and the
problem of moments
SIAM J. Optim. 11, No. 3, 796–817 (2001)
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Theorem (Lasserre). (D∗
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗. How fast?

Theorem. Suppose m = 1 and g := g1. Then there exists C ∈ N
depending on f and g and c ∈ N depending on g such that

f∗ −D∗
k ≤

C
c
√

k
for big k.

On the complexity of Schmüdgen’s Positivstellensatz
Journal of Complexity 20, No. 4, 529—543 (2004)
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗. How fast?

Theorem. Suppose k = 1 and g := g1. Then there exists C ∈ N
depending on f and g and c ∈ N depending on g such that

f∗ −D∗
k ≤

C
c
√

k
for big k.

Dependance on f can be made explicit. Proof hints to make
dependance on g explicit for concrete g.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Theorem (Lasserre). (D∗
k)k∈N and (P ∗k )k∈N are increasing

sequences that converge to f∗ and satisfy D∗
k ≤ P ∗k ≤ f∗. How fast?

Theorem. Suppose k = 1 and g := g1. Then there exists C ∈ N
depending on f and g and c ∈ N depending on g such that

f∗ −D∗
k ≤

C
c
√

k
for big k.

In practice: Convergence usually very fast,
often D∗

k = P ∗k = f∗ for small k.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Putinar’s Positivstellensatz implies convergence of (D∗
k)k∈N and

therefore of (P ∗k )k∈N .

What can we know from Putinar’s solution to the moment
problem?
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

Putinar’s Positivstellensatz implies convergence of (D∗
k)k∈N and

therefore of (P ∗k )k∈N .

What can we know from Putinar’s solution to the moment
problem?
A priori nothing! But with additional compactness arguments
involving Tychonoff’s Theorem, the following. . .
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

Theorem. Suppose that Lk solves (Pk) nearly to optimality
(k ∈ N ).

∀e ∈ N : ∀ε > 0 : ∃k0 ∈ N ∩ [e,∞) : ∀k ≥ k0 : ∃µ ∈M1(S∗) :∥∥∥∥∥
(

Lk(Xα)−
∫

Xαdµ

)
|α|≤e

∥∥∥∥∥ < ε.

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805–825 (2005)
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,
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Theorem. Suppose that Lk solves (Pk) nearly to optimality
(k ∈ N ).

∀e ∈ N : ∀ε > 0 : ∃k0 ∈ N ∩ [e,∞) : ∀k ≥ k0 : ∃µ ∈M1(S∗) :∥∥∥∥∥
(

Lk(Xα)−
∫

Xαdµ

)
|α|≤e

∥∥∥∥∥ < ε.

In particular, if S∗ = {x∗} is a singleton, then

lim
k→∞

(Lk(X1), . . . , Lk(Xn)) = x∗.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

Theorem (Lasserre). If S has nonempty interior, then D∗
k = P ∗k .

• “Strong duality”

• “Weak duality” D∗
k ≤ P ∗k always holds.

• Use duality theory from semidefinite programming.
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

Theorem (Lasserre). If S has nonempty interior, then D∗
k = P ∗k .

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805–825 (2005)
Murray Marshall: Optimization of polynomial functions
Canad. Math. Bull. 46, 575–587 (2003)
Jean Lasserre: Global optimization with polynomials and the
problem of moments
SIAM J. Optim. 11, No. 3, 796–817 (2001)
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Size of the semidefinite programs

Denote by

• k ∈ N the order of relaxation,

• b ∈ N the bitsize of the corresponding primal-dual pair of
semidefinite programs and

• D := (n, f, m, g1, . . . , gm) the problem data.

Then

• For fixed k, b depends polynomially on the bitsize of D.

• For fixed D, b depends polynomially on k.

• b does not depend polynomially on (D, k).
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Further properties of the method

• Feasible solutions of the semidefinite program corresponding to
(Dk) give rise to a lower bound a of f∗ together with a
certificate (advantage) in form of a representation of f − a

proving f − a ∈ Mk.

• Method converges from below to the infimum (advantage in
many applications).

• Method converges to unique minimizers. Disadvantage:
Possibly from outside the set.

• If there is a unique minimizer and it lies in the interior of S,
then the method produces a sequence of intervals containing f∗

whose endpoints converge to f∗.
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Detecting optimality and extracting solutions

• If L is an optimal solution of (Pk),
x := (L(X1), . . . , L(Xn)) ∈ S and L(f) = f(x), then
L(f) = P ∗k ≤ f∗ ≤ f(x) = L(f) , i.e., L(f) = f(x) = f∗ and
therefore x ∈ S∗.

• If L is an optimal solution of (Pk) which comes from a measure
µ on S (criteria of Curto and Fialkow for the truncated
S–moment problem), then L(f) = P ∗k ≤ f∗ ≤

∫
fdµ = L(f),

i.e., L(f) = f∗ and µ ∈M1(S∗).

Curto & Fialkow: The truncated complex K–moment problem
Trans. Am. Math. Soc. 352, No. 6, 2825–2855 (2000)
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Detecting optimality and extracting solutions

• If L is an optimal solution of (Pk),
x := (L(X1), . . . , L(Xn)) ∈ S and L(f) = f(x), then
L(f) = P ∗k ≤ f∗ ≤ f(x) = L(f) , i.e., L(f) = f(x) = f∗ and
therefore x ∈ S∗.

• If L is an optimal solution of (Pk) which comes from a measure
µ on S (criteria of Curto and Fialkow for the truncated
S–moment problem), then L(f) = P ∗k ≤ f∗ ≤

∫
fdµ = L(f),

i.e., L(f) = f∗ and µ ∈M1(S∗). Particularly nice is the case
where L defines a “flat extension”. Then L comes from a
measure µ on S and a zero-dimensional polynomial equation
system with solution set supp(µ) can be extracted.

Curto & Fialkow: The truncated complex K–moment problem
Trans. Am. Math. Soc. 352, No. 6, 2825–2855 (2000)
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How to solve the relaxations?
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(Pk) minimize L(f) subject to L : R[X̄]k → R is linear,

L(1) = 1 and

L(Mk) ⊆ R≥0

(Dk) maximize a subject to a ∈ R and

f − a ∈ Mk

• Optimization of a linear function on a convex set. No problem
with local minima.

• When going downhill, we could hit the boundary. Therefore we
need to be able to compute effectively a so called barrier.

• The cone SRs×s
+ of positive semidefinite symmetric matrices

has such a barrier function:

X 7→ − log det X
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Sums of squares and semidefinite matrices

Let v be a column vector of length s whose entries generate the
vector space R[X̄]d. Then

∑
R[X̄]2d =

{
vT Gv | G ∈ SRs×s

+

}
.

Proof. “⊆” Suppose t ∈ N and p1, . . . , pt ∈ R[X̄]d. To show:∑t
i=1 p2

i = vT Gv for some G ∈ SRs×s
+ . Choose a real t× s matrix A

such that p1, . . . , pt are the entries of the column vector Av. Then

t∑
i=1

p2
i = (Av)T Av = vT ( AT A︸ ︷︷ ︸

∈SRs×s
+

)v.
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Sums of squares and semidefinite matrices

Let v a column vector of length s whose entries generate the vector
space R[X̄]d. Then

∑
R[X̄]2d =

{
vT Gv | G ∈ SRs×s

+

}
.

Proof. “⊇” If G ∈ SRs×s
+ , then G =

∑s
i=1 xix

T
i some column vectors

x1, . . . , xs ∈ Rs. Hence vT Gv =
∑s

i=1(v
T xi)(xT

i v) =
∑s

i=1(x
T
i v)2.

Shows also that every sum of squares of degree ≤ 2d is a sum of s

squares.
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The translation of (Dk) into a semidefinite program is done by
parametrizing sums of squares by Gram matrices like we have just
indicated. For (Pk) this is even easier.



Translation into a semidefinite program

The translation of (Dk) into a semidefinite program is done by
parametrizing sums of squares by Gram matrices like we have just
indicated. For (Pk) this is even easier. To express that a linear map
L : R[X̄]k → R satisfies L(Mk) ⊂ R≥0, one writes down that, for
every i ∈ {0, . . . ,m}, the matrices representing the following
bilinear forms are positive semidefinite:

R[X̄]di
× R[X̄]di

→ R : (p, q) 7→ L(pqgi).

The semidefinite programs (Pk) and (Dk) one gets in this way are
dual to each other.
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Pure states on vector spaces

Let E be a real vector space and K ⊆ E a convex cone. We call an
element u ∈ K an order unit of (E,K) if Zu + K = E. A vector
space homomorphism ϕ : E → R satisfying ϕ(K) ⊆ R≥0 and
ϕ(u) = 1 is called state on (E,K, u). The set of all these states is
then a compact convex subset of RE (equipped with the product
topology). Hence, by the Krein-Milman theorem,

S(E,K, u) = conv(∂eS(E,K, u))

where the elements of ∂eS(E,K, u) are called pure states. A state
ϕ ∈ S(E,K, u) is pure if for all ϕ1, ϕ2 ∈ S(E,K, u),

ϕ =
ϕ1 + ϕ2

2
=⇒ ϕ = ϕ1 = ϕ2.
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with order unit u. Then for every f ∈ E,
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Pure states

Theorem. Let E be a real vector space, K ⊆ E be a convex cone
with order unit u. Then for every f ∈ E,

ϕ(f) > 0 for all ϕ ∈ ∂eS(E,K, u) =⇒ f ∈ K.

Definition. Let A be a commutative ring. A subset M ⊆ A is called
quadratic module of A if 1 ∈ M , M + M ⊆ M and A2M ⊆ M .
It is called archimedean if Z + M = A.

Theorem (yet unpublished).
If M is an archimedean quadratic module of A, then

∂eS(A,M, 1) = {ϕ | ϕ : A → R ring homomorphism, ϕ(M) ⊆ R≥0}.
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Pure states

Theorem. Let E be a real vector space, K ⊆ E be a convex cone
with order unit u. Then for every f ∈ E,

ϕ(f) > 0 for all ϕ ∈ ∂eS(E,K, u) =⇒ f ∈ K.

Definition. Let A be a commutative ring. A subset M ⊆ A is called
quadratic module of A if 1 ∈ M , M + M ⊆ M and A2M ⊆ M .
It is called archimedean if Z + M = A.

Corollary (Jacobi, see the book of Prestel & Delzell).
Let M be an archimedean quadratic module of A. Suppose f ∈ A

such that ϕ(f) > 0 for all ring homomorphisms ϕ : A → R with
ϕ(M) ⊆ R≥0. Then f ∈ M .
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Theorem. Let E be a real vector space, K ⊆ E be a convex cone
with order unit u. Then for every f ∈ E,

ϕ(f) > 0 for all ϕ ∈ ∂eS(E,K, u) =⇒ f ∈ K.

What to do if ϕ(f) = 0 for some ϕ ∈ ∂eS(E,K, u)?

Example. Is it true that for f ∈ R[X],

f > 0 on (0, 1] =⇒ f ∈ M :=
∑

R[X]2+
∑

R[X]2X+
∑

R[X]2(1−X)?

Problem: M is archimedean but if we take
(E,K, u) := (R[X, Y ],M, 1), we get ∂eS(E,K, u) = [0, 1].
Solution: If we take (E,K, u) := ((Xk),M ∩ (Xk), Xk), then

∂eS(E,K, u) =
{

p 7→ dkp

dXk
(0)

}
∪ (0, 1].
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M :=

∑m
i=0 R[X̄]2gi is archimedean where gi ∈ R[X̄] and g0 := 1.

Set S := {gi ≥ 0} and suppose f ∈ R[X̄] such that

f > 0 on S \ {x1, . . . , xk} with xi in the interior of S.
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• either there is x ∈ S \ {x1, . . . , xk} such that

ϕ(p) =
p(x)

for all p ∈ I

• or for some i ∈ {1, . . . , n} and v ∈ Sn−1 \ {0},

ϕ(p) =
D2p(xi)(v, v)

for all p ∈ I.
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• either there is x ∈ S \ {x1, . . . , xk} such that

ϕ(p) =
p(x)∏k

i=1 ‖x− xi‖2
for all p ∈ I

• or for some i ∈ {1, . . . , n} and v ∈ Sn−1 \ {0},

ϕ(p) =
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Set S := {gi ≥ 0} and suppose f ∈ R[X̄] such that

f > 0 on S \ {x1, . . . , xk} with xi in the interior of S.

Set I := I2
x1
· · · I2

xk
= I2

x1
∩ . . . and u :=

∏
i

∑
j(Xj − xij)2. Then u

is an order unit of (I,M ∩ I) and for all ϕ ∈ ∂eS(I, M ∩ I, u),

• either there is x ∈ S \ {x1, . . . , xk} such that

ϕ(p) =
p(x)∏k

i=1 ‖x− xi‖2
for all p ∈ I

• or for some i ∈ {1, . . . , n} and v ∈ Sn−1 \ {0},

ϕ(p) =
D2p(xi)(v, v)

2
∏k

j 6=i ‖xi − xj‖2
for all p ∈ I.
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theorem, suppose that the Hessian of f in every point xi is positive
definite. Then f ∈ M .
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Theorem (joint work with Sabine Burgdorf). Suppose
M :=

∑m
i=0 R[X̄]2gi is archimedean where gi ∈ R[X̄] and g0 := 1.

Set S := {gi ≥ 0} and suppose f ∈ R[X̄] such that

f > 0 on S \ {x1, . . . , xk} with xi in the interior of S.

Set I := I2
x1
· · · I2

xk
= I2

x1
∩ . . . and u :=

∏
i

∑
j(Xj − xij)2. Then u

is an order unit of (I,M ∩ I) and

“∂eS(I,M ∩ I, u) = (S \ {x1, . . . , xk}) ∪
k⋃

i=1

(xi + Pn−1).”

Corollary (Scheiderer). In addition to the blue part of the above
theorem, suppose that the Hessian of f in every point xi is positive
definite. Then f ∈ M .
Claus Scheiderer: Distinguished representations of non-negative. . .
http://www.uni-duisburg.de/FB11/FGS/F1/claus.html
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New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

http://front.math.ucdavis.edu/math.AG/0412398


New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

(ii) For every ε > 0,

f + ε

n∑
i=1

e
X2

i ∈
∑

R[X̄]2

http://front.math.ucdavis.edu/math.AG/0412398


New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

(ii) For every ε > 0, there exists N ∈ N such that

f + ε

n∑
i=1

N∑
k=0

X2k
i

k!
∈

∑
R[X̄]2

http://front.math.ucdavis.edu/math.AG/0412398


New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

(ii) For every ε > 0, there exists N ∈ N such that

f + ε

n∑
i=1

N∑
k=0

X2k
i

k!
∈

∑
R[X̄]2

Jean Lasserre: A sum of squares approximation of nonnegative
polynomials
http://front.math.ucdavis.edu/math.AG/0412398

65

http://front.math.ucdavis.edu/math.AG/0412398


New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

(ii) For every ε > 0, there exists N ∈ N such that

f + ε

n∑
i=1

N∑
k=0

X2k
i

k!
∈

∑
R[X̄]2

Theorem (Netzer). N = N(n, deg f, ‖f‖∞, ε)

Jean Lasserre: A sum of squares approximation of nonnegative
polynomials
http://front.math.ucdavis.edu/math.AG/0412398
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New ideas I. High degree perturbations

Theorem (Lasserre). For every f ∈ R[X1, . . . , Xn], the following are
equivalent:

(i) f ≥ 0 on Rn

(ii) For every ε > 0, there exists N ∈ N such that

f + ε

n∑
i=1

N∑
k=0

X2k
i

k!
∈

∑
R[X̄]2

Theorem (Netzer). N = N(n, deg f, ‖f‖∞, ε)

Tim Netzer: High degree perturbation of nonnegative polynomials,
Diplomarbeit Universität Konstanz
Jean Lasserre: A sum of squares approximation of nonnegative
polynomials
http://front.math.ucdavis.edu/math.AG/0412398
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• its gradient ideal (∇f) :=
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and f ≥ 0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

Proof sketch. Use that each of the finitely many irreducible
components of {∇f = 0} is in a good way path-connected to show
that f is constant on each of these components. Alternatively, use
algebraic arguments of Scheiderer (yet unpublished). Now, for
example, if there is only one component and it has real point, then
f = (

√
f)2.
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• its gradient ideal (∇f) :=
(

∂f
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)
.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and f ≥ 0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

In any case, if f>0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

Method is good when f attains a minimum in Rn since then

f > 0 on Rn =⇒ f ∈
∑

R[X̄]2 + (∇f) =⇒ f ≥ 0 on Rn.
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• its gradient variety {∇f = 0} := {x ∈ Cn | ∇f(x) = 0} and

• its gradient ideal (∇f) :=
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and f ≥ 0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

In any case, if f>0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

Otherwise, the second implication might badly fail:
For f := (1−XY )2 + X2 + (X + 1)2, we have

{∇f = 0} = ∅ whence (∇f) = R[X̄].
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Definition. For f ∈ R[X̄], define

• its gradient variety {∇f = 0} := {x ∈ Cn | ∇f(x) = 0} and

• its gradient ideal (∇f) :=
(

∂f
∂X1

, . . . , ∂f
∂Xn

)
.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and f ≥ 0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

In any case, if f>0 on {∇f = 0} ∩ Rn, then

f ∈
∑

R[X̄]2 + (∇f).

Nie, Demmel, Sturmfels: Minimizing Polynomials via Sum of
Squares over the Gradient Ideal
http://front.math.ucdavis.edu/math.OC/0411342
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Definition. For f ∈ R[X̄], define its N -th gradient tentacle for
N ∈ N≥1 by {x ∈ Rn | ‖∇f(x)‖‖x‖1+ 1

N ≤ 1}.

First Theorem (manuscript in preparation).
If f > 0 on its N -th gradient tentacle, then

f ∈
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R[X̄]2 +
∑

R[X̄]2(1− ‖∇f‖2N‖X‖2(N+1)).

The proof relies on two non-trivial ingredients:

• A polynomial f ∈ R[X̄] takes on any of its tentacles only
finitely many “asymptotic values at infinity”.

• Therefore, my generalization of Schmüdgen’s Theorem yields:
If f > 0 on its N -th gradient tentacle, then

f ∈
∑

R[X̄]2 +
∑

R[X̄]2(1− ‖∇f‖2N‖X‖2(N+1)).
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Definition. For f ∈ R[X̄], define its N -th gradient tentacle for
N ∈ N≥1 by {x ∈ Rn | ‖∇f(x)‖‖x‖1+ 1

N ≤ 1}.

First Theorem (manuscript in preparation).
If f > 0 on its N -th gradient tentacle, then

f ∈
∑

R[X̄]2 +
∑

R[X̄]2(1− ‖∇f‖2N‖X‖2(N+1)).

Second Theorem (follows from Kurdyka, Orro & Simon).
If f is bounded from below and f ≥ 0 on all its gradient tentacles,
then f ≥ 0 on Rn.

The analogue of the Second Theorem for the gradient variety is
false: The gradient variety of (1−XY )2 + X2 − 1 is {0}.

On the other hand, we have countably many tentacles instead of
just one gradient variety.
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