Using semidefinite programming for polynomial optimization problems

Markus Schweighofer

Universität Konstanz

Workshop "Algorithms in real algebraic geometry and applications"
Ouessant, June 27 - July 1, 2005

Self-dual convex cones

Definition. A subset $K \subseteq E$ of a real vector space E is called a convex cone if $0 \in K, K+K \subseteq K$ and $\mathbb{R}_{\geq 0} K \subseteq K$.

Self-dual convex cones

Definition. A subset $K \subseteq E$ of a real vector space E is called a convex cone if $0 \in K, K+K \subseteq K$ and $\mathbb{R}_{\geq 0} K \subseteq K$. A convex cone K of an Euclidean space E is called self-dual if

$$
K=\{x \in E \mid\langle x, y\rangle \geq 0 \text { for all } y \in K\} .
$$

Self-dual convex cones

Definition. A subset $K \subseteq E$ of a real vector space E is called a convex cone if $0 \in K, K+K \subseteq K$ and $\mathbb{R}_{\geq 0} K \subseteq K$.
A convex cone K of an Euclidean space E is called self-dual if

$$
K=\{x \in E \mid\langle x, y\rangle \geq 0 \text { for all } y \in K\} .
$$

Examples of self-dual cones.

- $E=\mathbb{R}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}, K=\left(\mathbb{R}_{\geq 0}\right)^{n}$

Self-dual convex cones

Definition. A subset $K \subseteq E$ of a real vector space E is called a convex cone if $0 \in K, K+K \subseteq K$ and $\mathbb{R}_{\geq 0} K \subseteq K$.
A convex cone K of an Euclidean space E is called self-dual if

$$
K=\{x \in E \mid\langle x, y\rangle \geq 0 \text { for all } y \in K\} .
$$

Examples of self-dual cones.

- $E=\mathbb{R}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}, K=\left(\mathbb{R}_{\geq 0}\right)^{n}$
- $E=S \mathbb{R}^{n \times n}$ (symmetric $n \times n$ matrices), $\langle A, B\rangle=\sum_{i, j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right)=\operatorname{tr}(A B)$, $K=S \mathbb{R}_{+}^{n \times n}$ (psd, positive semidefinite)

Matrix scalar products

- Regard the Euclidean space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices with

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right) .
$$

Matrix scalar products

- Regard the Euclidean space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices with

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right) .
$$

Then for all matrices A, B, C such that $\langle A B, C\rangle$ is defined, $\langle A B, C\rangle=\operatorname{tr}\left(A B C^{T}\right)=\operatorname{tr}\left(B C^{T} A\right)=\operatorname{tr}\left(B\left(A^{T} C\right)^{T}\right)=\left\langle B, A^{T} C\right\rangle$, similarly if A "operates" on the right hand side.

Matrix scalar products

- Regard the Euclidean space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices with

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right) .
$$

Then for all matrices A, B, C such that $\langle A B, C\rangle$ is defined, $\langle A B, C\rangle=\operatorname{tr}\left(A B C^{T}\right)=\operatorname{tr}\left(B C^{T} A\right)=\operatorname{tr}\left(B\left(A^{T} C\right)^{T}\right)=\left\langle B, A^{T} C\right\rangle$, similarly if A "operates" on the right hand side.

- For every $A \in S \mathbb{R}^{n \times n}$, there is an orthogonal $P \in \mathbb{R}^{n \times n}$ and a diagonal $D \in \mathbb{R}^{n \times n}$ such that $A=P^{T} D P$.

Matrix scalar products

- Regard the Euclidean space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices with

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right) .
$$

Then for all matrices A, B, C such that $\langle A B, C\rangle$ is defined, $\langle A B, C\rangle=\operatorname{tr}\left(A B C^{T}\right)=\operatorname{tr}\left(B C^{T} A\right)=\operatorname{tr}\left(B\left(A^{T} C\right)^{T}\right)=\left\langle B, A^{T} C\right\rangle$, similarly if A "operates" on the right hand side.

- For every $A \in S \mathbb{R}^{n \times n}$, there is an orthogonal $P \in \mathbb{R}^{n \times n}$ and a diagonal $D \in \mathbb{R}^{n \times n}$ such that $A=P^{T} D P$. Hence, by the above, $\langle A, A\rangle=\langle D, D\rangle$

Matrix scalar products

- Regard the Euclidean space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices with

$$
\langle A, B\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right) .
$$

Then for all matrices A, B, C such that $\langle A B, C\rangle$ is defined, $\langle A B, C\rangle=\operatorname{tr}\left(A B C^{T}\right)=\operatorname{tr}\left(B C^{T} A\right)=\operatorname{tr}\left(B\left(A^{T} C\right)^{T}\right)=\left\langle B, A^{T} C\right\rangle$, similarly if A "operates" on the right hand side.

- For every $A \in S \mathbb{R}^{n \times n}$, there is an orthogonal $P \in \mathbb{R}^{n \times n}$ and a diagonal $D \in \mathbb{R}^{n \times n}$ such that $A=P^{T} D P$. Hence, by the above, $\langle A, A\rangle=\langle D, D\rangle$ showing that

$$
\|A\|=\|\lambda(A)\|
$$

where $\lambda(A)$ is the diagonal of D containing the eigenvalues of A.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.
(iv) There are $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{n} x_{i} x_{i}^{T}$.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.
(iv) There are $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{n} x_{i} x_{i}^{T}$.
(v) There is $s \in \mathbb{N}$ and $x_{1}, \ldots, x_{s} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{s} x_{i} x_{i}^{T}$.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.
(iv) There are $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{n} x_{i} x_{i}^{T}$.
(v) There is $s \in \mathbb{N}$ and $x_{1}, \ldots, x_{s} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{s} x_{i} x_{i}^{T}$.
(vi) A is the Gram matrix of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, i.e., $A=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j=1, \ldots n}$.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.
(iv) There are $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{n} x_{i} x_{i}^{T}$.
(v) There is $s \in \mathbb{N}$ and $x_{1}, \ldots, x_{s} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{s} x_{i} x_{i}^{T}$.
(vi) A is the Gram matrix of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, i.e., $A=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j=1, \ldots n}$.
(vii) A is the Gram matrix of vectors v_{1}, \ldots, v_{n} in some \mathbb{R}^{s}.
(viii) $\langle A, B\rangle \geq 0$ for all $B \in S \mathbb{R}_{+}^{n \times n}$.

Some descriptions of the cone $S \mathbb{R}_{+}^{n \times n}$

Proposition: For any matrix $A \in S \mathbb{R}^{n \times n}$ are equivalent:
(i) A is positive semidefinite.
(ii) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$
(iii) A has only nonnegative eigenvalues.
(iv) There are $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{n} x_{i} x_{i}^{T}$.
(v) There is $s \in \mathbb{N}$ and $x_{1}, \ldots, x_{s} \in \mathbb{R}^{n}$ such that $A=\sum_{i=1}^{s} x_{i} x_{i}^{T}$.
(vi) A is the Gram matrix of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, i.e., $A=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j=1, \ldots n}$.
(vii) A is the Gram matrix of vectors v_{1}, \ldots, v_{n} in some \mathbb{R}^{s}.
(viii) $\langle A, B\rangle \geq 0$ for all $B \in S \mathbb{R}_{+}^{n \times n}$. (shows self-duality)

- Semidefinite programming is an extension of linear programming.
- Semidefinite programming is an extension of linear programming.
- Linear programming: Optimization of a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $\mathbb{R}_{\geq 0}^{n}$ with an affine subspace of \mathbb{R}^{n}.
- Semidefinite programming is an extension of linear programming.
- Linear programming: Optimization of a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $\mathbb{R}_{\geq 0}^{n}$ with an affine subspace of \mathbb{R}^{n}.
- Semidefinite programming: Optimization of a linear function $S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $S \mathbb{R}_{+}^{n \times n}$ with an affine subspace.
- Semidefinite programming is an extension of linear programming.
- Linear programming: Optimization of a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $\mathbb{R}_{\geq 0}^{n}$ with an affine subspace of \mathbb{R}^{n}.
- Semidefinite programming: Optimization of a linear function $S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $S \mathbb{R}_{+}^{n \times n}$ with an affine subspace.
- Most of the concepts for linear programming can be adapted to semidefinite programming.
- Semidefinite programming is an extension of linear programming.
- Linear programming: Optimization of a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $\mathbb{R}_{\geq 0}^{n}$ with an affine subspace of \mathbb{R}^{n}.
- Semidefinite programming: Optimization of a linear function $S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $S \mathbb{R}_{+}^{n \times n}$ with an affine subspace.
- Most of the concepts for linear programming can be adapted to semidefinite programming.
- In a certain sense (not restrictive in practice), semidefinite programming is solvable in polynomial time.
- Semidefinite programming is an extension of linear programming.
- Linear programming: Optimization of a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $\mathbb{R}_{\geq 0}^{n}$ with an affine subspace of \mathbb{R}^{n}.
- Semidefinite programming: Optimization of a linear function $S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ on the intersection of the selfdual cone $S \mathbb{R}_{+}^{n \times n}$ with an affine subspace.
- Most of the concepts for linear programming can be adapted to semidefinite programming.
- In a certain sense (not restrictive in practice), semidefinite programming is solvable in polynomial time.
- A lot of efficient semidefinite programming solvers are freely available.

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize μ
subject to $\mu \in \mathbb{R}$
$\langle c, x\rangle \geq \mu$ for all $x \in K$ with $\mathcal{A} x=b$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces,
$K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$,
$\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$
$\langle c, x\rangle \geq\langle b, y\rangle$ for all $x \in K$ with $\mathcal{A} x=b$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces,
$K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$,
$\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$

$$
\langle c, x\rangle \geq\langle\mathcal{A} x, y\rangle \text { for all } x \in K \text { with } \mathcal{A} x=b
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces,
$K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$,
$\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$

$$
\langle c, x\rangle \geq\left\langle x, \mathcal{A}^{*} y\right\rangle \text { for all } x \in K \text { with } \mathcal{A} x=b
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$
$\langle c, x\rangle \geq\left\langle\mathcal{A}^{*} y, x\right\rangle$ for all $x \in K$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$

$$
\left\langle c-\mathcal{A}^{*} y, x\right\rangle \geq 0 \text { for all } x \in K
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in F$

$$
c-\mathcal{A}^{*} y \in K
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle$
subject to $\quad x \in K$

$$
\mathcal{A} x=b
$$

$(D) \quad$ maximize $\langle b, y\rangle$
subject to $\quad y \in F$

$$
c-\mathcal{A}^{*} y \in K
$$

Weak duality: If x is feasible for (P) and y for (D), then

$$
\langle c, x\rangle \geq\left\langle\mathcal{A}^{*} y, x\right\rangle=\langle\mathcal{A} x, y\rangle=\langle b, y\rangle .
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\quad\langle c, x\rangle \quad(D)$ maximize $\quad\langle b, y\rangle$

$$
\begin{array}{lll}
\text { subject to } & x \in K & \text { subject to } \\
& y \in F \\
& \mathcal{A} x=b & \\
& \\
\mathcal{A}^{*} y \in K
\end{array}
$$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.

$(P) \quad$ minimize	$\langle c, x\rangle$	(D)	maximize	$\langle b, y\rangle$
subject to	$x \in K$	subject to	$y \in F$	
	$\mathcal{A} x=b$		$c-\mathcal{A}^{*} y \in K$	

Write $P^{*}:=\inf (P):=\inf \{\langle c, x\rangle \mid x \in K, \mathcal{A} x=b\} \in \mathbb{R} \cup\{ \pm \infty\}$ and (analogously) $D^{*}:=\sup (D)$ for the optimal values of (P) and (D).

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.

$(P) \quad$ minimize	$\langle c, x\rangle$	(D)	maximize	$\langle b, y\rangle$
subject to	$x \in K$		subject to	$y \in F$
	$\mathcal{A} x=b$		$c-\mathcal{A}^{*} y \in K$	

Write $P^{*}:=\inf (P):=\inf \{\langle c, x\rangle \mid x \in K, \mathcal{A} x=b\} \in \mathbb{R} \cup\{ \pm \infty\}$ and (analogously) $D^{*}:=\sup (D)$ for the optimal values of (P) and (D). Then we have:

Weak duality: $P^{*} \geq D^{*}$

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle \quad(D)$ maximize $\langle b, y\rangle$

$$
\begin{array}{lll}
\text { subject to } & x \in K & \text { subject to } \\
& y \in F \\
& \mathcal{A} x=b & c-\mathcal{A}^{*} y \in K
\end{array}
$$

Write $P^{*}:=\inf (P):=\inf \{\langle c, x\rangle \mid x \in K, \mathcal{A} x=b\} \in \mathbb{R} \cup\{ \pm \infty\}$ and (analogously) $D^{*}:=\sup (D)$ for the optimal values of (P) and (D). Then we have:

Weak duality: $P^{*} \geq D^{*}$
Strong duality $P^{*}=D^{*}$ holds often,

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle \quad(D)$ maximize $\langle b, y\rangle$

$$
\begin{array}{lll}
\text { subject to } & x \in K & \text { subject to }
\end{array} \begin{array}{ll}
& y \in F \\
& \mathcal{A} x=b
\end{array}
$$

Write $P^{*}:=\inf (P):=\inf \{\langle c, x\rangle \mid x \in K, \mathcal{A} x=b\} \in \mathbb{R} \cup\{ \pm \infty\}$ and (analogously) $D^{*}:=\sup (D)$ for the optimal values of (P) and (D). Then we have:

Weak duality: $P^{*} \geq D^{*}$
Strong duality $P^{*}=D^{*}$ holds often, for example if both problems are feasible and one of them strictly

Programming over self-dual cones

Let E, F be finite-dimensional Euclidean spaces, $K \subseteq E$ a self-dual convex cone, $c \in E, b \in F$, $\mathcal{A}: E \rightarrow F$ a linear map and $\mathcal{A}^{*}: F \rightarrow E$ its adjoint.
(P) minimize $\langle c, x\rangle \quad(D)$ maximize $\langle b, y\rangle$

$$
\begin{array}{lll}
\text { subject to } & x \in K & \text { subject to }
\end{array} \begin{array}{ll}
& y \in F \\
& \mathcal{A} x=b
\end{array}
$$

Write $P^{*}:=\inf (P):=\inf \{\langle c, x\rangle \mid x \in K, \mathcal{A} x=b\} \in \mathbb{R} \cup\{ \pm \infty\}$ and (analogously) $D^{*}:=\sup (D)$ for the optimal values of (P) and (D). Then we have:

Weak duality: $P^{*} \geq D^{*}$
Strong duality $P^{*}=D^{*}$ holds often, for example if both problems are feasible and one of them strictly, i.e., with K replaced by its interior.

Semidefinite Programming

Let $A_{1}, \ldots, A_{m} \in S \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}, C \in \mathbb{R}^{n \times n}$, $\mathcal{A}: S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}: X \mapsto\left(\left\langle A_{i}, X\right\rangle\right)_{i \in\{1, \ldots, m\}}$.

Semidefinite Programming

Let $A_{1}, \ldots, A_{m} \in S \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}, C \in \mathbb{R}^{n \times n}$, $\mathcal{A}: S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}: X \mapsto\left(\left\langle A_{i}, X\right\rangle\right)_{i \in\{1, \ldots, m\}}$. Then
$\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow S \mathbb{R}^{n \times n}: y \mapsto \sum_{i=1}^{m} y_{i} A_{i}$ since

$$
\langle\mathcal{A} X, y\rangle=\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle y_{i}=\sum_{i=1}^{m} y_{i}\left\langle X, A_{i}\right\rangle=\left\langle X, \sum_{i=1}^{m} y_{i} A_{i}\right\rangle
$$

Semidefinite Programming

Let $A_{1}, \ldots, A_{m} \in S \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}, C \in \mathbb{R}^{n \times n}$, $\mathcal{A}: S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}: X \mapsto\left(\left\langle A_{i}, X\right\rangle\right)_{i \in\{1, \ldots, m\}}$. Then
$\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow S \mathbb{R}^{n \times n}: y \mapsto \sum_{i=1}^{m} y_{i} A_{i}$ since

$$
\langle\mathcal{A} X, y\rangle=\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle y_{i}=\sum_{i=1}^{m} y_{i}\left\langle X, A_{i}\right\rangle=\left\langle X, \sum_{i=1}^{m} y_{i} A_{i}\right\rangle
$$

(P) minimize $\langle C, X\rangle$
subject to $\quad X \in S \mathbb{R}_{+}^{n \times n}$

$$
\mathcal{A} X=b
$$

(D) maximize $\langle b, y\rangle$
subject to $\quad y \in \mathbb{R}^{m}$
$C-\mathcal{A}^{*} y \operatorname{psd}$

Semidefinite Programming

Let $A_{1}, \ldots, A_{m} \in S \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}, C \in \mathbb{R}^{n \times n}$, $\mathcal{A}: S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}: X \mapsto\left(\left\langle A_{i}, X\right\rangle\right)_{i \in\{1, \ldots, m\}}$. Then
$\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow S \mathbb{R}^{n \times n}: y \mapsto \sum_{i=1}^{m} y_{i} A_{i}$ since

$$
\langle\mathcal{A} X, y\rangle=\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle y_{i}=\sum_{i=1}^{m} y_{i}\left\langle X, A_{i}\right\rangle=\left\langle X, \sum_{i=1}^{m} y_{i} A_{i}\right\rangle
$$

(P) minimize $\langle C, X\rangle$
subject to $\quad X \in S \mathbb{R}_{+}^{n \times n}$

$$
\left\langle A_{i}, X\right\rangle=b_{i}
$$

$(D) \quad$ maximize $\langle b, y\rangle$
subject to $\quad y \in \mathbb{R}^{m}$

$$
C-\sum_{i=1}^{m} y_{i} A_{i} \mathrm{psd}
$$

Semidefinite Programming

Let $A_{1}, \ldots, A_{m} \in S \mathbb{R}^{n \times n}, b \in \mathbb{R}^{m}, C \in \mathbb{R}^{n \times n}$,
$\mathcal{A}: S \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{m}: X \mapsto\left(\left\langle A_{i}, X\right\rangle\right)_{i \in\{1, \ldots, m\}}$. Then
$\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow S \mathbb{R}^{n \times n}: y \mapsto \sum_{i=1}^{m} y_{i} A_{i}$ since

$$
\langle\mathcal{A} X, y\rangle=\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle y_{i}=\sum_{i=1}^{m} y_{i}\left\langle X, A_{i}\right\rangle=\left\langle X, \sum_{i=1}^{m} y_{i} A_{i}\right\rangle
$$

(P) minimize $\langle C, X\rangle$
subject to $\quad X \in S \mathbb{R}_{+}^{n \times n}$

$$
\left\langle A_{i}, X\right\rangle=b_{i}
$$

$(D) \quad$ maximize $\langle b, y\rangle$
subject to $\quad y \in \mathbb{R}^{m}$

$$
C-\sum_{i=1}^{m} y_{i} A_{i} \mathrm{psd}
$$

Weak duality: $P^{*} \geq D^{*}$
Strong duality $P^{*}=D^{*}$ holds often, for example if both problems are feasible and one of them strictly, i.e., with "psd" replaced by "pd".

Positive semidefinite matrices and families of vectors
Recall the following fact.
A real symmetric $n \times n$ matrix A is psd if and only if there are vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ such that

$$
A=\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, v_{1}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right) .
$$

Positive semidefinite matrices and families of vectors

Recall the following fact.
A real symmetric $n \times n$ matrix A is psd if and only if there are vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ such that

$$
A=\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, v_{1}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right) .
$$

Therefore SDP can be seen as optimization over families of vectors where the goal function and the constraints are linear in the scalar products between these vectors.

The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges),

The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges), find the maximum cut value, i.e., the maximal possible number of edges that connect nodes with different signs when each node is assigned a sign + or - .

The maximum cut problem

Given a graph, i.e., an $n \in \mathbb{N}$ (number of nodes) and a set

$$
E \subseteq\left\{(i, j) \in\{1, \ldots, n\}^{2} \mid i<j\right\}
$$

(of edges), find the maximum cut value, i.e., the maximal possible number of edges that connect nodes with different signs when each node is assigned a sign + or - .

$$
\begin{array}{ll}
\text { maximize } & \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right) \\
\text { subject to } & x_{i} \in \mathbb{R} \text { for all } i \in\{1, \ldots, n\} \\
& x_{i}^{2}=1
\end{array}
$$

MAXCUT

$$
\operatorname{maximize} \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)
$$

subject to $\quad x_{i} \in \mathbb{R}$ for all $i \in\{1, \ldots, n\}$

$$
x_{i}^{2}=1
$$

Vector version of first MAXCUT relaxation

$$
\begin{aligned}
\left(P_{1}\right) & \text { maximize } \\
& \sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
\text { subject to } & v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\} \\
& \left\langle v_{i}, v_{i}\right\rangle=1
\end{aligned}
$$

Vector version of first MAXCUT relaxation

$$
\begin{aligned}
\left(P_{1}\right) \quad \text { maximize } & \sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
\text { subject to } & v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\} \\
& \left\langle v_{i}, v_{i}\right\rangle=1
\end{aligned}
$$

Error analysis of Goemans \& Williamson: Computing an optimal solution $v_{1}, \ldots, v_{n} \in S^{n-1}$
J. Assoc. Comput. Mach. 42, No.6, 1115-1145 (1995)

Vector version of first MAXCUT relaxation

$$
\begin{aligned}
\left(P_{1}\right) \quad \text { maximize } & \sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
\text { subject to } & v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\} \\
& \left\langle v_{i}, v_{i}\right\rangle=1
\end{aligned}
$$

Error analysis of Goemans \& Williamson: Computing an optimal solution $v_{1}, \ldots, v_{n} \in S^{n-1}$ and rounding it by a random hyperplane H to a $\{-1,1\}$-solution
J. Assoc. Comput. Mach. 42, No.6, 1115-1145 (1995)

Vector version of first MAXCUT relaxation

$$
\begin{aligned}
\left(P_{1}\right) \quad \text { maximize } & \sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
\text { subject to } & v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\} \\
& \left\langle v_{i}, v_{i}\right\rangle=1
\end{aligned}
$$

Error analysis of Goemans \& Williamson: Computing an optimal solution $v_{1}, \ldots, v_{n} \in S^{n-1}$ and rounding it by a random hyperplane H to a $\{-1,1\}$-solution, shows that $P_{1}^{*}:=\sup \left(P_{1}\right)$ overestimates the maximum cut value of E at most by a factor of 1.1382 .
J. Assoc. Comput. Mach. 42, No.6, 1115-1145 (1995)

Vector version of first MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)$
subject to $\quad v_{i} \in \mathbb{R}^{n}$ for all $i \in\{1, \ldots, n\}$

$$
\left\langle v_{i}, v_{i}\right\rangle=1
$$

Vector version of first MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)$
subject to $\quad v_{i} \in \mathbb{R}^{n}$ for all $i \in\{1, \ldots, n\}$
$\left\langle v_{i}, v_{i}\right\rangle=1$
$E[$ value of random cut $]=$

Vector version of first MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)$
subject to $\quad v_{i} \in \mathbb{R}^{n}$ for all $i \in\{1, \ldots, n\}$
$\left\langle v_{i}, v_{i}\right\rangle=1$
$E[$ value of random cut $]=\sum_{(i, j) \in E} P\left[H\right.$ separates v_{i} and $\left.v_{j}\right]$

Vector version of first MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)$

$$
\begin{array}{ll}
\text { subject to } & v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\} \\
& \left\langle v_{i}, v_{i}\right\rangle=1
\end{array}
$$

$E[$ value of random cut $]=\sum_{(i, j) \in E} P\left[H\right.$ separates v_{i} and $\left.v_{j}\right]$

$$
=\sum_{(i, j) \in E} \frac{\varangle\left(v_{i}, v_{j}\right)}{\pi} \geq
$$

Vector version of first MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)$

$$
\text { subject to } \quad v_{i} \in \mathbb{R}^{n} \text { for all } i \in\{1, \ldots, n\}
$$

$$
\left\langle v_{i}, v_{i}\right\rangle=1
$$

$E[$ value of random cut $]=\sum_{(i, j) \in E} P\left[H\right.$ separates v_{i} and $\left.v_{j}\right]$

$$
=\sum_{(i, j) \in E} \frac{\varangle\left(v_{i}, v_{j}\right)}{\pi} \geq \frac{1}{1.1382} \sum_{(i, j) \in E} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right)
$$

MAXCUT

$\operatorname{maximize} \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

Note that $\quad\left(\begin{array}{cccc}1 & x_{1} x_{2} & \ldots & x_{1} x_{n} \\ x_{2} x_{1} & 1 & & x_{2} x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n} x_{1} & \ldots \ldots \ldots & \cdots & 1\end{array}\right)$ is psd

MAXCUT

$\operatorname{maximize} \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$
Note that
X_{1}
\vdots
\vdots
$X_{n}$$\left(\begin{array}{ccccc}X_{1} & \ldots & \cdots & \ldots & X_{n} \\ 1 & x_{1} x_{2} & \ldots & x_{1} x_{n} \\ x_{2} x_{1} & 1 & & x_{2} x_{n} \\ \vdots & & \ddots & \vdots \\ x_{n} x_{1} & \ldots & \ldots & \cdots & 1\end{array}\right)$ is psd

First MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\quad \sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$
subject to $\quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)$

$$
\begin{gathered}
\\
X_{1} \\
\vdots \\
\vdots \\
X_{n}
\end{gathered}\left(\begin{array}{rrrrr}
X_{1} & \ldots & \ldots & \ldots & X_{n} \\
1 & y_{12} & \ldots & y_{1 n} \\
y_{12} & 1 & & y_{2 n} \\
\vdots & & \ddots & \vdots \\
y_{1 n} & \ldots \ldots & \ldots & 1
\end{array}\right) \text { is psd }
$$

First MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\quad \sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$

$$
\text { subject to } \quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)
$$

$$
\begin{gathered}
\\
X_{1} \\
\vdots \\
\vdots \\
X_{n}
\end{gathered}\left(\begin{array}{rrrrr}
X_{1} & \ldots & \ldots & \ldots & X_{n} \\
1 & y_{12} & \ldots & y_{1 n} \\
y_{12} & 1 & & y_{2 n} \\
\vdots & & \ddots & \vdots \\
y_{1 n} & \ldots \ldots & \ldots & 1
\end{array}\right) \text { is psd }
$$

Note: With obvious changes, one can allow affine linear goal functions.

First MAXCUT relaxation

$\left(P_{1}\right) \quad$ maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$

$$
\text { subject to } \quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)
$$

$$
\begin{gathered}
\\
X_{1} \\
\vdots \\
\vdots \\
X_{n}
\end{gathered}\left(\begin{array}{rrrrr}
X_{1} & \ldots & \ldots & \ldots & X_{n} \\
1 & y_{12} & \ldots & y_{1 n} \\
y_{12} & 1 & & y_{2 n} \\
\vdots & & \ddots & \vdots \\
y_{1 n} & \ldots \ldots & \ldots & 1
\end{array}\right) \text { is psd }
$$

Note: With obvious changes, one can allow affine linear goal functions. From now on, it will be more efficient to implement all our primals as duals and vice versa.

What is the dual of the first relaxation?

An exercise shows that solving the dual $\operatorname{SDP}\left(D_{1}\right)$ amounts to minimizing $\mu \in \mathbb{R}$ subject to the following constraint:

What is the dual of the first relaxation?

An exercise shows that solving the dual $\operatorname{SDP}\left(D_{1}\right)$ amounts to minimizing $\mu \in \mathbb{R}$ subject to the following constraint:
$\mu-\sum_{(i, j) \in E} \frac{1}{2}\left(1-X_{i} X_{j}\right)$ is congruent to a sum of squares of linear forms modulo the ideal $\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right)$.

What is the dual of the first relaxation?

An exercise shows that solving the dual $\operatorname{SDP}\left(D_{1}\right)$ amounts to minimizing $\mu \in \mathbb{R}$ subject to the following constraint:
$\mu-\sum_{(i, j) \in E} \frac{1}{2}\left(1-X_{i} X_{j}\right)$ is congruent to a sum of squares of linear forms modulo the ideal $\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right)$.

This is typical for the duals, we will encounter!

What is the dual of the first relaxation?

An exercise shows that solving the dual $\operatorname{SDP}\left(D_{1}\right)$ amounts to minimizing $\mu \in \mathbb{R}$ subject to the following constraint:
$\mu-\sum_{(i, j) \in E} \frac{1}{2}\left(1-X_{i} X_{j}\right)$ is congruent to a sum of squares of linear forms modulo the ideal $\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right)$.

This is typical for the duals, we will encounter!

Obviously, there is no duality gap between $\left(P_{1}\right)$ and $\left(D_{1}\right)$.

MAXCUT

$$
\operatorname{maximize} \sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)
$$

subject to $\quad x \in\{-1,1\}^{n}$

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$

Note that $\quad\left(\begin{array}{cccccc}1 & x_{1} x_{2} & \cdots & \cdots & \cdots & \cdots \\ x_{2} x_{1} & 1 & & & & \\ \vdots & & \ddots & & & \\ \vdots & & & \ddots & & \\ & & & & & 1\end{array}\right)$ is psd

MAXCUT

maximize $\sum_{(i, j) \in E} \frac{1}{2}\left(1-x_{i} x_{j}\right)$
subject to $\quad x \in\{-1,1\}^{n}$
Note that
1
$X_{1} X_{2}$
$X_{1} X_{3}$
\vdots
$X_{n-1} X_{n}$$\left(\begin{array}{cccccc}1 & X_{1} X_{2} & X_{1} X_{3} & \ldots & X_{n-1} X_{n} \\ 1 & x_{1} x_{2} & \ldots & \ldots & \ldots & \ldots \\ x_{2} x_{1} & 1 & & & & \\ \vdots & & \ddots & & & \\ \vdots & & & \ddots & \\ & & & & & 1\end{array}\right)$ is psd

Second MAXCUT relaxation

$\left(P_{2}\right) \quad$ maximize $\quad \sum_{(i, j) \in E} \frac{1}{2}\left(1-y_{i j}\right)$
subject to $\quad y_{i j} \in \mathbb{R} \quad(1 \leq i<j \leq n)$

$$
\begin{aligned}
& 1 \quad X_{1} X_{2} \quad X_{1} X_{3} \ldots X_{n-1} X_{n} \\
& \begin{array}{c}
1 \\
X_{1} X_{2} \\
X_{1} X_{3} \\
\vdots \\
X_{n-1} X_{n}
\end{array} \quad\left(\begin{array}{rrrrrc}
1 & y_{12} & \cdots & \cdots & \cdots & \cdots \\
y_{12} & 1 & & & & \\
\vdots & & \ddots & & & \\
\vdots & & & \ddots & & \\
& & & & & 1
\end{array}\right) \text { is psd }
\end{aligned}
$$

- The maximum cut problem is $N P$-complete
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial time algorithm it is known that it has a better approximation ratio.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial time algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P$ (Hastad).
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial time algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P$ (Hastad).
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub),
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial time algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P($ Hastad $)$.
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub), and is conjectured to improve over the GW-algorithm.
- The maximum cut problem is $N P$-complete
- The first relaxation gives a polynomial time algorithm which overestimates the maximum cut value at most by a factor of ≈ 1.1382.
- The first relaxation is the famous algorithm of Goemans and Williamson. From no polynomial time algorithm it is known that it has a better approximation ratio. Existence of such an algorithm with ratio <1.0625 implies $P=N P($ Hastad $)$.
- Solving the second relaxation is a polynomial time algorithm which yields the exact value for all planar graphs (consequence of results of Seymour, Barahona, Mahjoub), and is conjectured to improve over the GW-algorithm.
- The n-th relaxation yields the exact maximum cut value.

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} \text {. }
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] .
$$

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Exactness of the n-th MAXCUT relaxation

Proposition. Suppose $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
p \geq 0 \text { on }\{-1,1\}^{n} .
$$

Then f is a square modulo the ideal

$$
I:=\left(X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right) \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

Proof by algebra. By chinese remainder theorem

$$
\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] / I \cong \mathbb{R}^{\{-1,1\}^{n}} \cong \mathbb{R}^{2^{n}}
$$

Proof by algebraic geometry. I is a zero-dimensional radical ideal.

Corollary. $D_{n}^{*}=P_{n}^{*}=f^{*}$

Notation

Notation

- X_{1}, \ldots, X_{n} variables

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1$

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}[\bar{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}[\bar{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}[\bar{X}]$ an arbitrary polynomial

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}[\bar{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}[\bar{X}]$ an arbitrary polynomial
- $g_{1}, \ldots, g_{m} \in \mathbb{R}[\bar{X}]$ polynomials defining...

Notation

- X_{1}, \ldots, X_{n} variables
- $X:=X_{1}$ when $n=1,(X, Y):=\left(X_{1}, X_{2}\right)$ when $n=2, \ldots$
- $\mathbb{R}[\bar{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}[\bar{X}]$ an arbitrary polynomial
- $g_{1}, \ldots, g_{m} \in \mathbb{R}[\bar{X}]$ polynomials defining...
- ... the set $S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$

$$
\begin{aligned}
& \\
& f \\
& g_{1}, \ldots, g_{m} \\
& \\
& \quad
\end{aligned}
$$

Optimization

We consider the problem of minimizing f on S.

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{ \pm \infty\}
$$

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{ \pm \infty\}
$$

and, if possible, a minimizer, i.e., an element of the set

$$
S^{*}:=\left\{x^{*} \in S \mid f\left(x^{*}\right) \leq f(x) \text { for all } x \in S\right\} .
$$

Linear Programming

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0
\end{aligned}
$$

where all polynomials f and g_{i} are linear, i.e., their degree is ≤ 1. In particular, $S \subseteq \mathbb{R}^{n}$ is a polyhedron.

Linear Programming

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& \left(\begin{array}{lll}
g_{1}(x) & & \\
& \ddots & \\
& & g_{m}(x)
\end{array}\right) \text { is psd }
\end{aligned}
$$

where all polynomials f and g_{i} are linear, i.e., their degree is ≤ 1. In particular, $S \subseteq \mathbb{R}^{n}$ is a polyhedron.

S D P

minimize $f(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
\left(\begin{array}{ccc}
g_{11}(x) & \ldots & g_{1 m}(x) \\
\vdots & \ddots & \vdots \\
& \cdots & g_{m m}(x)
\end{array}\right) \text { is psd }
$$

where all polynomials f and $g_{i j}$ are linear, i.e., their degree is ≤ 1.

Semidefinite Programming

minimize $\quad f(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
\left(\begin{array}{ccc}
g_{11}(x) & \ldots & g_{1 m}(x) \\
\vdots & \ddots & \vdots \\
& \cdots & g_{m m}(x)
\end{array}\right) \text { is psd }
$$

where all polynomials f and $g_{i j}$ are linear, i.e., their degree is ≤ 1.

Duality

- Every linear
program (P) has an optimal value P^{*}.

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

Duality

- Every linear
- To every linear program (P), one can define a dual program (D) which is again a linear program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

- Strong duality is desired and often holds:

$$
D^{*}=P^{*}
$$

Duality

- Every semidefinite program (P) has an optimal value P^{*}.
- To every semidefinite program (P), one can define a dual program (D) which is again a semidefinite program.
- If (P) is a minimization problem, then (D) is a maximization problem and weak duality holds:

$$
D^{*} \leq P^{*}
$$

- Strong duality is desired and often holds:

$$
D^{*}=P^{*}
$$

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$
where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$

Note that

$$
\left(\begin{array}{ccccc}
1 & x & x^{2} & \ldots & x^{d} \\
x & x^{2} & \ddots & \ddots & \\
x^{2} & \ddots & \ddots & & \\
\vdots & \ddots & & & \\
x^{d} & & & & x^{2 d}
\end{array}\right) \text { is psd }
$$

where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

$$
\operatorname{minimize} \sum_{i=0}^{2 d} a_{i} x^{i}
$$

subject to $\quad x \in \mathbb{R}$
Note that

X^{2}
\vdots
$X^{d}$$\left(\begin{array}{ccccc}1 & X & X^{2} & \ldots & X^{d} \\ x & x & x^{2} & \ldots & x^{d} \\ x^{2} & \ddots & \ddots & \ddots & \\ \vdots & \ddots & & & \\ x^{d} & & & & x^{2 d}\end{array}\right)$ is psd
where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

$$
(P) \quad \text { minimize } \sum_{i=1}^{2 d} a_{i} y_{i}+a_{0}
$$

$$
\text { subject to } \quad y \in \mathbb{R}^{2 d}
$$

$$
\begin{gathered}
1 \\
1 \\
X \\
X^{2} \\
\vdots \\
X^{d}
\end{gathered}\left(\begin{array}{ccccc}
1 & X & X^{2} & \ldots & X^{d} \\
y_{1} & y_{2} & \ddots & \ddots & \\
y_{2} & \ddots & \ddots & & \\
\vdots & \ddots & & & \\
y_{d} & & & & y_{2 d}
\end{array}\right) \text { is psd }
$$

where $a_{0}, \ldots, a_{2 d} \in \mathbb{R}$.

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P).

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:
$(D) \quad$ maximize $\quad \mu$
subject to $f-\mu$ is sos

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:

$(D) \quad$ maximize	μ
subject to	$f-\mu$ is sos

Proposition. For every $p \in \mathbb{R}[X]$,

$$
p \geq 0 \text { on } \mathbb{R} \Longrightarrow p \text { is a sum of two squares in } \mathbb{R}[X] .
$$

Set $f:=\sum_{i=0}^{2 d} a_{i} X^{i}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*}
$$

It turns out that (D) can be interpreted as:
$(D) \quad$ maximize $\quad \mu$
subject to $\quad f-\mu$ is sos

Proposition. For every $p \in \mathbb{R}[X]$,

$$
p \geq 0 \text { on } \mathbb{R} \Longrightarrow p \text { is a sum of two squares in } \mathbb{R}[X] .
$$

Corollary.

$$
D^{*}=P^{*}=f^{*}
$$

minimize $\quad \sum a_{i j} x^{i} y^{j}$

subject to $\quad x, y \in \mathbb{R}$
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

$$
\operatorname{minimize} \quad \sum_{i+j \leq 4} a_{i j} x^{i} y^{j}
$$

subject to $\quad x, y \in \mathbb{R}$

Note that $\quad\left(\begin{array}{llllll}1 & x & y & x^{2} & x y & y^{2} \\ x & x^{2} & x y & x^{3} & x^{2} y & x y^{2} \\ y & x y & y^{2} & x^{2} y & x y^{2} & y^{3} \\ x^{2} & x^{3} & x^{2} y & x^{4} & x^{3} y & x^{2} y^{2} \\ x y & x^{2} y & x y^{2} & x^{3} y & x^{2} y^{2} & x y^{3} \\ y^{2} & x y^{2} & y^{3} & x^{2} y^{2} & x y^{3} & y^{4}\end{array}\right)$ is psd
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

$$
\operatorname{minimize} \quad \sum_{i+j \leq 4} a_{i j} x^{i} y^{j}
$$

subject to $\quad x, y \in \mathbb{R}$

where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.
$(P) \quad$ minimize $\sum_{1 \leq i+j \leq 4} a_{i j} y_{i j}+a_{00}$
subject to $\quad y_{i j} \in \mathbb{R}(1 \leq i+j \leq 4)$
1
X
Y
X^{2}
$X Y$
$Y^{2}$$\quad\left(\begin{array}{cccccc}1 & X & Y & X^{2} & X Y & Y^{2} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}\end{array}\right)$ is psd
where $a_{i j} \in \mathbb{R}(i+j \leq 4)$.

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P).

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :---: | :--- |
| subject to | $f-\mu$ is sos |

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :---: | :--- |
| subject to | $f-\mu$ is sos |

Theorem (Hilbert). For every $p \in \mathbb{R}[X, Y]$ of degree ≤ 4,

$$
p \geq 0 \text { on } \mathbb{R}^{2} \Longrightarrow p \text { is a sum of three squares in } \mathbb{R}[X, Y] .
$$

David Hilbert: Ueber die Darstellung definiter Formen als Summe von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032

Set $f:=\sum_{i+j \leq 4} a_{i j} X^{i j}$ and denote by (D) the semidefinite program dual to (P). Then it is clear that

$$
D^{*} \leq P^{*} \leq f^{*} .
$$

It turns out that (D) can be interpreted as:

(D) \quad| maximize | μ |
| :--- | :--- |
| subject to | $f-\mu$ is sos |

Theorem (Hilbert). For every $p \in \mathbb{R}[X, Y]$ of degree ≤ 4,

$$
p \geq 0 \text { on } \mathbb{R}^{2} \Longrightarrow p \text { is a sum of three squares in } \mathbb{R}[X, Y] .
$$

Corollary. $D^{*}=P^{*}=f^{*}$
David Hilbert: Ueber die Darstellung definiter Formen als Summe von Formenquadraten
Math. Ann. XXXII 342-350 (1888)
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.
- Described method always yields certified lower bounds, but they might by $-\infty$:

$$
-\infty \leq D^{*}=P^{*} \leq f^{*}
$$

The Motzkin polynomial

- Unfortunately, not every polynomial $p \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ with $p \geq 0$ on \mathbb{R}^{n} is a sum of squares of polynomials.
- The first explicit example was found in 1967 by Motzkin:

$$
p:=X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}+1
$$

- In fact, there is even no $N \in \mathbb{N}$ such that $p+N$ is a sum of squares in $\mathbb{R}[X, Y, Z]$.
- Described method always yields certified lower bounds, but they might by $-\infty$:

$$
-\infty \leq D^{*}=P^{*} \leq f^{*}
$$

- But there are a lot of remedies...

Case where S is compact.
For simplicity, we suppose $m=1$ and write $g:=g_{1}$ (technical difficulties which are however not very serious otherwise), i.e.

$$
S=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0\right\} .
$$

Case where S is compact.

For simplicity, we suppose $m=1$ and write $g:=g_{1}$ (technical difficulties which are however not very serious otherwise), i.e.

$$
S=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0\right\} .
$$

We will later present in detail Lasserre's method which produces now a sequence $\left(P_{k}\right)_{2 k \geq d}$ of relaxations such that

$$
D_{k}^{*} \leq P_{k}^{*} \leq f^{*} \quad \text { and } \quad \lim _{k \rightarrow \infty} D_{k}^{*}=\lim _{k \rightarrow \infty} P_{k}^{*}=f^{*}
$$

$$
\operatorname{minimize} \quad \sum_{d} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

$$
\text { subject to } \quad x \in S
$$

where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.
$\operatorname{minimize} \quad \sum_{|\alpha| \leq d} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$
subject to $\quad x \in S$

Note that $\left(\begin{array}{cccc}1 & x_{1} & \ldots & x_{n}^{k} \\ x_{1} & & & \vdots \\ \vdots & & & \\ x_{n}^{k} & \ldots \ldots \ldots & x_{n}^{2 k}\end{array}\right)$
where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.

$$
\operatorname{minimize} \quad \sum_{|\alpha| \leq d} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

subject to $\quad x \in S$
$\left.\begin{array}{c} \\ 1 \\ X_{1} \\ \text { Note that } \\ X_{n}^{k}\end{array}\left(\begin{array}{cccc}1 & X_{1} & \ldots & X_{n}^{k} \\ x_{1} & & & \vdots \\ \vdots & & & \\ x_{n}^{k} & \ldots \ldots \ldots & x_{n}^{2 k}\end{array}\right) \quad \begin{array}{c}\binom{\text { "localization }}{\text { matrix" }}\end{array}\right) \quad \begin{gathered} \\ \\ \end{gathered}$
where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.
$\left(P_{k}\right) \quad$ minimize $\sum_{1 \leq|\alpha| \leq d} a_{\alpha} y_{\alpha}+a_{0}$ subject to $\quad y_{\alpha} \in \mathbb{R} \quad(|\alpha| \leq k)$

$$
\begin{gathered}
\\
1 \\
X_{1} \\
\vdots \\
X_{n}^{k}
\end{gathered}\left(\left(\begin{array}{ccc}
1 & X_{1} & \ldots \\
1 & y_{10 \ldots 0} \ldots \\
y_{10 \ldots 0} & & \\
\vdots & & \\
& &
\end{array}\right.\right.
$$

$$
\left.\begin{array}{l}
\\
\\
\left(\begin{array}{c}
X_{n}^{k} \\
\\
\\
\\
\text { "localization } \\
\text { matrix" }
\end{array}\right)
\end{array}\right) \text { is psc }
$$

where $k \in \mathbb{N}, 2 k \geq d, a_{\alpha} \in \mathbb{R}(|\alpha| \leq k)$.

Implementations

- Henrion, Lasserre: GloptiPoly http://www.laas.fr/~henrion/software/gloptipoly/
- Loefberg: YALMIP http://control.ee.ethz.ch/~joloef/yalmip.php
- Prajna, Papachristodoulou, Seiler, Parrilo: SOSTOOLS http://www.cds.caltech.edu/sostools/
- Waki, Kim, Kojima, Muramatsu: SparsePOP http://www.is.titech.ac.jp/~kojima/SparsePOP/
- All run under Matlab.
- All run with the free SeDuMi solver by Jos Sturm.
- Some support other solvers, too.

Lasserre's hierarchy of relaxations

for optimization of polynomials on compact basic closed semialgebraic sets

Notation

- $X:=\left(X_{1}, \ldots, X_{n}\right)$ variables
- $\mathbb{R}[\bar{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ polynomial ring
- $f \in \mathbb{R}[\bar{X}]$ an arbitrary polynomial
- $g_{1}, \ldots, g_{m} \in \mathbb{R}[\bar{X}]$ polynomials defining...
- ... the set $S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$
- $g_{0}:=1 \in \mathbb{R}[\bar{X}]$ for convenience
- $M:=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]^{2} g_{i}=\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}\right\}$ the quadratic module generated by g_{1}, \ldots, g_{m}

$$
\begin{aligned}
& f \\
& g_{1}, \ldots, g_{m} \\
& \\
& \\
& g_{0} \\
& M
\end{aligned}
$$

$$
\begin{gathered}
\text { Assume that } \\
N-\sum_{i=1}^{n} X_{i}^{2} \in M \\
\text { for some } N \in \mathbb{N} .
\end{gathered}
$$

Assume that

$$
\begin{gathered}
N-\sum_{i=1}^{n} X_{i}^{2} \in M \\
\text { for some } N \in \mathbb{N}
\end{gathered}
$$

In particular, S is compact.

Optimization

We consider the problem of minimizing f on S.

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum (minimum if $S \neq \emptyset$)

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{\infty\}
$$

Optimization

We consider the problem of minimizing f on S. So we want to compute numerically the infimum (minimum if $S \neq \emptyset$)

$$
f^{*}:=\inf \{f(x) \mid x \in S\} \in \mathbb{R} \cup\{\infty\}
$$

and, if possible, a minimizer, i.e., an element of the set

$$
S^{*}:=\left\{x^{*} \in S \mid \forall x \in S: f\left(x^{*}\right) \leq f(x)\right\} .
$$

Convexification

Convexify the problem by brute force.

Convexification

Convexify the problem by brute force. Two ways to do so:

Convexification

Convexify the problem by brute force. Two ways to do so:

- Generalize from points to probability measures:

$$
f^{*}=\inf \left\{\int f d \mu \mid \mu \in \mathcal{M}^{1}(S)\right\}
$$

Convexification

Convexify the problem by brute force. Two ways to do so:

- Generalize from points to probability measures:

$$
f^{*}=\inf \left\{\int f d \mu \mid \mu \in \mathcal{M}^{1}(S)\right\}
$$

- Take a dual standpoint:

$$
f^{*}=\sup \{a \in \mathbb{R} \mid f-a \geq 0 \text { on } S\}=\sup \{a \in \mathbb{R} \mid f-a>0 \text { on } S\}
$$

Describing measures and positive polynomials

Putinar's solution to the moment problem. For every map $L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R}$ are equivalent:
(1) L is linear, $L(1)=1$ and $L(M) \subseteq \mathbb{R}_{\geq 0}$
(2) $\exists \mu \in \mathcal{M}^{1}(S): \forall p \in \mathbb{R}[\bar{X}]: L(p)=\int p d \mu$

Mihai Putinar: Positive polynomials on compact semi-algebraic sets Indiana Univ. Math. J. 42, No. 3, 969-984 (1993)

Describing measures and positive polynomials

Putinar's solution to the moment problem. For every map $L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R}$ are equivalent:
(1) L is linear, $L(1)=1$ and $L(M) \subseteq \mathbb{R}_{\geq 0}$
(2) $\exists \mu \in \mathcal{M}^{1}(S): \forall p \in \mathbb{R}[\bar{X}]: L(p)=\int p d \mu$

Putinar's Positivstellensatz. $f>0$ on $S \Longrightarrow f \in M$

Mihai Putinar: Positive polynomials on compact semi-algebraic sets Indiana Univ. Math. J. 42, No. 3, 969-984 (1993)

Describing measures and positive polynomials

Putinar's solution to the moment problem. For every map $L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R}$ are equivalent:
(1) L is linear, $L(1)=1$ and $L(M) \subseteq \mathbb{R}_{\geq 0}$
(2) $\exists \mu \in \mathcal{M}^{1}(S): \forall p \in \mathbb{R}[\bar{X}]: L(p)=\int p d \mu$

Stone-Weiserstrass Approximation \Uparrow Riesz Representation

Putinar's Positivstellensatz. $f>0$ on $S \Longrightarrow f \in M$

Mihai Putinar: Positive polynomials on compact semi-algebraic sets Indiana Univ. Math. J. 42, No. 3, 969-984 (1993)

$$
f^{*}=\inf \left\{\int f d \mu \mid \mu \in \mathcal{M}^{1}(S)\right\}
$$

Putinar's solution \Downarrow to the moment problem

$$
f^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R} \text { is linear, } L(1)=1, L(M) \subseteq \mathbb{R}_{\geq 0}\right\}
$$

$$
f^{*}=\inf \left\{\int f d \mu \mid \mu \in \mathcal{M}^{1}(S)\right\}
$$

Putinar's solution \Downarrow to the moment problem

$$
\begin{aligned}
& f^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R} \text { is linear, } L(1)=1, L(M) \subseteq \mathbb{R}_{\geq 0}\right\} \\
& f^{*}=\sup \{a \in \mathbb{R} \mid f-a \geq 0 \text { on } S\}=\sup \{a \in \mathbb{R} \mid f-a>0 \text { on } S\}
\end{aligned}
$$

Putinar's \Downarrow Positivstellensatz

$$
f^{*}=\sup \{a \in \mathbb{R} \mid f-a \in M\}
$$

$\mathbb{R}[\bar{X}]$

$$
\begin{aligned}
M & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]^{2} g_{i} \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}\right.
\end{aligned}
$$

polynomial ring
quadratic module
\}

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}] & & \text { polynomial ring } \\
M & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]^{2} g_{i} & \text { quadratic module } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}\right. & \}
\end{array}
$$

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}]_{k} & :=\{p \mid p \in \mathbb{R}[\bar{X}], \operatorname{deg} p \leq k\} & \\
\text { real vector space } \\
M & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]^{2} g_{i} & \text { quadratic module } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}\right. &
\end{array}
$$

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}]_{k} & :=\{p \mid p \in \mathbb{R}[\bar{X}], \operatorname{deg} p \leq k\} & \\
\text { real vector space } \\
M_{k} & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]_{d_{i}}^{2} g_{i} & \text { convex cone } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}, \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq k\right\}
\end{array}
$$

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}]_{k} & :=\{p \mid p \in \mathbb{R}[\bar{X}], \operatorname{deg} p \leq k\} & \\
\text { real vector space } \\
M_{k} & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]_{d_{i}}^{2} g_{i} & \text { convex cone } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}, \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq k\right\}
\end{array}
$$

for arbitrary $k \in \mathcal{N}:=\left\{s \in \mathbb{N} \mid s \geq \max \left\{\operatorname{deg} g_{0}, \ldots, \operatorname{deg} g_{m}, \operatorname{deg} f\right\}\right\}$.

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}]_{k} & :=\{p \mid p \in \mathbb{R}[\bar{X}], \operatorname{deg} p \leq k\} & \\
\text { real vector space } \\
M_{k} & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]_{d_{i}}^{2} g_{i} & \text { convex cone } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}, \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq k\right\}
\end{array}
$$

for arbitrary
$k \in \mathcal{N}:=\left\{s \in \mathbb{N} \mid s \geq \max \left\{\operatorname{deg} g_{0}, \ldots, \operatorname{deg} g_{m}, \operatorname{deg} f\right\}\right\}$.
Here $d_{i}:=\max \left\{e \in \mathbb{N} \mid 2 e+\operatorname{deg} g_{i} \leq k\right\}$.

Introduce finite-dimensional analogues $M_{k} \subseteq \mathbb{R}[\bar{X}]_{k}$ of $M \subseteq \mathbb{R}[\bar{X}]$.

$$
\begin{array}{rlr}
\mathbb{R}[\bar{X}]_{k} & :=\{p \mid p \in \mathbb{R}[\bar{X}], \operatorname{deg} p \leq k\} & \\
\text { real vector space } \\
M_{k} & :=\sum_{i=0}^{m} \sum \mathbb{R}[\bar{X}]_{d_{i}}^{2} g_{i} & \text { convex cone } \\
& =\left\{\sum_{i=0}^{m} \sigma_{i} g_{i} \mid \sigma_{i} \in \sum \mathbb{R}[\bar{X}]^{2}, \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq k\right\}
\end{array}
$$

for arbitrary
$k \in \mathcal{N}:=\left\{s \in \mathbb{N} \mid s \geq \max \left\{\operatorname{deg} g_{0}, \ldots, \operatorname{deg} g_{m}, \operatorname{deg} f\right\}\right\}$.
Here $d_{i}:=\max \left\{e \in \mathbb{N} \mid 2 e+\operatorname{deg} g_{i} \leq k\right\}$.
Warning: Never confuse M_{k} with $M \cap \mathbb{R}[\bar{X}]_{k} \supseteq M_{k}$.

We saw that

$$
\begin{aligned}
& f^{*}=\inf \{L(f) \mid L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R} \text { is linear, } L(1)=1, L(M) \subseteq \mathbb{R} \geq 0\} \quad \text { and } \\
& f^{*}=\sup \{a \in \mathbb{R} \mid f-a \in M\} .
\end{aligned}
$$

We saw that

$$
\begin{aligned}
& f^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R} \text { is linear, } L(1)=1, L(M) \subseteq \mathbb{R}_{\geq 0}\right\} \quad \text { and } \\
& f^{*}=\sup \{a \in \mathbb{R} \mid f-a \in M\}
\end{aligned}
$$

In analogy to this, we set

$$
\begin{aligned}
& P_{k}^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R} \text { is linear, } L(1)=1, L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}\right\} \quad \text { and } \\
& D_{k}^{*}=\sup \left\{a \in \mathbb{R} \mid f-a \in M_{k}\right\}
\end{aligned}
$$

for every $k \in \mathcal{N}$.

We saw that
$f^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}] \rightarrow \mathbb{R}\right.$ is linear, $\left.L(1)=1, L(M) \subseteq \mathbb{R}_{\geq 0}\right\} \quad$ and
$f^{*}=\sup \{a \in \mathbb{R} \mid f-a \in M\}$.
In analogy to this, we set
$P_{k}^{*}=\inf \left\{L(f) \mid L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}\right.$ is linear, $\left.L(1)=1, L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}\right\} \quad$ and $D_{k}^{*}=\sup \left\{a \in \mathbb{R} \mid f-a \in M_{k}\right\}$
for every $k \in \mathcal{N}$.
$P_{k}^{*} \in \mathbb{R} \cup\{ \pm \infty\}$ and $D_{k}^{*} \in \mathbb{R} \cup\{ \pm \infty\}$ are the optimal values of the following pair of optimization problems...
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. Proof.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$. $D_{k}^{*} \leq P_{k}^{*}: L(f)-a=L(f)-a L(1)=L(f-a) \subseteq L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$. $D_{k}^{*} \leq P_{k}^{*}: L(f)-a=L(f)-a L(1)=L(f-a) \subseteq L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$
Clear: $\left(P_{k}^{*}\right)_{k \in \mathbb{N}}$ and $\left(D_{k}^{*}\right)_{k \in \mathbb{N}}$ increase.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$. $D_{k}^{*} \leq P_{k}^{*}: L(f)-a=L(f)-a L(1)=L(f-a) \subseteq L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ Clear: $\left(P_{k}^{*}\right)_{k \in \mathbb{N}}$ and $\left(D_{k}^{*}\right)_{k \in \mathbb{N}}$ increase. $\lim _{k \rightarrow \infty} D_{k}^{*} \rightarrow f^{*}$: If $a<f^{*}$, then $f-a \in M_{k}$ for some $k \in \mathcal{N}$ by Putinar's Positivstellensatz.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$. $D_{k}^{*} \leq P_{k}^{*}: L(f)-a=L(f)-a L(1)=L(f-a) \subseteq L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ Clear: $\left(P_{k}^{*}\right)_{k \in \mathbb{N}}$ and $\left(D_{k}^{*}\right)_{k \in \mathbb{N}}$ increase. $\lim _{k \rightarrow \infty} D_{k}^{*} \rightarrow f^{*}$: If $a<f^{*}$, then $f-a \in M_{k}$ for some $k \in \mathcal{N}$ by Putinar's Positivstellensatz. Then a is feasible for (D_{k}) whence $a \leq D_{k}^{*}$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f) \quad$ subject to $\quad L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right) \quad$ maximize $\quad a \quad$ subject to $\quad a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
Proof. $P_{k}^{*} \leq f^{*}$ because $p \mapsto p(x)$ feasible for $\left(P_{k}\right)$ for $x \in S$. $D_{k}^{*} \leq P_{k}^{*}: L(f)-a=L(f)-a L(1)=L(f-a) \subseteq L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$ Clear: $\left(P_{k}^{*}\right)_{k \in \mathbb{N}}$ and $\left(D_{k}^{*}\right)_{k \in \mathbb{N}}$ increase. $\lim _{k \rightarrow \infty} D_{k}^{*} \rightarrow f^{*}:$ If $a<f^{*}$, then $f-a \in M_{k}$ for some $k \in \mathcal{N}$ by Putinar's Positivstellensatz. Then a is feasible for $\left(D_{k}\right)$ whence $a \leq D_{k}^{*}$.
Convergence of $\left(D_{k}^{*}\right)_{k \in \mathbb{N}}$ implies convergence of $\left(P_{k}^{*}\right)_{k \in \mathbb{N}}$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and $f-a \in M_{k}$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, k-th primal relaxation $L(1)=1$ and (primal relaxation of order k) $\quad L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$
$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and
k-th dual relaxation
$f-a \in M_{k}$
Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, k-th primal relaxation $L(1)=1$ and (primal relaxation of order k)
$L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$
$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and
k-th dual relaxation
$f-a \in M_{k}$
Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
$\left(P_{k}\right)$ and $\left(D_{k}\right)$ can be formulated as a primal-dual pair of semidefinite programs.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,
k-th primal relaxation
(primal relaxation of order k) $L(1)=1$ and
$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and
k-th dual relaxation
$L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$
$f-a \in M_{k}$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
$\left(P_{k}\right)$ and $\left(D_{k}\right)$ can be formulated as a primal-dual pair of semidefinite programs.

Jean Lasserre: Global optimization with polynomials and the problem of moments
SIAM J. Optim. 11, No. 3, 796-817 (2001)
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?

Theorem. Suppose $m=1$ and $g:=g_{1}$. Then there exists $C \in \mathbb{N}$ depending on f and g and $c \in \mathbb{N}$ depending on g such that

$$
f^{*}-D_{k}^{*} \leq \frac{C}{\sqrt[c]{k}} \quad \text { for big } k .
$$

On the complexity of Schmüdgen's Positivstellensatz Journal of Complexity 20, No. 4, 529-543 (2004)
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and $f-a \in M_{k}$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?

Theorem. Suppose $k=1$ and $g:=g_{1}$. Then there exists $C \in \mathbb{N}$ depending on f and g and $c \in \mathbb{N}$ depending on g such that

$$
f^{*}-D_{k}^{*} \leq \frac{C}{\sqrt[c]{k}} \quad \text { for big } k
$$

Dependance on f can be made explicit. Proof hints to make dependance on g explicit for concrete g.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Theorem (Lasserre). $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$ are increasing sequences that converge to f^{*} and satisfy $D_{k}^{*} \leq P_{k}^{*} \leq f^{*}$. How fast?

Theorem. Suppose $k=1$ and $g:=g_{1}$. Then there exists $C \in \mathbb{N}$ depending on f and g and $c \in \mathbb{N}$ depending on g such that

$$
f^{*}-D_{k}^{*} \leq \frac{C}{\sqrt[c]{k}} \quad \text { for big } k .
$$

In practice: Convergence usually very fast,

$$
\text { often } D_{k}^{*}=P_{k}^{*}=f^{*} \text { for small } k \text {. }
$$

$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Putinar's Positivstellensatz implies convergence of $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and therefore of $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$.

What can we know from Putinar's solution to the moment problem?
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Putinar's Positivstellensatz implies convergence of $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and therefore of $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$.

What can we know from Putinar's solution to the moment problem?
A priori nothing!
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
L(1)=1 \text { and }
$$

$$
L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

Putinar's Positivstellensatz implies convergence of $\left(D_{k}^{*}\right)_{k \in \mathcal{N}}$ and therefore of $\left(P_{k}^{*}\right)_{k \in \mathcal{N}}$.

What can we know from Putinar's solution to the moment problem?
A priori nothing! But with additional compactness arguments involving Tychonoff's Theorem, the following...
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem. Suppose that L_{k} solves $\left(P_{k}\right)$ nearly to optimality $(k \in \mathcal{N})$.

$$
\begin{aligned}
\forall e \in \mathbb{N}: \forall \varepsilon>0: \exists k_{0} \in \mathcal{N} \cap[e, \infty): \forall k \geq k_{0}: \exists \mu \in \mathcal{M}^{1}\left(S^{*}\right): \\
\left\|\left(L_{k}\left(X^{\alpha}\right)-\int X^{\alpha} d \mu\right)_{|\alpha| \leq e}\right\|
\end{aligned} \| \varepsilon .
$$

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem. Suppose that L_{k} solves $\left(P_{k}\right)$ nearly to optimality $(k \in \mathcal{N})$.
$\forall e \in \mathbb{N}: \forall \varepsilon>0: \exists k_{0} \in \mathcal{N} \cap[e, \infty): \forall k \geq k_{0}: \exists \mu \in \mathcal{M}^{1}\left(S^{*}\right):$

$$
\left\|\left(L_{k}\left(X^{\alpha}\right)-\int X^{\alpha} d \mu\right)_{|\alpha| \leq e}\right\|<\varepsilon .
$$

In particular, if $S^{*}=\left\{x^{*}\right\}$ is a singleton,
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem. Suppose that L_{k} solves $\left(P_{k}\right)$ nearly to optimality $(k \in \mathcal{N})$.
$\forall e \in \mathbb{N}: \forall \varepsilon>0: \exists k_{0} \in \mathcal{N} \cap[e, \infty): \forall k \geq k_{0}: \exists \mu \in \mathcal{M}^{1}\left(S^{*}\right):$

$$
\left\|\left(L_{k}\left(X^{\alpha}\right)-\int X^{\alpha} d \mu\right)_{|\alpha| \leq e}\right\|<\varepsilon .
$$

In particular, if $S^{*}=\left\{x^{*}\right\}$ is a singleton, then

$$
\lim _{k \rightarrow \infty}\left(L_{k}\left(X_{1}\right), \ldots, L_{k}\left(X_{n}\right)\right)=x^{*}
$$

$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem (Lasserre). If S has nonempty interior, then $D_{k}^{*}=P_{k}^{*}$.

- "Strong duality"
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem (Lasserre). If S has nonempty interior, then $D_{k}^{*}=P_{k}^{*}$.

- "Strong duality"
- "Weak duality" $D_{k}^{*} \leq P_{k}^{*}$ always holds.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear, $L(1)=1$ and $L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}$

Theorem (Lasserre). If S has nonempty interior, then $D_{k}^{*}=P_{k}^{*}$.

- "Strong duality"
- "Weak duality" $D_{k}^{*} \leq P_{k}^{*}$ always holds.
- Use duality theory from semidefinite programming.
$\left(P_{k}\right) \quad$ minimize $L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

Theorem (Lasserre). If S has nonempty interior, then $D_{k}^{*}=P_{k}^{*}$.

Optimization of polynomials on compact semialgebraic sets SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
Murray Marshall: Optimization of polynomial functions
Canad. Math. Bull. 46, 575-587 (2003)
Jean Lasserre: Global optimization with polynomials and the problem of moments
SIAM J. Optim. 11, No. 3, 796-817 (2001)

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,
- $b \in \mathbb{N}$ the bitsize of the corresponding primal-dual pair of semidefinite programs and

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,
- $b \in \mathbb{N}$ the bitsize of the corresponding primal-dual pair of semidefinite programs and
- $\mathcal{D}:=\left(n, f, m, g_{1}, \ldots, g_{m}\right)$ the problem data.

Then

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,
- $b \in \mathbb{N}$ the bitsize of the corresponding primal-dual pair of semidefinite programs and
- $\mathcal{D}:=\left(n, f, m, g_{1}, \ldots, g_{m}\right)$ the problem data.

Then

- For fixed k, b depends polynomially on the bitsize of \mathcal{D}.

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,
- $b \in \mathbb{N}$ the bitsize of the corresponding primal-dual pair of semidefinite programs and
- $\mathcal{D}:=\left(n, f, m, g_{1}, \ldots, g_{m}\right)$ the problem data.

Then

- For fixed k, b depends polynomially on the bitsize of \mathcal{D}.
- For fixed \mathcal{D}, b depends polynomially on k.

Size of the semidefinite programs

Denote by

- $k \in \mathbb{N}$ the order of relaxation,
- $b \in \mathbb{N}$ the bitsize of the corresponding primal-dual pair of semidefinite programs and
- $\mathcal{D}:=\left(n, f, m, g_{1}, \ldots, g_{m}\right)$ the problem data.

Then

- For fixed k, b depends polynomially on the bitsize of \mathcal{D}.
- For fixed \mathcal{D}, b depends polynomially on k.
- b does not depend polynomially on (\mathcal{D}, k).

Further properties of the method

- Feasible solutions of the semidefinite program corresponding to $\left(D_{k}\right)$ give rise to a lower bound a of f^{*} together with a certificate (advantage) in form of a representation of $f-a$ proving $f-a \in M_{k}$.

Further properties of the method

- Feasible solutions of the semidefinite program corresponding to $\left(D_{k}\right)$ give rise to a lower bound a of f^{*} together with a certificate (advantage) in form of a representation of $f-a$ proving $f-a \in M_{k}$.
- Method converges from below to the infimum (advantage in many applications).

Further properties of the method

- Feasible solutions of the semidefinite program corresponding to $\left(D_{k}\right)$ give rise to a lower bound a of f^{*} together with a certificate (advantage) in form of a representation of $f-a$ proving $f-a \in M_{k}$.
- Method converges from below to the infimum (advantage in many applications).
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set.

Further properties of the method

- Feasible solutions of the semidefinite program corresponding to $\left(D_{k}\right)$ give rise to a lower bound a of f^{*} together with a certificate (advantage) in form of a representation of $f-a$ proving $f-a \in M_{k}$.
- Method converges from below to the infimum (advantage in many applications).
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set.
- If there is a unique minimizer and it lies in the interior of S,

Further properties of the method

- Feasible solutions of the semidefinite program corresponding to $\left(D_{k}\right)$ give rise to a lower bound a of f^{*} together with a certificate (advantage) in form of a representation of $f-a$ proving $f-a \in M_{k}$.
- Method converges from below to the infimum (advantage in many applications).
- Method converges to unique minimizers. Disadvantage: Possibly from outside the set.
- If there is a unique minimizer and it lies in the interior of S, then the method produces a sequence of intervals containing f^{*} whose endpoints converge to f^{*}.

Detecting optimality and extracting solutions

- If L is an optimal solution of $\left(P_{k}\right)$, $x:=\left(L\left(X_{1}\right), \ldots, L\left(X_{n}\right)\right) \in S$ and $L(f)=f(x)$, then $L(f)=P_{k}^{*} \leq f^{*} \leq f(x)=L(f)$

Detecting optimality and extracting solutions

- If L is an optimal solution of $\left(P_{k}\right)$, $x:=\left(L\left(X_{1}\right), \ldots, L\left(X_{n}\right)\right) \in S$ and $L(f)=f(x)$, then $L(f)=P_{k}^{*} \leq f^{*} \leq f(x)=L(f)$, i.e., $L(f)=f(x)=f^{*}$ and therefore $x \in S^{*}$.

Detecting optimality and extracting solutions

- If L is an optimal solution of $\left(P_{k}\right)$, $x:=\left(L\left(X_{1}\right), \ldots, L\left(X_{n}\right)\right) \in S$ and $L(f)=f(x)$, then $L(f)=P_{k}^{*} \leq f^{*} \leq f(x)=L(f)$, i.e., $L(f)=f(x)=f^{*}$ and therefore $x \in S^{*}$.
- If L is an optimal solution of $\left(P_{k}\right)$ which comes from a measure μ on S (criteria of Curto and Fialkow for the truncated S-moment problem), then $L(f)=P_{k}^{*} \leq f^{*} \leq \int f d \mu=L(f)$

Detecting optimality and extracting solutions

- If L is an optimal solution of $\left(P_{k}\right)$, $x:=\left(L\left(X_{1}\right), \ldots, L\left(X_{n}\right)\right) \in S$ and $L(f)=f(x)$, then $L(f)=P_{k}^{*} \leq f^{*} \leq f(x)=L(f)$, i.e., $L(f)=f(x)=f^{*}$ and therefore $x \in S^{*}$.
- If L is an optimal solution of $\left(P_{k}\right)$ which comes from a measure μ on S (criteria of Curto and Fialkow for the truncated S-moment problem), then $L(f)=P_{k}^{*} \leq f^{*} \leq \int f d \mu=L(f)$, i.e., $L(f)=f^{*}$ and $\mu \in \mathcal{M}^{1}\left(S^{*}\right)$.

Curto \& Fialkow: The truncated complex K-moment problem Trans. Am. Math. Soc. 352, No. 6, 2825-2855 (2000)

Detecting optimality and extracting solutions

- If L is an optimal solution of $\left(P_{k}\right)$, $x:=\left(L\left(X_{1}\right), \ldots, L\left(X_{n}\right)\right) \in S$ and $L(f)=f(x)$, then $L(f)=P_{k}^{*} \leq f^{*} \leq f(x)=L(f)$, i.e., $L(f)=f(x)=f^{*}$ and therefore $x \in S^{*}$.
- If L is an optimal solution of $\left(P_{k}\right)$ which comes from a measure μ on S (criteria of Curto and Fialkow for the truncated S-moment problem), then $L(f)=P_{k}^{*} \leq f^{*} \leq \int f d \mu=L(f)$, i.e., $L(f)=f^{*}$ and $\mu \in \mathcal{M}^{1}\left(S^{*}\right)$. Particularly nice is the case where L defines a "flat extension". Then L comes from a measure μ on S and a zero-dimensional polynomial equation system with solution set $\operatorname{supp}(\mu)$ can be extracted.

Curto \& Fialkow: The truncated complex K-moment problem Trans. Am. Math. Soc. 352, No. 6, 2825-2855 (2000)

How to solve the relaxations?
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

- Optimization of a linear function on a convex set.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and

$$
f-a \in M_{k}
$$

- Optimization of a linear function on a convex set. No problem with local minima.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and $f-a \in M_{k}$

- Optimization of a linear function on a convex set. No problem with local minima.
- When going downhill, we could hit the boundary.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and $f-a \in M_{k}$

- Optimization of a linear function on a convex set. No problem with local minima.
- When going downhill, we could hit the boundary. Therefore we need to be able to compute effectively a so called barrier.
$\left(P_{k}\right) \quad$ minimize $\quad L(f)$ subject to $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ is linear,

$$
\begin{aligned}
& L(1)=1 \text { and } \\
& L\left(M_{k}\right) \subseteq \mathbb{R}_{\geq 0}
\end{aligned}
$$

$\left(D_{k}\right)$ maximize $a \quad$ subject to $a \in \mathbb{R}$ and $f-a \in M_{k}$

- Optimization of a linear function on a convex set. No problem with local minima.
- When going downhill, we could hit the boundary. Therefore we need to be able to compute effectively a so called barrier.
- The cone $S \mathbb{R}_{+}^{s \times s}$ of positive semidefinite symmetric matrices has such a barrier function:

$$
X \mapsto-\log \operatorname{det} X
$$

Sums of squares and semidefinite matrices

Let v be a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. " \subseteq "

Sums of squares and semidefinite matrices

Let v be a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. " \subseteq " Suppose $t \in \mathbb{N}$ and $p_{1}, \ldots, p_{t} \in \mathbb{R}[\bar{X}]_{d}$. To show: $\sum_{i=1}^{t} p_{i}^{2}=v^{T} G v$ for some $G \in S \mathbb{R}_{+}^{s \times s}$.

Sums of squares and semidefinite matrices

Let v be a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. " \subseteq " Suppose $t \in \mathbb{N}$ and $p_{1}, \ldots, p_{t} \in \mathbb{R}[\bar{X}]_{d}$. To show:
$\sum_{i=1}^{t} p_{i}^{2}=v^{T} G v$ for some $G \in S \mathbb{R}_{+}^{s \times s}$. Choose a real $t \times s$ matrix A such that p_{1}, \ldots, p_{t} are the entries of the column vector $A v$.

Sums of squares and semidefinite matrices

Let v be a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. " \subseteq " Suppose $t \in \mathbb{N}$ and $p_{1}, \ldots, p_{t} \in \mathbb{R}[\bar{X}]_{d}$. To show:
$\sum_{i=1}^{t} p_{i}^{2}=v^{T} G v$ for some $G \in S \mathbb{R}_{+}^{s \times s}$. Choose a real $t \times s$ matrix A such that p_{1}, \ldots, p_{t} are the entries of the column vector $A v$. Then

$$
\sum_{i=1}^{t} p_{i}^{2}=(A v)^{T} A v=v^{T}(\underbrace{A^{T} A}_{\in S \mathbb{R}_{+}^{s \times s}}) v .
$$

Sums of squares and semidefinite matrices

Let v a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. "Э"

Sums of squares and semidefinite matrices

Let v a column vector of length s whose entries generate the vector space $\mathbb{R}[\bar{X}]_{d}$. Then $\sum \mathbb{R}[\bar{X}]_{d}^{2}=\left\{v^{T} G v \mid G \in S \mathbb{R}_{+}^{s \times s}\right\}$.

Proof. " \supseteq " If $G \in S \mathbb{R}_{+}^{s \times s}$, then $G=\sum_{i=1}^{s} x_{i} x_{i}^{T}$ some column vectors $x_{1}, \ldots, x_{s} \in \mathbb{R}^{s}$. Hence $v^{T} G v=\sum_{i=1}^{s}\left(v^{T} x_{i}\right)\left(x_{i}^{T} v\right)=\sum_{i=1}^{s}\left(x_{i}^{T} v\right)^{2}$.

Shows also that every sum of squares of degree $\leq 2 d$ is a sum of s squares.

Translation into a semidefinite program

The translation of (D_{k}) into a semidefinite program is done by parametrizing sums of squares by Gram matrices like we have just indicated. For $\left(P_{k}\right)$ this is even easier.

Translation into a semidefinite program

The translation of $\left(D_{k}\right)$ into a semidefinite program is done by parametrizing sums of squares by Gram matrices like we have just indicated. For $\left(P_{k}\right)$ this is even easier. To express that a linear map $L: \mathbb{R}[\bar{X}]_{k} \rightarrow \mathbb{R}$ satisfies $L\left(M_{k}\right) \subset \mathbb{R}_{\geq 0}$, one writes down that, for every $i \in\{0, \ldots, m\}$, the matrices representing the following bilinear forms are positive semidefinite:

$$
\mathbb{R}[\bar{X}]_{d_{i}} \times \mathbb{R}[\bar{X}]_{d_{i}} \rightarrow \mathbb{R}:(p, q) \mapsto L\left(p q g_{i}\right) .
$$

The semidefinite programs $\left(P_{k}\right)$ and $\left(D_{k}\right)$ one gets in this way are dual to each other.

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone.

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone. We call an element $u \in K$ an order unit of (E, K) if $\mathbb{Z} u+K=E$.

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone. We call an element $u \in K$ an order unit of (E, K) if $\mathbb{Z} u+K=E$. A vector space homomorphism $\varphi: E \rightarrow \mathbb{R}$ satisfying $\varphi(K) \subseteq \mathbb{R}_{\geq 0}$ and $\varphi(u)=1$ is called state on (E, K, u).

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone. We call an element $u \in K$ an order unit of (E, K) if $\mathbb{Z} u+K=E$. A vector space homomorphism $\varphi: E \rightarrow \mathbb{R}$ satisfying $\varphi(K) \subseteq \mathbb{R}_{\geq 0}$ and $\varphi(u)=1$ is called state on (E, K, u). The set of all these states is then a compact convex subset of R^{E} (equipped with the product topology).

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone. We call an element $u \in K$ an order unit of (E, K) if $\mathbb{Z} u+K=E$. A vector space homomorphism $\varphi: E \rightarrow \mathbb{R}$ satisfying $\varphi(K) \subseteq \mathbb{R}_{\geq 0}$ and $\varphi(u)=1$ is called state on (E, K, u). The set of all these states is then a compact convex subset of R^{E} (equipped with the product topology). Hence, by the Krein-Milman theorem,

$$
S(E, K, u)=\overline{\operatorname{conv}\left(\partial_{e} S(E, K, u)\right)}
$$

where the elements of $\partial_{e} S(E, K, u)$ are called pure states.

Pure states on vector spaces

Let E be a real vector space and $K \subseteq E$ a convex cone. We call an element $u \in K$ an order unit of (E, K) if $\mathbb{Z} u+K=E$. A vector space homomorphism $\varphi: E \rightarrow \mathbb{R}$ satisfying $\varphi(K) \subseteq \mathbb{R}_{\geq 0}$ and $\varphi(u)=1$ is called state on (E, K, u). The set of all these states is then a compact convex subset of R^{E} (equipped with the product topology). Hence, by the Krein-Milman theorem,

$$
S(E, K, u)=\overline{\operatorname{conv}\left(\partial_{e} S(E, K, u)\right)}
$$

where the elements of $\partial_{e} S(E, K, u)$ are called pure states. A state $\varphi \in S(E, K, u)$ is pure if for all $\varphi_{1}, \varphi_{2} \in S(E, K, u)$,

$$
\varphi=\frac{\varphi_{1}+\varphi_{2}}{2} \Longrightarrow \varphi=\varphi_{1}=\varphi_{2}
$$

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

Definition. Let A be a commutative ring. A subset $M \subseteq A$ is called quadratic module of A if $1 \in M, M+M \subseteq M$ and $A^{2} M \subseteq M$.

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

Definition. Let A be a commutative ring. A subset $M \subseteq A$ is called quadratic module of A if $1 \in M, M+M \subseteq M$ and $A^{2} M \subseteq M$. It is called archimedean if $\mathbb{Z}+M=A$.

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

Definition. Let A be a commutative ring. A subset $M \subseteq A$ is called quadratic module of A if $1 \in M, M+M \subseteq M$ and $A^{2} M \subseteq M$. It is called archimedean if $\mathbb{Z}+M=A$.

Theorem (yet unpublished).
If M is an archimedean quadratic module of A, then
$\partial_{e} S(A, M, 1)=\left\{\varphi \mid \varphi: A \rightarrow \mathbb{R}\right.$ ring homomorphism, $\left.\varphi(M) \subseteq \mathbb{R}_{\geq 0}\right\}$.

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

Definition. Let A be a commutative ring. A subset $M \subseteq A$ is called quadratic module of A if $1 \in M, M+M \subseteq M$ and $A^{2} M \subseteq M$. It is called archimedean if $\mathbb{Z}+M=A$.

Corollary (Jacobi, see the book of Prestel \& Delzell).
Let M be an archimedean quadratic module of A. Suppose $f \in A$ such that $\varphi(f)>0$ for all ring homomorphisms $\varphi: A \rightarrow \mathbb{R}$ with $\varphi(M) \subseteq \mathbb{R}_{\geq 0}$. Then $f \in M$.

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

What to do if $\varphi(f)=0$ for some $\varphi \in \partial_{e} S(E, K, u)$?

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

What to do if $\varphi(f)=0$ for some $\varphi \in \partial_{e} S(E, K, u)$?

Example. Is it true that for $f \in \mathbb{R}[X]$,
$f>0$ on $(0,1] \Longrightarrow f \in M:=\sum \mathbb{R}[X]^{2}+\sum \mathbb{R}[X]^{2} X+\sum \mathbb{R}[X]^{2}(1-X) ?$
Problem: M is archimedean but if we take
$(E, K, u):=(\mathbb{R}[X, Y], M, 1)$, we get $\partial_{e} S(E, K, u)=[0,1]$.

Pure states

Theorem. Let E be a real vector space, $K \subseteq E$ be a convex cone with order unit u. Then for every $f \in E$,

$$
\varphi(f)>0 \text { for all } \varphi \in \partial_{e} S(E, K, u) \Longrightarrow f \in K
$$

What to do if $\varphi(f)=0$ for some $\varphi \in \partial_{e} S(E, K, u)$?

Example. Is it true that for $f \in \mathbb{R}[X]$,
$f>0$ on $(0,1] \Longrightarrow f \in M:=\sum \mathbb{R}[X]^{2}+\sum \mathbb{R}[X]^{2} X+\sum \mathbb{R}[X]^{2}(1-X) ?$
Problem: M is archimedean but if we take
$(E, K, u):=(\mathbb{R}[X, Y], M, 1)$, we get $\partial_{e} S(E, K, u)=[0,1]$.
Solution: If we take $(E, K, u):=\left(\left(X^{k}\right), M \cap\left(X^{k}\right), X^{k}\right)$, then

$$
\partial_{e} S(E, K, u)=\left\{p \mapsto \frac{d^{k} p}{d X^{k}}(0)\right\} \cup(0,1]
$$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that $f>0$ on $S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ with x_{i} in the interior of S.

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that
$f>0$ on $S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ with x_{i} in the interior of S.
Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that
$f>0$ on $S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ with x_{i} in the interior of S.
Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and for all $\varphi \in \partial_{e} S(I, M \cap I, u)$,

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and for all $\varphi \in \partial_{e} S(I, M \cap I, u)$,

- either there is $x \in S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ such that

$$
\varphi(p)=\quad p(x) \quad \text { for all } p \in I
$$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and for all $\varphi \in \partial_{e} S(I, M \cap I, u)$,

- either there is $x \in S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ such that

$$
\varphi(p)=\quad p(x) \quad \text { for all } p \in I
$$

- or for some $i \in\{1, \ldots, n\}$ and $v \in S^{n-1} \backslash\{0\}$,

$$
\varphi(p)=\quad D^{2} p\left(x_{i}\right)(v, v) \quad \text { for all } p \in I
$$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and for all $\varphi \in \partial_{e} S(I, M \cap I, u)$,

- either there is $x \in S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ such that

$$
\varphi(p)=\frac{p(x)}{\prod_{i=1}^{k}\left\|x-x_{i}\right\|^{2}} \quad \text { for all } p \in I
$$

- or for some $i \in\{1, \ldots, n\}$ and $v \in S^{n-1} \backslash\{0\}$,

$$
\varphi(p)=\quad D^{2} p\left(x_{i}\right)(v, v) \quad \text { for all } p \in I
$$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and for all $\varphi \in \partial_{e} S(I, M \cap I, u)$,

- either there is $x \in S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ such that

$$
\varphi(p)=\frac{p(x)}{\prod_{i=1}^{k}\left\|x-x_{i}\right\|^{2}} \quad \text { for all } p \in I
$$

- or for some $i \in\{1, \ldots, n\}$ and $v \in S^{n-1} \backslash\{0\}$,

$$
\varphi(p)=\frac{D^{2} p\left(x_{i}\right)(v, v)}{2 \prod_{j \neq i}^{k}\left\|x_{i}-x_{j}\right\|^{2}} \quad \text { for all } p \in I
$$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and

$$
" \partial_{e} S(I, M \cap I, u)=\left(S \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right) \cup \bigcup_{i=1}^{k}\left(x_{i}+\mathbb{P}^{n-1}\right) . "
$$

Corollary (Scheiderer). In addition to the blue part of the above theorem, suppose that the Hessian of f in every point x_{i} is positive definite. Then $f \in M$.

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and

$$
" \partial_{e} S(I, M \cap I, u)=\left(S \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right) \cup \bigcup_{i=1}^{k}\left(x_{i}+\mathbb{P}^{n-1}\right) . "
$$

Corollary (Scheiderer). In addition to the blue part of the above theorem, suppose that the Hessian of f in every point x_{i} is positive definite. Then $f \in M$.
Proof. Note that $f \in I . \quad \square$

Pure states on ideals

Theorem (joint work with Sabine Burgdorf). Suppose $M:=\sum_{i=0}^{m} \mathbb{R}[\bar{X}]^{2} g_{i}$ is archimedean where $g_{i} \in \mathbb{R}[\bar{X}]$ and $g_{0}:=1$. Set $S:=\left\{g_{i} \geq 0\right\}$ and suppose $f \in \mathbb{R}[\bar{X}]$ such that

$$
f>0 \text { on } S \backslash\left\{x_{1}, \ldots, x_{k}\right\} \text { with } x_{i} \text { in the interior of } S .
$$

Set $I:=I_{x_{1}}^{2} \cdots I_{x_{k}}^{2}=I_{x_{1}}^{2} \cap \ldots$ and $u:=\prod_{i} \sum_{j}\left(X_{j}-x_{i j}\right)^{2}$. Then u is an order unit of $(I, M \cap I)$ and

$$
" \partial_{e} S(I, M \cap I, u)=\left(S \backslash\left\{x_{1}, \ldots, x_{k}\right\}\right) \cup \bigcup_{i=1}^{k}\left(x_{i}+\mathbb{P}^{n-1}\right) . "
$$

Corollary (Scheiderer). In addition to the blue part of the above theorem, suppose that the Hessian of f in every point x_{i} is positive definite. Then $f \in M$.
Claus Scheiderer: Distinguished representations of non-negative. . . http://www.uni-duisburg.de/FB11/FGS/F1/claus.html

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$,

$$
f+\varepsilon \sum_{i=1}^{n} \quad e^{X_{i}^{2}} \in \sum \mathbb{R}[\bar{X}]^{2}
$$

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
f+\varepsilon \sum_{i=1}^{n} \sum_{k=0}^{N} \frac{X_{i}^{2 k}}{k!} \in \sum \mathbb{R}[\bar{X}]^{2}
$$

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
f+\varepsilon \sum_{i=1}^{n} \sum_{k=0}^{N} \frac{X_{i}^{2 k}}{k!} \in \sum \mathbb{R}[\bar{X}]^{2}
$$

Jean Lasserre: A sum of squares approximation of nonnegative polynomials http://front.math.ucdavis.edu/math.AG/0412398

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
f+\varepsilon \sum_{i=1}^{n} \sum_{k=0}^{N} \frac{X_{i}^{2 k}}{k!} \in \sum \mathbb{R}[\bar{X}]^{2}
$$

Theorem (Netzer). $N=N\left(n, \operatorname{deg} f,\|f\|_{\infty}, \varepsilon\right)$

Jean Lasserre: A sum of squares approximation of nonnegative polynomials http://front.math.ucdavis.edu/math.AG/0412398

New ideas I. High degree perturbations

Theorem (Lasserre). For every $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, the following are equivalent:
(i) $f \geq 0$ on \mathbb{R}^{n}
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
f+\varepsilon \sum_{i=1}^{n} \sum_{k=0}^{N} \frac{X_{i}^{2 k}}{k!} \in \sum \mathbb{R}[\bar{X}]^{2}
$$

Theorem (Netzer). $N=N\left(n, \operatorname{deg} f,\|f\|_{\infty}, \varepsilon\right)$
Tim Netzer: High degree perturbation of nonnegative polynomials, Diplomarbeit Universität Konstanz
Jean Lasserre: A sum of squares approximation of nonnegative polynomials
http://front.math.ucdavis.edu/math.AG/0412398

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\} \quad$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Proof sketch. Use that each of the finitely many irreducible components of $\{\nabla f=0\}$ is in a good way path-connected

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\} \quad$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Proof sketch. Use that each of the finitely many irreducible components of $\{\nabla f=0\}$ is in a good way path-connected to show that f is constant on each of these components.

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\} \quad$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Proof sketch. Use that each of the finitely many irreducible components of $\{\nabla f=0\}$ is in a good way path-connected to show that f is constant on each of these components. Alternatively, use algebraic arguments of Scheiderer (yet unpublished).

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\} \quad$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Proof sketch. Use that each of the finitely many irreducible components of $\{\nabla f=0\}$ is in a good way path-connected to show that f is constant on each of these components. Alternatively, use algebraic arguments of Scheiderer (yet unpublished). Now, for example, if there is only one component and it has real point, then $f=(\sqrt{f})^{2}$.

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

In any case, if $f>0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

In any case, if $f>0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Method is good when f attains a minimum in \mathbb{R}^{n} since then

$$
f>0 \text { on } \mathbb{R}^{n} \Longrightarrow f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f) \Longrightarrow f \geq 0 \text { on } \mathbb{R}^{n} .
$$

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f) .
$$

In any case, if $f>0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f) .
$$

Otherwise, the second implication might badly fail:

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f) .
$$

In any case, if $f>0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f) .
$$

Otherwise, the second implication might badly fail:
For $f:=(1-X Y)^{2}+X^{2}+(X+1)^{2}$, we have

$$
\{\nabla f=0\}=\emptyset \quad \text { whence } \quad(\nabla f)=\mathbb{R}[\bar{X}] .
$$

New ideas II. Gradient varieties

Definition. For $f \in \mathbb{R}[\bar{X}]$, define

- its gradient variety $\{\nabla f=0\}:=\left\{x \in \mathbb{C}^{n} \mid \nabla f(x)=0\right\}$ and
- its gradient ideal $(\nabla f):=\left(\frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$.

Theorem (Nie, Demmel, Sturmfels).
If (∇f) is a radical ideal and $f \geq 0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

In any case, if $f>0$ on $\{\nabla f=0\} \cap \mathbb{R}^{n}$, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+(\nabla f)
$$

Nie, Demmel, Sturmfels: Minimizing Polynomials via Sum of Squares over the Gradient Ideal
http://front.math.ucdavis.edu/math.0C/0411342

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

The proof relies on two non-trivial ingredients:

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

The proof relies on two non-trivial ingredients:

- A polynomial $f \in \mathbb{R}[\bar{X}]$ takes on any of its tentacles only finitely many "asymptotic values at infinity".

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.
First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

The proof relies on two non-trivial ingredients:

- A polynomial $f \in \mathbb{R}[\bar{X}]$ takes on any of its tentacles only finitely many "asymptotic values at infinity".
- Therefore, my generalization of Schmüdgen's Theorem yields: If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

Second Theorem (follows from Kurdyka, Orro \& Simon). If f is bounded from below and $f \geq 0$ on all its gradient tentacles, then $f \geq 0$ on \mathbb{R}^{n}.

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.

First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

Second Theorem (follows from Kurdyka, Orro \& Simon).
If f is bounded from below and $f \geq 0$ on all its gradient tentacles, then $f \geq 0$ on \mathbb{R}^{n}.

The analogue of the Second Theorem for the gradient variety is false:

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.
First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

Second Theorem (follows from Kurdyka, Orro \& Simon).
If f is bounded from below and $f \geq 0$ on all its gradient tentacles, then $f \geq 0$ on \mathbb{R}^{n}.

The analogue of the Second Theorem for the gradient variety is false: The gradient variety of $(1-X Y)^{2}+X^{2}-1$ is $\{0\}$.

New ideas III. Gradient tentacles

Definition. For $f \in \mathbb{R}[\bar{X}]$, define its N-th gradient tentacle for $N \in \mathbb{N}_{\geq 1}$ by $\left\{x \in \mathbb{R}^{n} \left\lvert\,\|\nabla f(x)\|\|x\|^{1+\frac{1}{N}} \leq 1\right.\right\}$.
First Theorem (manuscript in preparation). If $f>0$ on its N-th gradient tentacle, then

$$
f \in \sum \mathbb{R}[\bar{X}]^{2}+\sum \mathbb{R}[\bar{X}]^{2}\left(1-\|\nabla f\|^{2 N}\|X\|^{2(N+1)}\right)
$$

Second Theorem (follows from Kurdyka, Orro \& Simon).
If f is bounded from below and $f \geq 0$ on all its gradient tentacles, then $f \geq 0$ on \mathbb{R}^{n}.

The analogue of the Second Theorem for the gradient variety is false: The gradient variety of $(1-X Y)^{2}+X^{2}-1$ is $\{0\}$.

On the other hand, we have countably many tentacles instead of just one gradient variety.

