The sums of squares dual of a semidefinite program (joint work with Igor Klep)

Markus Schweighofer

Universität Konstanz

Polynomial Optimization and Semidefinite Programming Nonlinear Programming 21st International Symposium on Mathematical Programming TU Berlin August 19 - 24, 2012

(P) minimize
$$c_1 x_1 + \dots + c_n x_n$$

subject to $x \in \mathbb{R}^n$
 $A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0$

$$(P) \quad \begin{array}{ll} \text{minimize} & c_1 x_1 + \dots + c_n x_n \\ \text{subject to} & x \in \mathbb{R}^n \\ & A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize
$$-tr(A_0S)$$

subject to $S \in S\mathbb{R}^{m \times m}$
 $S \succeq 0$
 $tr(A_1S) = c_1, \dots, tr(A_nS) = c_n$

(P) minimize
$$c_0 + c_1 x_1 + \dots + c_n x_n$$

subject to $x \in \mathbb{R}^n$
 $A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0$

(D) maximize
$$c_0 - tr(A_0S)$$

subject to $S \in S\mathbb{R}^{m \times m}$
 $S \succeq 0$
 $tr(A_1S) = c_1, \dots, tr(A_nS) = c_n$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize
$$c_0 - tr(A_0S)$$

subject to $S \in S\mathbb{R}^{m \times m}$
 $S \succeq 0$
 $tr(A_1S) = c_1, \dots, tr(A_nS) = c_n$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $\operatorname{tr}(A_1S) = c_1, \dots, \operatorname{tr}(A_nS) = c_n$
 $c_0 - \operatorname{tr}(A_0S) = a$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $\operatorname{tr}(A_1S) = c_1, \dots, \operatorname{tr}(A_nS) = c_n$
 $c_0 - a = \operatorname{tr}(A_0S)$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $c_1 = tr(A_1S), \dots, c_n = tr(A_nS)$
 $c_0 - a = tr(A_0S)$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $c_0 - a + c_1 X_1 + \dots + c_n X_n =$
 $\operatorname{tr}(A_0 S) + X_1 \operatorname{tr}(A_1 S) + \dots + X_n \operatorname{tr}(A_n S)$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $c_0 + c_1 X_1 + \dots + c_n X_n - a =$
 $\operatorname{tr}(A_0 S + X_1 A_1 S + \dots + X_n A_n S)$

$$(P) \quad \begin{array}{l} \text{minimize} \quad c_0 + c_1 x_1 + \dots + c_n x_n \\ \text{subject to} \quad x \in \mathbb{R}^n \\ \quad A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $c_0 + c_1X_1 + \dots + c_nX_n - a =$
 $tr((A_0 + X_1A_1 + \dots + X_nA_n)S)$

(P) minimize
$$c_0 + c_1 x_1 + \dots + c_n x_n$$

subject to $x \in \mathbb{R}^n$
 $A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $c_0 + c_1X_1 + \dots + c_nX_n - a =$
 $\operatorname{tr}((A_0 + X_1A_1 + \dots + X_nA_n)S)$

A semidefinite program (P) and its standard dual (D) is given by $A_0, \ldots, A_n \in S\mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$\begin{array}{ll} (P) & \text{minimize} & \ell(x) \\ & \text{subject to} & x \in \mathbb{R}^n \\ & A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a subject to $S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\ell - a =$ tr($(A_0 + X_1A_1 + \dots + X_nA_n)S$)

A semidefinite program (P) and its standard dual (D) is given by $A_0, \ldots, A_n \in S\mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$\begin{array}{ll} (P) & \text{minimize} & \ell(x) \\ & \text{subject to} & x \in \mathbb{R}^n \\ & & A_0 + x_1 A_1 + \dots + x_n A_n \succeq 0 \end{array}$$

(D) maximize a subject to $S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\ell - a =$ tr($(A_0 + X_1A_1 + \dots + X_nA_n)S$)

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$\begin{array}{ll} (P) & \text{minimize} & \ell(x) \\ & \text{subject to} & x \in \mathbb{R}^n \\ & L(x) \succeq 0 \end{array}$$

(D) maximize a subject to $S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\ell - a =$ tr(LS)

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$\begin{array}{ll} (P) & \text{minimize} & \ell(x) \\ & \text{subject to} & x \in \mathbb{R}^n \\ & L(x) \succeq 0 \end{array}$$

(D) maximize a
subject to
$$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$$

 $S \succeq 0$
 $\ell - a = tr(LS)$

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

 $\begin{array}{ll} (P) & \text{minimize} & \ell(x) \\ & \text{subject to} & x \in \mathbb{R}^n \\ & L(x) \succeq 0 \end{array}$

(D) maximize a subject to $S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\ell - a = tr(LS)$

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

 $(P) \quad \begin{array}{c|c} \text{minimize} & \ell(x) \\ \text{subject to} & x \in \mathbb{R}^n \\ & L(x) \succeq 0 \end{array} \quad (D) \quad \begin{array}{c} \text{maximize} & a \\ \text{subject to} & S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0 \\ & \ell - a = \operatorname{tr}(LS) \end{array}$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(D)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables and $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ the ring of polynomials in these variables.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m imes m}, a \in \mathbb{R}$
		$L(x) \succeq 0$			<u>S</u> ≽ 0
					$\ell - a = tr(LS)$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables and $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[X]$ linear if it is of degree at most 1,

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(D)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<u>S</u> ≽ 0
					$\ell - a = tr(LS)$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables and $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_0, c_1, \ldots, c_n \in \mathbb{R}$ such that $\ell = c_0 + c_1 X_1 + \cdots + c_n X_n$.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<u>S</u> ≽ 0
					$\ell - a = tr(LS)$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables and $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_0, c_1, \ldots, c_n \in \mathbb{R}$ such that $\ell = c_0 + c_1 X_1 + \cdots + c_n X_n$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear,

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<u>S</u> ≽ 0
					$\ell - a = tr(LS)$

Throughout the talk, $\underline{X} = (X_1, \dots, X_n)$ denotes a tuple of *n* variables and $\mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_0, c_1, \ldots, c_n \in \mathbb{R}$ such that $\ell = c_0 + c_1 X_1 + \cdots + c_n X_n$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear, i.e., there are $A_0, A_1, \ldots, A_n \in S\mathbb{R}^{m \times m}$ such that $L = A_0 + X_1A_1 + \cdots + X_nA_n$.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$(P) \quad \begin{array}{c|c} \text{minimize} & \ell(x) \\ \text{subject to} & x \in \mathbb{R}^n \\ & L(x) \succeq 0 \end{array} \quad (D) \quad \begin{array}{c} \text{maximize} & a \\ \text{subject to} & S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0 \\ & \ell - a = \operatorname{tr}(LS) \end{array}$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(D)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(x) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^*, D^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ the optimal values of (P) and (D) respectively.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(x) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^*, D^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has non-empty interior.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(x) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^*, D^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^* = D^*$ (zero gap).

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m \times m}, a \in \mathbb{R}$
		$L(x) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<u>S</u> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(<i>P</i>)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[X]^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			<mark>S</mark> ≽ 0
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(P)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[X]^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			S sos-matrix
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(P)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[X]^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			S sos-matrix
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S(x)) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(P)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[X]^{m \times m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			S sos-matrix
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S(x)) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(P)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[\underline{X}]^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			S sos-matrix
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S(x)) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^*, D^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the teasible set $\mathcal{A}(\mathbb{R})$ has non-empty interior. Then $P^* = D^*$ (zero gap). Moreover, if $P^* = D^* \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment)

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

(P)	minimize	$\ell(\mathbf{x})$	(<i>D</i>)	maximize	а
	subject to	$x \in \mathbb{R}^n$		subject to	$S \in S\mathbb{R}[\underline{X}]^{m imes m}, a \in \mathbb{R}$
		$L(\mathbf{x}) \succeq 0$			S sos-matrix
					$\ell - a = tr(LS)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \ge a$. Indeed, $\ell(x) - a = tr(L(x)S(x)) \ge 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^*, D^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the teasible set $\mathcal{A}(\mathbb{R})$ has non-empty interior. Then $P^* = D^*$ (zero gap). Moreover, if $P^* = D^* \in \mathbb{R}$, then (R) attains the common optimal value (dual attainment)

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i) $S = P^*P$ for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,

(ii) $S = \sum_{i=1}^{r} Q_i^* Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S = \sum_{i=1}^r Q_i^*Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S = \sum_{i=1}^t w_i w_i^*$ for some $t \in \mathbb{N}_0$ and $w_i \in \mathbb{R}[\underline{X}]^m$.

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S = \sum_{i=1}^r Q_i^*Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S = \sum_{i=1}^t w_i w_i^*$ for some $t \in \mathbb{N}_0$ and $w_i \in \mathbb{R}[\underline{X}]^m$.

Remark: The convex cone of sos-matrices of degree at most 2d is semidefinitely representable. This is a generalization due to Kojima and Hol & Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}] = \mathbb{R}[\underline{X}]^{1 \times 1}$.

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S = \sum_{i=1}^r Q_i^*Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S = \sum_{i=1}^t w_i w_i^*$ for some $t \in \mathbb{N}_0$ and $w_i \in \mathbb{R}[\underline{X}]^m$.

Remark: The convex cone of sos-matrices of degree at most 2*d* is semidefinitely representable. This is a generalization due to Kojima and Hol & Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}] = \mathbb{R}[\underline{X}]^{1 \times 1}$. In other words, being an sos-matrix of degree at most 2*d* can be expressed as a constraint of a semidefinite program by means of additional variables.

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S = \sum_{i=1}^r Q_i^*Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S = \sum_{i=1}^t w_i w_i^*$ for some $t \in \mathbb{N}_0$ and $w_i \in \mathbb{R}[\underline{X}]^m$.

Remark: The convex cone of sos-matrices of degree at most 2*d* is semidefinitely representable. This is a generalization due to Kojima and Hol & Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}] = \mathbb{R}[\underline{X}]^{1\times 1}$. In other words, being an sos-matrix of degree at most 2*d* can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on *d* for fixed *n*.

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

(i)
$$S = P^*P$$
 for some $s \in \mathbb{N}_0$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S = \sum_{i=1}^r Q_i^*Q_i$ for some $r \in \mathbb{N}_0$ and $Q_i \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S = \sum_{i=1}^t w_i w_i^*$ for some $t \in \mathbb{N}_0$ and $w_i \in \mathbb{R}[\underline{X}]^m$.

Remark: The convex cone of sos-matrices of degree at most 2d is semidefinitely representable. This is a generalization due to Kojima and Hol & Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}] = \mathbb{R}[\underline{X}]^{1\times 1}$. In other words, being an sos-matrix of degree at most 2d can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on *n* for fixed *d*.

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent: (i) $S_L := \{x \in \mathbb{R}^n \mid L(x) \succeq 0\}$ has empty interior.

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:

(i) $S_L := \{x \in \mathbb{R}^n \mid L(x) \succeq 0\}$ has empty interior.

(ii) S_L is contained in a hyperplane of \mathbb{R}^n .

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:

(i) $S_L := \{x \in \mathbb{R}^n \mid L(x) \succeq 0\}$ has empty interior.

- (ii) S_L is contained in a hyperplane of \mathbb{R}^n .
- (iii) There exists a linear polynomial $\ell \in \mathbb{R}[\underline{X}] \setminus \{0\}$ and a quadratic sos-matrix $S \in \mathbb{R}[\underline{X}]^{m \times m}$ such that

$$\ell^2 + \operatorname{tr}(LS) = 0$$

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:

- (i) $S_L := \{x \in \mathbb{R}^n \mid L(x) \succeq 0\}$ has empty interior.
- (ii) S_L is contained in a hyperplane of \mathbb{R}^n .
- (iii) There exists a linear polynomial $\ell \in \mathbb{R}[\underline{X}] \setminus \{0\}$ and a quadratic sos-matrix $S \in \mathbb{R}[\underline{X}]^{m \times m}$ such that

$$\ell^2 + \operatorname{tr}(LS) = 0$$

(certifying $S_L \subseteq \{x \in \mathbb{R}^n \mid \ell(x) = 0\}$).

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:

(i) $f \ge 0$ on S_L

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:

(i) $f \geq 0$ on S_L

(ii) There exist linear polynomials $\ell_1, \ldots, \ell_n \in \mathbb{R}[\underline{X}]$,

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:

- (i) $f \ge 0$ on S_L
- (ii) There exist linear polynomials $\ell_1, \ldots, \ell_n \in \mathbb{R}[\underline{X}]$, quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$,

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:

- (i) $f \ge 0$ on S_L
- (ii) There exist linear polynomials $\ell_1, \ldots, \ell_n \in \mathbb{R}[X]$, quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[X]^{m \times m}$, a positive semidefinite matrix $S \in \mathbb{R}^{m \times m}$,

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:

- (i) $f \ge 0$ on S_L
- (ii) There exist linear polynomials $\ell_1, \ldots, \ell_n \in \mathbb{R}[\underline{X}]$, quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$, a positive semidefinite matrix $S \in \mathbb{R}^{m \times m}$, and a nonnegative constant $c \in \mathbb{R}$ such that

$$\ell_i^2 + \operatorname{tr}(LS_i) \in (\ell_1, \dots, \ell_{i-1}) \text{ for } i \in \{1, \dots, n\}$$

$$f - c - \operatorname{tr}(LS) \in (\ell_1, \dots, \ell_n)$$

$$\overrightarrow{X_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1X_2 & \dots & X_n^d \end{bmatrix}^*$$

$$\overrightarrow{x_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1X_2 & \dots & X_n^d \end{bmatrix}^*$$

Theorem: Set $m := m_1$ and $k := m_2$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \ge 0$ on S_L if and only if there exist

$$\overrightarrow{x_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1X_2 & \dots & X_n^d \end{bmatrix}^*$$

Theorem: Set $m := m_1$ and $k := m_2$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \ge 0$ on S_L if and only if there exist

• quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$, $S \in \mathbb{R}_{\succ 0}^{m \times m}$,

$$\overrightarrow{x_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1 X_2 & \dots & X_n^d \end{bmatrix}^*$$

Theorem: Set $m := m_1$ and $k := m_2$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \ge 0$ on S_L if and only if there exist

• quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$, $S \in \mathbb{R}_{\succ 0}^{m \times m}$,

▶ matrices
$$U_1, \ldots, U_n \in S \mathbb{R}^{m \times m}$$
,

$$\overrightarrow{x_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1 X_2 & \dots & X_n^d \end{bmatrix}^*$$

Theorem: Set $m := m_1$ and $k := m_2$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \ge 0$ on S_L if and only if there exist

- quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$, $S \in \mathbb{R}_{\succ 0}^{m \times m}$,
- ▶ matrices $U_1, ..., U_n \in S\mathbb{R}^{m \times m}, W_1, ..., W_n \in \mathbb{R}^{k \times m}$ and

$$\overrightarrow{X_d} := \begin{bmatrix} 1 & X_1 & X_2 & \dots & X_n & X_1^2 & X_1X_2 & \dots & X_n^d \end{bmatrix}^*$$

Theorem: Set $m := m_1$ and $k := m_2$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \ge 0$ on S_L if and only if there exist

- quadratic sos-matrices $S_1, \ldots, S_n \in \mathbb{R}[\underline{X}]^{m \times m}$, $S \in \mathbb{R}_{\succ 0}^{m \times m}$,
- ▶ matrices $U_1, \ldots, U_n \in S \mathbb{R}^{m \times m}$, $W_1, \ldots, W_n \in \mathbb{R}^{k \times m}$ and
- ▶ a real number a ≥ 0

such that

$$\overrightarrow{x_1}^* U_i \overrightarrow{x_1} + \overrightarrow{x_2}^* W_{i-1} \overrightarrow{x_1} + tr(LS_i) = 0 \qquad (i \in \{1, \dots, n\}), \\ U_i \succeq W_i^* W_i \qquad (i \in \{1, \dots, n\}), \\ \ell + \overrightarrow{x_2}^* W_n \overrightarrow{x_1} = a + tr(LS)$$

where $W_0 := 0 \in \mathbb{R}^{k \times m}$.

An exact duality theory for SDP based on sums of squares This provides a duality theory for semidefinite programming where strong duality (zero gap & dual attainment) always holds and the size of the dual is polynomial in the size of the primal. Based on other ideas, such a duality theory has also been given by Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and its complexity implications Math. Programming 77 (1997), no. 2, Ser. B, 129–162 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 47.8540&rep=rep1&type=pdf http://dx.doi.org/10.1007/BF02614433

Ramana & Tunçel & Wolkowicz: Strong duality for semidefinite
programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation).

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively.

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

Theorem: For each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent: (i) There is no $x \in \mathbb{R}^n$ such that $L(x) \succeq 0$.

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

Theorem: For each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:

(i) There is no
$$x \in \mathbb{R}^n$$
 such that $L(x) \succeq 0$.

(ii) There are an sos-polynomial
$$s \in \mathbb{R}[\underline{X}]$$
 and
an sos-matrix $S \in \mathbb{R}[\underline{X}]^{m \times m}$
both of degree at most min $\{m - 1, n\}$ such that

 $-1 = s + \operatorname{tr}(LS).$

An exact duality theory for SDP based on sums of squares This provides a duality theory for semidefinite programming where strong duality (zero gap & dual attainment) always holds and the size of the dual is polynomial in the size of the primal. Based on other ideas, such a duality theory has also been given by Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and its complexity implications Math. Programming 77 (1997), no. 2, Ser. B, 129–162 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 47.8540&rep=rep1&type=pdf http://dx.doi.org/10.1007/BF02614433

Ramana & Tunçel & Wolkowicz: Strong duality for semidefinite
programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

Klep & S.: An exact duality theory for semidefinite programming based on sums of squares http://arxiv.org/abs/1207.1691

Thank you!