The sums of squares dual of a semidefinite program (joint work with Igor Klep)

Markus Schweighofer

Universität Konstanz

Polynomial Optimization and Semidefinite Programming Nonlinear Programming
21st International Symposium on Mathematical Programming TU Berlin
August 19-24, 2012

Standard SDP duality

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $-\operatorname{tr}\left(A_{0} S\right)$ subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0
$$

$$
\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-\operatorname{tr}\left(A_{0} S\right)=a$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$ $c_{1}=\operatorname{tr}\left(A_{1} S\right), \ldots, c_{n}=\operatorname{tr}\left(A_{n} S\right)$
$c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0\end{array}$
$c_{0}-a+c_{1} X_{1}+\cdots+c_{n} X_{n}=$ $\operatorname{tr}\left(A_{0} S\right)+X_{1} \operatorname{tr}\left(A_{1} S\right)+\cdots+X_{n} \operatorname{tr}\left(A_{n} S\right)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succ 0\end{array}$

$$
\begin{aligned}
& c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a= \\
& \operatorname{tr}\left(A_{0} S+X_{1} A_{1} S+\cdots+X_{n} A_{n} S\right)
\end{aligned}
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succ 0\end{array}$

$$
\begin{aligned}
& c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a= \\
& \operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)
\end{aligned}
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succ 0\end{array}$

$$
\begin{aligned}
& S \succeq 0 \\
& c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a= \\
& \operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)
\end{aligned}
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0\end{array}$ $\ell-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a $\begin{array}{ll}\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0\end{array}$ $\ell-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$
$\ell-a=$
$\operatorname{tr}(L S)$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$
$L(x) \succeq 0$
(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{cl}
(P) \quad \begin{aligned}
\text { minimize } & \ell(x) \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
\end{array}
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & (D) \quad \text { maximize } & a \\
\text { subject to } & x \in \mathbb{R}^{n} & & \text { subject to } \\
& L(x) \succeq 0 & & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& & & \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 ,

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0 \\
& \text { (D) maximize a } \\
& \text { subject to } \quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{aligned}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 , i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & (D) \quad \text { maximize } & a \\
\text { subject to } & x \in \mathbb{R}^{n} & & \text { subject to } \\
& L(x) \succeq 0 & & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& & & \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 , i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear,

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|ll}
\text { minimize } & \ell(x) & \left.(D) \quad \begin{array}{rl}
\text { maximize } & a \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{array} \left\lvert\, \begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}\right.\right)=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 , i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear, i.e., there are $A_{0}, A_{1}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ such that $L=A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}$.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior.

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap).

Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R}$ S sos-matrix
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R}$ S sos-matrix
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S(x)) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R}$ S sos-matrix
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S(x)) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set $A_{A}(R)$ Has nonempty interior Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R}$ S sos-matrix
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S(x)) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values
 empty interior, Then $P^{*}=D^{*}$ (zero gap). Moreover, 这 $P^{*}=D^{*} \in \mathbb{R}$, ther (B) attains the common optinat vatue (duat attainment)

A tentative sums of squares SDP duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}[\underline{X}]^{m \times m}, a \in \mathbb{R}$ S sos-matrix $\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S(x)) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values
 empty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (8) attains the common optinal vatue (duat attainment)

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable. This is a generalization due to Kojima and Hol \& Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$.

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable. This is a generalization due to Kojima and Hol \& Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables.

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[X]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable. This is a generalization due to Kojima and Hol \& Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on d for fixed n.

Sums of squares matrices

Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[X]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable. This is a generalization due to Kojima and Hol \& Scherer of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on n for fixed d.

Sums of squares certificates of low-dimensionality

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) $S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}$ has empty interior.

Sums of squares certificates of low-dimensionality

Theorem: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) $S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}$ has empty interior.
(ii) S_{L} is contained in a hyperplane of \mathbb{R}^{n}.

Sums of squares certificates of low-dimensionality

Theorem: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) $S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}$ has empty interior.
(ii) S_{L} is contained in a hyperplane of \mathbb{R}^{n}.
(iii) There exists a linear polynomial $\ell \in \mathbb{R}[\underline{X}] \backslash\{0\}$ and a quadratic sos-matrix $S \in \mathbb{R}[\underline{X}]^{m \times m}$ such that

$$
\ell^{2}+\operatorname{tr}(L S)=0
$$

Sums of squares certificates of low-dimensionality

Theorem: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) $S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}$ has empty interior.
(ii) S_{L} is contained in a hyperplane of \mathbb{R}^{n}.
(iii) There exists a linear polynomial $\ell \in \mathbb{R}[\underline{X}] \backslash\{0\}$ and a quadratic sos-matrix $S \in \mathbb{R}[X]^{m \times m}$ such that

$$
\ell^{2}+\operatorname{tr}(L S)=0
$$

(certifying $S_{L} \subseteq\left\{x \in \mathbb{R}^{n} \mid \ell(x)=0\right\}$).

Sums of squares certificates of non-negativity

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:
(i) $f \geq 0$ on S_{L}

Sums of squares certificates of non-negativity

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:
(i) $f \geq 0$ on S_{L}
(ii) There exist linear polynomials $\ell_{1}, \ldots, \ell_{n} \in \mathbb{R}[\underline{X}]$,

Sums of squares certificates of non-negativity

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:
(i) $f \geq 0$ on S_{L}
(ii) There exist linear polynomials $\ell_{1}, \ldots, \ell_{n} \in \mathbb{R}[\underline{X}]$, quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}$,

Sums of squares certificates of non-negativity

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:
(i) $f \geq 0$ on S_{L}
(ii) There exist linear polynomials $\ell_{1}, \ldots, \ell_{n} \in \mathbb{R}[\underline{X}]$, quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}$,
a positive semidefinite matrix $S \in \mathbb{R}^{m \times m}$,

Sums of squares certificates of non-negativity

Theorem: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and all linear polynomials $f \in \mathbb{R}[\underline{X}]$, the following are equivalent:
(i) $f \geq 0$ on S_{L}
(ii) There exist linear polynomials $\ell_{1}, \ldots, \ell_{n} \in \mathbb{R}[\underline{X}]$, quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}$,
a positive semidefinite matrix $S \in \mathbb{R}^{m \times m}$, and a nonnegative constant $c \in \mathbb{R}$ such that

$$
\begin{aligned}
\ell_{i}^{2}+\operatorname{tr}\left(L S_{i}\right) & \in\left(\ell_{1}, \ldots, \ell_{i-1}\right) \text { for } i \in\{1, \ldots, n\} \\
f-c-\operatorname{tr}(L S) & \in\left(\ell_{1}, \ldots, \ell_{n}\right)
\end{aligned}
$$

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\vec{x}_{d}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & X_{n}^{d}
\end{array}\right]^{*} .
$$

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & x_{n}^{d}
\end{array}\right]^{*} .
$$

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[X]^{m \times m}$ be a pencil and $f \in \mathbb{R}[X]$ be linear. Then $f \geq 0$ on S_{L} if and only if there exist

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{\chi_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & x_{n}^{d}
\end{array}\right]^{*} .
$$

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}, S \in \mathbb{R}_{\succeq 0}^{m \times m}$,

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{\chi_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & x_{n}^{d}
\end{array}\right]^{*} .
$$

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}, S \in \mathbb{R}_{\succeq 0}^{m \times m}$,
- matrices $U_{1}, \ldots, U_{n} \in S \mathbb{R}^{m \times m}$,

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{\chi_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & x_{n}^{d}
\end{array}\right]^{*} .
$$

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[\underline{X}]$ be linear. Then $f \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}, S \in \mathbb{R}_{\succeq 0}^{m \times m}$,
- matrices $U_{1}, \ldots, U_{n} \in S \mathbb{R}^{m \times m}, W_{1}, \ldots, W_{n} \in \mathbb{R}^{k \times m}$ and

An exact duality theory for SDP based on sums of squares For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{\chi_{d}} \in \mathbb{R}[X]^{m_{d}}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & x_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & x_{1} x_{2} & \ldots & \ldots & x_{n}^{d}
\end{array}\right]^{*} .
$$

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $f \in \mathbb{R}[X]$ be linear. Then $f \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[X]^{m \times m}, S \in \mathbb{R}_{\succeq 0}^{m \times m}$,
- matrices $U_{1}, \ldots, U_{n} \in S \mathbb{R}^{m \times m}, W_{1}, \ldots, W_{n} \in \mathbb{R}^{k \times m}$ and
- a real number $a \geq 0$
such that

$$
\begin{array}{ll}
\overrightarrow{x_{1}^{*}} * U_{i} \overrightarrow{x_{1}}+\overrightarrow{x_{2}} * W_{i-1} \overrightarrow{x_{1}}+\operatorname{tr}\left(L S_{i}\right)=0 & (i \in\{1, \ldots, n\}), \\
U_{i} \succeq W_{i}^{*} W_{i} & (i \in\{1, \ldots, n\}), \\
\ell+\overrightarrow{x_{2}} * W_{n} \overrightarrow{x_{1}}=a+\operatorname{tr}(L S) &
\end{array}
$$

where $W_{0}:=0 \in \mathbb{R}^{k \times m}$.

An exact duality theory for SDP based on sums of squares This provides a duality theory for semidefinite programming where strong duality (zero gap \& dual attainment) always holds and the size of the dual is polynomial in the size of the primal. Based on other ideas, such a duality theory has also been given by Matt Ramana:
M. Ramana: An exact duality theory for semidefinite programming and its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540\&rep=rep1\&type=pdf
http://dx.doi.org/10.1007/BF02614433
Ramana \& Tunçel \& Wolkowicz: Strong duality for semidefinite programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation).

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively.

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

Theorem: For each pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) There is no $x \in \mathbb{R}^{n}$ such that $L(x) \succeq 0$.

The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or at least in NP (in the bit model of computation). By Ramana's result this is equivalent to the semidefinite infeasibility problem lying in P or NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything about this question:

Theorem: For each pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) There is no $x \in \mathbb{R}^{n}$ such that $L(x) \succeq 0$.
(ii) There are an sos-polynomial $s \in \mathbb{R}[\underline{X}]$ and an sos-matrix $S \in \mathbb{R}[\underline{X}]^{m \times m}$ both of degree at most $\min \{m-1, n\}$ such that

$$
-1=s+\operatorname{tr}(L S)
$$

An exact duality theory for SDP based on sums of squares This provides a duality theory for semidefinite programming where strong duality (zero gap \& dual attainment) always holds and the size of the dual is polynomial in the size of the primal. Based on other ideas, such a duality theory has also been given by Matt Ramana:
M. Ramana: An exact duality theory for semidefinite programming and its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540\&rep=rep1\&type=pdf
http://dx.doi.org/10.1007/BF02614433
Ramana \& Tunçel \& Wolkowicz: Strong duality for semidefinite programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

Klep \& S.: An exact duality theory for semidefinite programming based on sums of squares
http://arxiv.org/abs/1207.1691
Thank you!

