The sums of squares dual of a semidefinite program (joint work with Igor Klep)

Markus Schweighofer

Universität Konstanz

> Convex Optimization and Algebraic Geometry
> Modern Trends in Optimization and Its Application Institute for Pure \& Applied Mathematics

> University of California, Los Angeles
> September 28 - October 1, 2010

Semidefinite programming duality

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $-\operatorname{tr}\left(A_{0} S\right)$ subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0
$$

$$
\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-\operatorname{tr}\left(A_{0} S\right)=a$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{1}=\operatorname{tr}\left(A_{1} S\right), \ldots, c_{n}=\operatorname{tr}\left(A_{n} S\right)$
$c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0, a \in \mathbb{R}
$$

$$
c_{0}-a+c_{1} X_{1}+\cdots+c_{n} X_{n}=
$$

$$
\operatorname{tr}\left(A_{0} S\right)+X_{1} \operatorname{tr}\left(A_{1} S\right)+\cdots+X_{n} \operatorname{tr}\left(A_{n} S\right)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$

$$
c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=
$$

$$
\operatorname{tr}\left(A_{0} S+X_{1} A_{1} S+\cdots+X_{n} A_{n} S\right)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a
subject to $S \in S \mathbb{R}^{m \times m}$
$S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}(L S)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
(P) minimize $\ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0, a \in \mathbb{R}
$$

$$
\ell-a=\operatorname{tr}(L S)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a

$$
\begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& S \succeq 0 \\
& \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables.

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 ,

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & (D) \quad \text { maximize } & a \\
\text { subject to } & x \in \mathbb{R}^{n} & & \text { subject to } \\
& L(x) \succeq 0 & & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& & & \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & (D) & \text { maximize } \\
\text { subject to } & x \in \mathbb{R}^{n} & a \\
& L(x) \succeq 0 & \text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& & S \succeq 0 \\
& & \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 , i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear,

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & (D) & \text { maximize } \\
\text { subject to } & x \in \mathbb{R}^{n} & a \\
& L(x) \succeq 0 & \text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& & S \succeq 0 \\
& & \ell-a=\operatorname{tr}(L S)
\end{array}
$$

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables and $\mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in these variables. We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear, i.e., there are $A_{0}, A_{1}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ such that $L=A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:

$$
\begin{array}{ll|rl}
\text { minimize } & \ell(x) & \left.(D) \quad \begin{array}{rl}
\text { maximize } & a \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{array} \left\lvert\, \begin{array}{ll}
\text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{array}\right.\right)=\operatorname{tr}(L S)
\end{array}
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap).

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[X]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[X]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.
Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

Each pencil $L \in \mathbb{R}[X]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

Each pencil $L \in \mathbb{R}[X]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\} .
$$

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\} .
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Each pencil $L \in \mathbb{R}[X]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior.

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

$" \Longleftarrow "$ is weak duality: It is trivial since the representation $\ell=a+\operatorname{tr}(L S)$ is a certificate of nonnegativity on S_{L}.

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

$" \Longleftarrow "$ is weak duality: It is trivial since the representation $\ell=a+\operatorname{tr}(L S)$ is a certificate of nonnegativity on S_{L}.
" \Longrightarrow " is strong duality: It is a theorem about existence of a nonnegativity certificate which we prove now for convenience of the auditor.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[\underline{X}]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 .

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$. Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[\underline{X}]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$. Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies $L(x) u_{i}=0$ for all $x \in S_{L}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$. Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies $L(x) u_{i}=0$ for all $x \in S_{L}$. Using the hypothesis that S_{L} has non-empty interior, we conclude that $L u_{i}=0$, i.e., $u_{i} \in U$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$. Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies $L(x) u_{i}=0$ for all $x \in S_{L}$. Using the hypothesis that S_{L} has non-empty interior, we conclude that $L u_{i}=0$, i.e., $u_{i} \in U$. Since i was arbitrary and $c=0$, this yields $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right)=0$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$. Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies $L(x) u_{i}=0$ for all $x \in S_{L}$. Using the hypothesis that S_{L} has non-empty interior, we conclude that $L u_{i}=0$, i.e., $u_{i} \in U$. Since i was arbitrary and $c=0$, this yields $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right)=0$.
This shows $\varphi^{-1}(0)=\{0\}$.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$.
Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies
$L(x) u_{i}=0$ for all $x \in S_{L}$. Using the hypothesis that S_{L} has non-empty interior, we conclude that $L u_{i}=0$, i.e., $u_{i} \in U$. Since i was arbitrary and $c=0$, this yields $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right)=0$.
This shows $\varphi^{-1}(0)=\{0\}$. Together with the fact that φ is a (quadratically) homogeneous map, this implies that φ is proper.

Lemma: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil such that S_{L} has non-empty interior. Then C_{L} is a closed convex cone in $\mathbb{R}[X]_{1}$.
Proof. Note that $C_{L}=\left\{a+\sum_{i=1}^{m} u_{i}^{*} L u_{i} \mid a \in \mathbb{R}_{\geq 0}, u_{1}, \ldots, u_{m} \in \mathbb{R}^{m}\right\}$. Consider the linear subspace $U:=\left\{x \in \mathbb{R}^{m} \mid L u=0\right\} \subseteq \mathbb{R}^{m}$. The map

$$
\varphi: \mathbb{R} \times\left(\mathbb{R}^{m} / U\right)^{m} \rightarrow C_{L}, \quad\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \rightarrow c^{2}+\sum_{i=1}^{m} u_{i}^{*} L u_{i}
$$

is well-defined and surjective.
Suppose φ maps $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right) \in\left(\mathbb{R}^{m} / U\right)^{m}$ to 0 . Fix $i \in\{1, \ldots, m\}$.
Then $u_{i}^{*} L(x) u_{i}=0$ for all $x \in S_{L}$. Since $L(x) \succeq 0$, this implies
$L(x) u_{i}=0$ for all $x \in S_{L}$. Using the hypothesis that S_{L} has non-empty interior, we conclude that $L u_{i}=0$, i.e., $u_{i} \in U$. Since i was arbitrary
and $c=0$, this yields $\left(c, \bar{u}_{1}, \ldots, \bar{u}_{m}\right)=0$.
This shows $\varphi^{-1}(0)=\{0\}$. Together with the fact that φ is a (quadratically) homogeneous map, this implies that φ is proper. In particular, $C_{L}=\operatorname{im} \varphi$ is closed.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ and $\psi(\ell)<0$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R} \geq 0$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen. Hereby $\mathrm{ev}_{x}: \mathbb{R}[X]_{1} \rightarrow \mathbb{R}$ denotes the evaluation in $x \in \mathbb{R}^{n}$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen. Hereby $\mathrm{ev}_{x}: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ denotes the evaluation in $x \in \mathbb{R}^{n}$. Finally, after a suitable scaling we can even assume $\psi(1)=1$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R} \geq 0$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen. Hereby $\mathrm{ev}_{x}: \mathbb{R}[X]_{1} \rightarrow \mathbb{R}$ denotes the evaluation in $x \in \mathbb{R}^{n}$. Finally, after a suitable scaling we can even assume $\psi(1)=1$. Now setting $x:=\left(\psi\left(X_{1}\right), \ldots, \psi\left(X_{n}\right)\right) \in \mathbb{R}^{n}$, we have $\psi=\mathrm{ev}_{x}$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen. Hereby $\mathrm{ev}_{x}: \mathbb{R}[X]_{1} \rightarrow \mathbb{R}$ denotes the evaluation in $x \in \mathbb{R}^{n}$. Finally, after a suitable scaling we can even assume $\psi(1)=1$. Now setting $x:=\left(\psi\left(X_{1}\right), \ldots, \psi\left(X_{n}\right)\right) \in \mathbb{R}^{n}$, we have $\psi=\mathrm{ev}_{x}$. So $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ means exactly that $\ell(x) \succeq 0$, i.e. $x \in S_{L}$.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Proof. Suppose that $\ell \in \mathbb{R}[\underline{X}]_{1} \backslash C_{L}$. The task is to find $x \in S_{L}$ such that $\ell(x)<0$. Being a closed convex cone by the lemma, C_{L} is the intersection of all closed half-spaces containing it. Therefore we find a linear map $\psi: \mathbb{R}[\underline{X}]_{1} \rightarrow \mathbb{R}$ such that $\psi\left(C_{L}\right) \subseteq \mathbb{R} \geq 0$ and $\psi(\ell)<0$. We can assume $\psi(1)>0$ since otherwise $\psi(1)=0$ and we can replace ψ by $\psi+\varepsilon \mathrm{ev}_{y}$ for some small $\varepsilon>0$ where $y \in S_{L}$ is arbitrarily chosen. Hereby $\mathrm{ev}_{x}: \mathbb{R}[X]_{1} \rightarrow \mathbb{R}$ denotes the evaluation in $x \in \mathbb{R}^{n}$. Finally, after a suitable scaling we can even assume $\psi(1)=1$. Now setting $x:=\left(\psi\left(X_{1}\right), \ldots, \psi\left(X_{n}\right)\right) \in \mathbb{R}^{n}$, we have $\psi=\mathrm{ev}_{x}$. So $\psi\left(C_{L}\right) \subseteq \mathbb{R}_{\geq 0}$ means exactly that $\ell(x) \succeq 0$, i.e. $x \in S_{L}$. At the same time $\ell(x)=\psi(\ell)<0$ as desired.

Problem: The theorem fails in general if S_{L} has empty interior.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming. We want a version of Farkas' lemma characterizing all infeasible pencils.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0,
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming. We want a version of Farkas' lemma characterizing all infeasible pencils. More generally, we want a duality theory for semidefinite programming where strong duality always holds.

Idea: Allow more general certificates for nonnegativity on S_{L}.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on d for fixed n.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on d for fixed n.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on n for fixed d.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on n for fixed d.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X], w_{i} \in \mathbb{R}[X]^{m}\right\}
$$

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X], w_{i} \in \mathbb{R}[X]^{m}\right\}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by

$$
\begin{gathered}
M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}] \text { sos-polynomial, deg } s \leq 2 d \\
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\} \\
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
\end{gathered}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by
$M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial, $\operatorname{deg} s \leq 2 d$

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}^{\left(2^{n}-1\right)}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by

$$
\begin{gathered}
M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}] \text { sos-polynomial, } \operatorname{deg} s \leq 2 d \\
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\} \\
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
\end{gathered}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}^{\left(2^{n}-1\right)}$.

Problems: This gives a way of expressing infeasibility of an SDP by feasibility of another SDP whose size is however exponential. Moreover this is not yet strong duality.

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

Idea: By Prestel's theory of semiorderings on a commutative ring, $-\ell^{2} \in M_{L}$ implies that ℓ lies in the real radical
of the ideal $\operatorname{supp} M_{L}:=M_{L} \cap-M_{L}$.

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

Idea: By Prestel's theory of semiorderings on a commutative ring, $-\ell^{2} \in M_{L}$ implies that ℓ lies in the real radical

$$
\begin{gathered}
\sqrt[r]{\operatorname{supp} M_{L}}=\left\{p \in \mathbb{R}[\underline{X}] \mid \exists N \in \mathbb{N}_{0}: \exists s \in \sum \mathbb{R}[\underline{X}]^{2}:\right. \\
\left.p^{2 N}+s \in \operatorname{supp} M_{L}\right\}
\end{gathered}
$$

of the ideal $\operatorname{supp} M_{L}:=M_{L} \cap-M_{L}$.

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

Idea: By Prestel's theory of semiorderings on a commutative ring, $-\ell^{2} \in M_{L}$ implies that ℓ lies in the real radical

$$
\begin{gathered}
\sqrt[r]{\operatorname{supp} M_{L}}=\left\{p \in \mathbb{R}[\underline{X}] \mid \exists N \in \mathbb{N}_{0}: \exists s \in \sum \mathbb{R}[\underline{X}]^{2}:\right. \\
\left.p^{2 N}+s \in \operatorname{supp} M_{L}\right\}
\end{gathered}
$$

of the ideal supp $M_{L}:=M_{L} \cap-M_{L}$. If we could get hand on the real radical of this ideal by means of SDP, then we could perhaps "reduce the dimension of the ambient space".

Getting hand on the real radical

For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[X]^{m}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & X_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & X_{1} X_{2} & \ldots & \ldots & X_{n}^{d}
\end{array}\right]^{*}
$$

consisting of these monomials ordered first with respect to the degree and then lexicographic.

Getting hand on the real radical

For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[\underline{X}]^{m}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & X_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & X_{1} X_{2} & \ldots & \ldots & X_{n}^{d}
\end{array}\right]^{*}
$$

consisting of these monomials ordered first with respect to the degree and then lexicographic.

Proposition: Let $d, e \in \mathbb{N}_{0}, m:=m_{d}$ and $k:=m_{e}$.
Let I be a real radical ideal of $\mathbb{R}[\underline{X}]$ and $U \in S \mathbb{R}^{m \times m}$ such that

$$
\overrightarrow{x_{d}}{ }^{*} U \overrightarrow{x_{d}} \in I .
$$

Suppose $W \in \mathbb{R}^{k \times m}$ with $U \succeq W^{*} W$,

Getting hand on the real radical

For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[\underline{X}]^{m}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & X_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & X_{1} X_{2} & \ldots & \ldots & X_{n}^{d}
\end{array}\right]^{*}
$$

consisting of these monomials ordered first with respect to the degree and then lexicographic.

Proposition: Let $d, e \in \mathbb{N}_{0}, m:=m_{d}$ and $k:=m_{e}$.
Let I be a real radical ideal of $\mathbb{R}[\underline{X}]$ and $U \in S \mathbb{R}^{m \times m}$ such that

$$
\overrightarrow{x_{d}}{ }^{*} U \overrightarrow{x_{d}} \in I .
$$

Suppose $W \in \mathbb{R}^{k \times m}$ with $U \succeq W^{*} W$, i.e. $\left(\begin{array}{cc}I_{k} & W \\ W^{*} & U\end{array}\right) \succeq 0$.

Getting hand on the real radical

For each $d \in \mathbb{N}_{0}$, let $m_{d}:=\binom{d+n}{n}$ denote the number of monomials of degree at most d in n variables and $\overrightarrow{x_{d}} \in \mathbb{R}[\underline{X}]^{m}$ the column vector

$$
\overrightarrow{x_{d}}:=\left[\begin{array}{llllllllll}
1 & X_{1} & X_{2} & \ldots & X_{n} & X_{1}^{2} & X_{1} X_{2} & \ldots & \ldots & X_{n}^{d}
\end{array}\right]^{*}
$$

consisting of these monomials ordered first with respect to the degree and then lexicographic.

Proposition: Let $d, e \in \mathbb{N}_{0}, m:=m_{d}$ and $k:=m_{e}$.
Let I be a real radical ideal of $\mathbb{R}[\underline{X}]$ and $U \in S \mathbb{R}^{m \times m}$ such that

$$
\overrightarrow{x_{d}}{ }^{*} U \overrightarrow{x_{d}} \in I .
$$

Suppose $W \in \mathbb{R}^{k \times m}$ with $U \succeq W^{*} W$, i.e. $\left(\begin{array}{cc}I_{k} & W \\ W^{*} & U\end{array}\right) \succeq 0$. Then

$$
\overrightarrow{x_{e}} * W \overrightarrow{x_{d}} \in I .
$$

Getting hand on the real radical

The following lemma is weak converse.
Lemma: Set $m:=m_{1}$ and $k:=m_{2}$. Suppose $\ell_{1}, \ldots, \ell_{t} \in \mathbb{R}[\underline{X}]$ be linear and $q_{1}, \ldots, q_{t} \in \mathbb{R}[\underline{X}]$ be quadratic. Let $U \in S \mathbb{R}^{m \times m}$ be such that

$$
\overrightarrow{x_{1}} * U \overrightarrow{x_{1}}=\ell_{1}^{2}+\cdots+\ell_{t}^{2} .
$$

Getting hand on the real radical

The following lemma is weak converse.
Lemma: Set $m:=m_{1}$ and $k:=m_{2}$. Suppose $\ell_{1}, \ldots, \ell_{t} \in \mathbb{R}[\underline{X}]$ be linear and $q_{1}, \ldots, q_{t} \in \mathbb{R}[\underline{X}]$ be quadratic. Let $U \in S \mathbb{R}^{m \times m}$ be such that

$$
\overrightarrow{x_{1}} * U \overrightarrow{x_{1}}=\ell_{1}^{2}+\cdots+\ell_{t}^{2} .
$$

Then there exists $\lambda>0$ and $W \in \mathbb{R}^{k \times m}$ such that $\lambda U \succeq W^{*} W$ and

$$
\overrightarrow{x_{2}} * W \overrightarrow{x_{1}}=\ell_{1} q_{1}+\cdots+\ell_{t} q_{t}
$$

The sums of squares dual of a semidefinite program It is now clear that the following provides a duality theory for semidefinite programming where strong duality (zero gap \& dual attainment) always holds. Note that the size of the dual (which we do not explicit) is polynomial in the size of the primal.

Theorem: Set $m:=m_{1}$ and $k:=m_{2}$. Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[X]$ be linear. Then $\ell \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}$,
- matrices $U_{1}, \ldots, U_{n} \in S \mathbb{R}^{m \times m}, W_{1}, \ldots, W_{n} \in \mathbb{R}^{k \times m}$, $S \in S \mathbb{R}_{\succeq 0}^{m \times m}$ and
- a real number $a \geq 0$
such that

$$
\begin{array}{ll}
\overrightarrow{x_{1}} * U_{i} \overrightarrow{x_{1}}+\overrightarrow{x_{2}} & * W_{i-1} \overrightarrow{x_{1}}+\operatorname{tr}\left(L S_{i}\right)=0 \\
U_{i} \succeq W_{i}^{*} W_{i} & (i \in\{1, \ldots, n\}), \\
\ell+{\overrightarrow{x_{2}}}^{*} W_{n} \overrightarrow{x_{1}}=a+\operatorname{tr}(L S) &
\end{array}
$$

where $W_{0}:=0$.

Based on other ideas, such a duality theory has also been given by Matt Ramana:
M. Ramana: An exact duality theory for semidefinite programming and its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540\&rep=rep1\&type=pdf
http://dx.doi.org/10.1007/BF02614433
See also:
Ramana \& Tunçel \& Wolkowicz: Strong duality for semidefinite programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

