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Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by
A0, . . . ,An ∈ SRm×m and c1, . . . , cn ∈ R as follows:

(P) minimize c1x1 + · · ·+ cnxn
subject to x ∈ Rn

A0 + x1A1 + · · ·+ xnAn � 0

(D) maximize − tr(A0S)
subject to S ∈ SRm×m

S � 0
tr(A1S) = c1, . . . , tr(AnS) = cn
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A semidefinite program (P) and its standard dual (D) is given by
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A0, . . . ,An ∈ SRm×m and a linear polynomial ` ∈ R[X ] as follows:

(P) minimize `(x)
subject to x ∈ Rn

A0 + x1A1 + · · ·+ xnAn � 0

(D) maximize a
subject to S ∈ SRm×m

S � 0, a ∈ R
`− a =
tr((A0 + X1A1 + · · ·+ XnAn)S)



Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by
A0, . . . ,An ∈ SRm×m and a linear polynomial ` ∈ R[X ] as follows:

(P) minimize `(x)
subject to x ∈ Rn

A0 + x1A1 + · · ·+ xnAn � 0

(D) maximize a
subject to S ∈ SRm×m

S � 0, a ∈ R
`− a =
tr((A0 + X1A1 + · · ·+ XnAn)S)



Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by
a pencil L ∈ R[X ]m×m and a linear polynomial ` ∈ R[X ] as follows:

(P) minimize `(x)
subject to x ∈ Rn

L(x) � 0

(D) maximize a
subject to S ∈ SRm×m

S � 0, a ∈ R
`− a =
tr(LS)
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Weak duality: If x is feasible in (P) and (S , a) is feasible in (D), then
`(x) ≥ a.

Indeed, `(x) − a = tr(L(x)S) ≥ 0 since the trace of the
product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by P∗,D∗ ∈ {−∞}∪R∪{∞} the optimal values
of (P) and (D) respectively. Suppose that the feasible set of (P) has non-
empty interior. Then P∗ = D∗ (zero gap). Moreover, if P∗ = D∗ ∈ R,
then (D) attains the common optimal value (dual attainment).
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Each pencil L ∈ R[X ]m×m defines a spectrahedron

SL := {x ∈ Rn | L(x) � 0}

and a convex cone

CL := {` ∈ R[X ]1 | ∃a ∈ R≥0 : ∃S ∈ SRm×m
�0 : ` = a + tr(LS)}.

The duality we just formulated for our standard primal-dual pair of
semidefinite programs can easily be reformulated as follows:

Theorem: Let L ∈ R[X ]m×m be a pencil and ` ∈ R[X ] be a linear
polynomial. Suppose that SL has non-empty interior. Then

` ≥ 0 on SL ⇐⇒ ` ∈ CL.

“⇐=” is weak duality: It is trivial since the representation
` = a + tr(LS) is a certificate of nonnegativity on SL.

“=⇒” is strong duality: It is a theorem about existence of a
nonnegativity certificate which we prove now for convenience of the
auditor.
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and c = 0, this yields (c , ū1, . . . , ūm) = 0.
This shows ϕ−1(0) = {0}. Together with the fact that ϕ is a
(quadratically) homogeneous map, this implies that ϕ is proper.
In particular, CL = imϕ is closed.
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This shows ϕ−1(0) = {0}. Together with the fact that ϕ is a
(quadratically) homogeneous map, this implies that ϕ is proper.
In particular, CL = imϕ is closed.



Lemma: Let L ∈ R[X ]m×m be a pencil such that SL has non-empty
interior. Then CL is a closed convex cone in R[X ]1.

Proof. Note that CL = {a +
∑m

i=1 u∗i Lui | a ∈ R≥0, u1, . . . , um ∈ Rm}.
Consider the linear subspace U := {x ∈ Rm | Lu = 0} ⊆ Rm.The map

ϕ : R× (Rm/U)m → CL, (c , ū1, . . . , ūm)→ c2 +
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Theorem: Let L ∈ R[X ]m×m be a pencil and ` ∈ R[X ] be a linear
polynomial. Suppose that SL has non-empty interior.

Then

` ≥ 0 on SL ⇐⇒ ` ∈ CL.

Proof. Suppose that ` ∈ R[X ]1 \ CL. The task is to find x ∈ SL such
that `(x) < 0. Being a closed convex cone by the lemma, CL is the
intersection of all closed half-spaces containing it. Therefore we find a
linear map ψ : R[X ]1 → R such that ψ(CL) ⊆ R≥0 and ψ(`) < 0. We
can assume ψ(1) > 0 since otherwise ψ(1) = 0 and we can replace ψ
by ψ + ε evy for some small ε > 0 where y ∈ SL is arbitrarily chosen.
Hereby evx : R[X ]1 → R denotes the evaluation in x ∈ Rn. Finally,
after a suitable scaling we can even assume ψ(1) = 1. Now setting
x := (ψ(X1), . . . , ψ(Xn)) ∈ Rn, we have ψ = evx . So ψ(CL) ⊆ R≥0
means exactly that `(x) � 0, i.e. x ∈ SL. At the same time
`(x) = ψ(`) < 0 as desired.
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Problem: The theorem fails in general if SL has empty interior.

This is really a problem since one is interested for example in how to
decide whether SL = ∅ (semidefinite feasibility problem).

Definition: Call a pencil L ∈ R[X ]m×m infeasible if SL = ∅. In this
case, call it strongly infeasible if

dist({L(x) | x ∈ Rn}, SRm×m
�0 ) > 0,

and weakly infeasible otherwise.

Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if
−1 ∈ CL.

Diagonal pencils are never weakly infeasible. For them, Sturm’s
proposition collapses to Farkas’ lemma from linear programming. We
want a version of Farkas’ lemma characterizing all infeasible pencils.
More generally, we want a duality theory for semidefinite programming
where strong duality always holds.
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Idea: Allow more general certificates for nonnegativity on SL.

Definition: Let S ∈ R[X ]m×m be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:
(i) S = P∗P for some s ∈ N0 and some P ∈ R[X ]s×m,
(ii) S =

∑r
i=1 Q∗

i Qi for some r ∈ N0 and Qi ∈ R[X ]m×m,
(iii) S =

∑t
i=1 wiw∗

i for some t ∈ N0 and wi ∈ R[X ]m.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X ] = R[X ]1×1 due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on d for fixed n.
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A naive sos Farkas’ lemma for semidefinite programming
Observation: If L ∈ R[X ]m×m is a pencil and S ∈ R[X ]m×m is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on SL.

Definition: For a pencil L ∈ R[X ]m×m, define the

d -truncated

quadratic module associated to L by

M

(d)

L := {s + tr(LS) |s ∈ R[X ] sos-polynomial

, deg s ≤ 2d

S ∈ R[X ]m×m sos-matrix}

=
{∑

i

p2
i +

∑
i

w∗
i Lwi | pi ∈ R[X ]

d

,wi ∈ R[X ]m

d

}

Problems: This gives a way of expressing infeasibility of an SDP by
feasibility of another SDP whose size is however exponential.
Moreover this is not yet strong duality.
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How to control the complexity?

Lemma: For any pencil L ∈ R[X ]m×m, the following are equivalent:
(i) SL has empty interior,

(ii) There exists a non-zero linear polynomial ` ∈ R[X ] and a
quadratic sos-matrix S ∈ SR[X ]m×m such that −`2 = tr(LS).

Idea: By Prestel’s theory of semiorderings on a commutative ring,
−`2 ∈ ML implies that ` lies in the real radical

r√suppML = {p ∈ R[X ] |∃N ∈ N0 : ∃s ∈
∑

R[X ]2 :

p2N + s ∈ suppML}

of the ideal suppML := ML ∩ −ML.

If we could get hand on the real
radical of this ideal by means of SDP, then we could perhaps “reduce
the dimension of the ambient space”.
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Getting hand on the real radical
For each d ∈ N0, let md :=

(d+n
n

)
denote the number of monomials of

degree at most d in n variables and −→xd ∈ R[X ]m the column vector

−→xd :=
[
1 X1 X2 . . . Xn X 2

1 X1X2 . . . . . . X d
n
]∗

consisting of these monomials ordered first with respect to the degree
and then lexicographic.

Proposition: Let d , e ∈ N0, m := md and k := me .
Let I be a real radical ideal of R[X ] and U ∈ SRm×m such that

−→xd
∗U−→xd ∈ I .

Suppose W ∈ Rk×m with U �W ∗W , i.e.
(

Ik W
W ∗ U

)
� 0. Then

−→xe
∗W−→xd ∈ I .
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Getting hand on the real radical

The following lemma is weak converse.

Lemma: Set m := m1 and k := m2. Suppose `1, . . . , `t ∈ R[X ] be
linear and q1, . . . , qt ∈ R[X ] be quadratic. Let U ∈ SRm×m be such
that

−→x1
∗U−→x1 = `21 + · · ·+ `2t .

Then there exists λ > 0 and W ∈ Rk×m such that λU �W ∗W and

−→x2
∗W−→x1 = `1q1 + · · ·+ `tqt .
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The sums of squares dual of a semidefinite program
It is now clear that the following provides a duality theory for
semidefinite programming where strong duality (zero gap & dual
attainment) always holds. Note that the size of the dual (which we do
not explicit) is polynomial in the size of the primal.

Theorem: Set m := m1 and k := m2. Let L ∈ R[X ]m×m be a pencil
and ` ∈ R[X ] be linear. Then ` ≥ 0 on SL if and only if there exist

I quadratic sos-matrices S1, . . . , Sn ∈ R[X ]m×m,
I matrices U1, . . . ,Un ∈ SRm×m, W1, . . . ,Wn ∈ Rk×m,

S ∈ SRm×m
�0 and

I a real number a ≥ 0
such that

−→x1
∗Ui
−→x1 +−→x2

∗Wi−1
−→x1 + tr(LSi ) = 0 (i ∈ {1, . . . , n}),

Ui �W ∗
i Wi (i ∈ {1, . . . , n}),

`+−→x2
∗Wn
−→x1 = a + tr(LS)

where W0 := 0.



Based on other ideas, such a duality theory has also been given by
Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and
its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129–162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02614433

See also:

Ramana & Tunçel & Wolkowicz: Strong duality for semidefinite
programming
SIAM J. Optim. 7 (1997), Issue 3, 641–662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350
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