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Univariate stable polynomials

In this talk we tried to give a very basic introduction to univariate stable polynomi-
als and to illustrate their usefulness in combinatorics. More complete introductions
into this subject are [7] and [8].

All polynomials will be real or complex polynomials in one variable X. We denote
the corresponding algebra of polynomials by R[X] and C[X], respectively.

1. Stable polynomials

We call f ∈ C[X] stable if f is the zero polynomial or f has no complex roots with
positive imaginary part, i.e., f = 0 or ∀z ∈ C : (Im(z) > 0 =⇒ f(z) 6= 0).

There are many other notions of stability with the upper half plane replaced by
other regions. The term “stable” is motivated by control theory where the stable
behavior of a system can often be related to stability (in one sense or the other) of
a polynomial.

The Gauß-Lucas Theorem [3, Theorem 2.1.1] says that for a non-constant complex
polynomial the zeros of its derivative are convex combinations of its zeros:

∀p ∈ C[X] \ C : {z ∈ C | p′(z) = 0} ⊆ conv{z ∈ C | p(z) = 0}.

As a corollary, derivatives of stable polynomials are stable.

2. Real stable polynomials

Stable polynomials in R[X] are called real stable (also real-rooted and sometimes
hyperbolic or real zero polynomial). These are the polynomials of the form

λ(X − a1) · · · (X − an) (n ∈ N0, λ, a1, . . . , an ∈ R).

To see that derivatives of real stable polynomials are real stable, one can simply
use Rolle’s theorem instead of the Gauß-Lucas Theorem.

If p = (X − a1) · · · (X − an) with λi ∈ C, then its reciprocal p∗ := Xnp
(

1
X

)
=

(1 − a1X) · · · (1 − anX) =: 1 − p] has the same coefficients in reversed order and
we have a formal identity
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and therefore the k-th Newton sum Nk can be expressed polynomially in the coef-
ficients of p. Hence the Hermite-matrix

H(p) :=



N0 N1 N2 · · · Nn−1

N1 N2

...

N2

...
... N2n−3

Nn−1 · · · · · · N2n−3 N2n−2


= V (p)TV (p)

can be written easily in terms of the coefficients of p in contrast to the Vandermonde-
matrix

V (p) :=

1 a1 · · · an−11
...

...
...

1 an · · · an−1n

 .

If p is stable, then H(p) is clearly positive semidefinite. By a theorem of Her-
mite and Sylvester [4, Theorem 4.57], the converse is also true. Since the positive
semidefiniteness of a real symmetric matrix can easily be decided without comput-
ing its eigenvalues, this gives a very efficient test for real stability of polynomials.

Since Descarte’s rule of signs [4, Theorem 2.33] is exact for real stable polynomials
[4, Corollary 2.49, Theorem 2.47], we have: If p = (X − a1) · · · (X − an) with
ai ∈ R, then #{i | ai > 0} is the number of signs in the coefficient sequence of p
(disregarding zero coefficients). As a special case, which is however trivial, a non-
zero real stable polynomial has no positive roots if and only if it has no negative
coefficients.

By Edrei’s equivalence theorem [7, Theorem 4.9], a real non-zero polynomial cnX
n+

· · · + c0 (ci ∈ R) is stable without positive roots if and only if the infinite (lower
triangular Toeplitz) matrix 

c0
c1 c0
c2 c1 c0
. . .

. . .
. . .

. . .


is totally positive, i.e., all its minors are nonnegative.

3. Newton’s inequalities and unimodality

A sequence (c0, . . . , cn) of real nonnegative numbers is called unimodal if there
exists an m ∈ {0, . . . , n} such that c0 ≤ · · · ≤ cm−1 ≤ cm ≥ cm+1 ≥ · · · ≥ cn. We
say it has no internal zeros if {i | ai 6= 0} is an interval in {0, . . . , n}. We say it is
log-concave if it has no internal zeros and ck−1ck+1 ≤ c2k for all k ∈ {1, . . . , n− 1}.
One checks easily that the sequence

((
n
0

)
, . . . ,

(
n
n

))
of binomial coefficients is log-

concave. We say that (c0, . . . , cn) is ultra log-concave if it has no internal zeros and
satisfies Newton’s inequalities

ck−1(
n

k−1
) ck+1(

n
k+1

) ≤ ( ck(
n
k

))2
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for k ∈ {1, . . . , n− 1}. One checks easily

“ultra log-concave =⇒ log-concave =⇒ unimodal”.

Looking at 2× 2 minors in Edrei’s theorem, one sees that a real stable polynomial
without negative coefficients has log-concave coefficient sequence. However, it has
even ultra log-concave coefficient sequence: This can be seen as follows: Fix three
consecutive terms in the given polynomial. Kill all terms of lower degree by taking
an appropriate higher derivative. To get rid of terms of higher degree, take the
reciprocal and take again a suitable higher derivative. All these operations preserve
stability. Now you end up with a real stable quadratic polynomial. Its discriminant
must be nonnegative and this gives exactly Newton’s inequalities.

As an example of this method, consider the unsigned Stirling numbers of the first
kind

[
n
k

]
:= #{σ ∈ Sn | σ has exactly k cycles} (k, n ∈ N0, 0 ≤ k ≤ n). Here

1-cycles, i.e., fixed points of the permutation count. We claim that
([

n
0

]
, . . . ,

[
n
n

])
is unimodal. To prove this, we show even that it is ultra log-concave. It suffices to
show that p :=

∑n
k=0

[
n
k

]
Xk is stable. But p = X(X + 1) · · · (X + n − 1) =: X(n)

(“rising factorial”). This can be seen easily by counting permutations whose cycles
are colored (thinking of X as the number of colors) in two different ways: One way
is by grouping together permutations with the same number of cycles. The other
way is by successively deciding for each number between 1 and n whether it should
go into a new cycle (in which case a color has to be chosen) or whether it should
be inserted in one of the already existing cycles (in which case it has to be inserted
at some position in these cycles).

4. Stability preservers

Borcea and Brändén characterized in 2009 all linear stability preservers R[X] →
R[X] and C[X] → C[X] (an example of which is p 7→ p′). This involves how-
ever a notion of multivariate stability and therefore goes beyond the scope of
this talk [5]. Brenti [2] proved in 1989 that the restriction of the linear map
R[X] → R[X], Xk 7→ X(k) (the “rising factorial” from above) to polynomials with
only nonnegative coefficients preserves stability (this is the correct part of [7, Theo-
rem 4.6], the other part being trivially wrong as the counterexample (X+1)(X+2)
shows).

As an example of how to use stability preserving maps, consider a variant of the
above Stirling numbers: Define a cycle of a function f : {1, . . . , n} → {1, . . . , n}
as a connected component of the graph {{x, f(x)} | x ∈ {1, . . . , n}, x 6= f(x)}.
For k, n ∈ N0 with 0 ≤ k ≤ n, define

{
n
k

}
as the number of functions {1, . . . , n} →

{1, . . . , n} with exactly k cycles. We claim that
({

n
0

}
, . . . ,

{
n
n

})
is unimodal. Again,

we show even that it is ultra log-concave. Without loss of generality n ≥ 1. Using
the formula for the number of rooted forests on n vertices with exactly k trees
from [6, end of Chapter 30] (I am grateful to Benjamin Matschke for showing
me this formula and relating it to this), it is an exercise to show that

{
n
k

}
=



4∑n
i=1

(
n−1
i−1
)
nn−i

[
i
k

]
for n, k ∈ N0 with 0 ≤ k ≤ n. Hence

p :=

n∑
k=0

{
n

k

}
Xk =

n∑
i=1

(
n− 1

i− 1

)
nn−i

n∑
k=0

[
i

k

]
Xk

︸ ︷︷ ︸
=X(i)

.

But p is stable by Brenti’s result mentioned above since q :=
∑n

i=1

(
n−1
i−1
)
nn−iXi =

X(X + n)n−1 is stable.

5. Pólya-Schur multiplier sequences

Already in 1914, Pólya and Schur characterized in their fulminant work [1] all
linear stability preservers R[X]→ R[X] of the form Xk 7→ λkX

k for some sequence
(λk)k∈N. We mentioned the main facts of this beautiful work similarly to the
exposition in [7, Section 4.3]. A detailed account of this theory can be found in [3,
Sections 5.4 and 5.7]

References
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