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The real radical

Throughout the talk, X = (Xi,..., X,) denotes a tuple of n variables.

A good step towards finding the real solutions a system of
real polynomial equations is the following:

For given generators of an ideal / C R[X], compute generators of its real
radical ideal V1 := {f e R[X]|IN e N:3se€ S R[X]?*: F2N+s € I}

By Krivine's Real Nullstellensatz (1964), 1/ is the set of all polynomials
vanishing on Vg(/) = {x € R" | Vg € | : g(x) = 0}.
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The real radical

Let A be a commutative ring and /| C A be an ideal.

The elements of {// are exactly the elements of A contained in each real
prime ideal above /.

VI={acA|Isc S A%:a%>+sc i} Dlis an ideal.

To see this, let a,b € Aand s,t € > A? such that a®> +s,b> +t € /.
Then (a+b)?>+(a—b)2 +s+s+t+t=2(a%+s)+2(b*+1t)cl.
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The iterated square root ideal

Let A be a commutative ring and /| C A be an ideal.

Defining
2k+;l/7 - 2 2((/7

for k € N, we see that

Vi={acA|Ise A tsell,

in particular
k
Vi | ¥
keN
and .
Vi= I

for some k € N if A is noetherian.
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A semidefinite characterization of the square root ideal

For each k € N, let x;, denote the column vector of the first k
monomials in R[X] with respect to an arbitrary but fixed numbering of
the monomials.

Each matrix W € R**™ represents a polynomial pol(W) := x;*Wx,,.

If I € R[X] is an ideal, then

V1 = {pol(W) | k,me N, U € SR™™ W ¢ Rk*™
pol(U) € I, U = W*W}.

Note that here U = W*W +—— <U w ) = 0.
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A semidefinite program (P) and its standard dual (D) is given by
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A semidefinite program (P) and its standard dual (D) is given by
a pencil L € R[X]™*™ and a linear polynomial ¢ € R[X] as follows:
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We call a matrix polynomial L € R[X]™*™ a pencil if it is symmetric
and linear, i.e., there are Ag, A1,..., A, € SR™*™ such that
L=Ay+ XiA1+ -+ X,A,.
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Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by
a pencil L € R[X]™*™ and a linear polynomial ¢ € R[X] as follows:

(P) minimize /(x) (D) maximize a
subject to x € R" subject to S € SR™™ a2 R
L(x) =0 5$-0
¢ —a=tr(LS)

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then
l(x) > a. Indeed, {(x) — a = tr(L(x)S) > 0 since the trace of the
product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by P*, D* € {—oco} URU{oo} the optimal values
of (P) and (D) respectively. Suppose that the feasible set of (P) has non-
empty interior. Then P* = D* (zero gap). Moreover, if P* = D* € R,
then (D) attains the common optimal value (dual attainment).
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Each pencil L € R[X]™*"™ defines a spectrahedron
S ={xeR"| L(x) =0}
and a convex cone
CL={leRX]1|3Ja€ Ry :3S € SRIF™: £ =a+tr(LS)}.

The duality we just formulated for our standard primal-dual pair of
semidefinite programs can easily be reformulated as follows:

Theorem: Let L € R[X]™*™ be a pencil and ¢ € R[X] be a linear
polynomial. Suppose that S; has non-empty interior. Then

{>0o0n$S «— (e (.

<" is weak duality: It is trivial since the representation
¢ = a—+tr(LS) is a certificate of nonnegativity on S;.

“

=" is strong duality: It is a theorem about existence of a
nonnegativity certificate.
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Problem: The theorem fails in general if S; has empty interior.

This is really a problem since one is interested for example in how to
decide whether S; = @ (semidefinite feasibility problem).

Definition: Call a pencil L € R[X]™*™ infeasible if S, = @. In this
case, call it strongly infeasible if

dist({L(x) | x € R"}, SRQ&"’) > 0,
and weakly infeasible otherwise.

Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if
-1e (.

Diagonal pencils are never weakly infeasible. For them, Sturm'’s
proposition collapses to Farkas' lemma from linear programming. We
want a version of Farkas' lemma characterizing all infeasible pencils.
More generally, we want a duality theory for semidefinite programming
where strong duality always holds.



Idea: Allow more general certificates for nonnegativity on S;.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable,



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ng and some P € R[X]**"™,

(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,

(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]|"*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]™*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on d for fixed n.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]™*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on d for fixed n.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]™*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on n for fixed d.



Idea: Allow more general certificates for nonnegativity on S;.

Definition: Let S € R[X]™*™ be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P*P for some s € Ny and some P € R[X]**™,
(i) S=>"1_; Q*Q; for some r € Ng and Q; € R[X]™*™,
(i) S=>_; wyw* for some t € Ny and w; € R[X]™.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X] = R[X]**! due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on n for fixed d.



A naive sos Farkas' lemma for semidefinite programming

Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.



A naive sos Farkas' lemma for semidefinite programming
Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.

Definition: For a pencil L € R[X]™*™, define the
quadratic module associated to L by

M, = {s+1tr(LS) |s € R[X] sos-polynomial
S € R[X]™™ sos-matrix}



A naive sos Farkas' lemma for semidefinite programming
Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.

Definition: For a pencil L € R[X]™*™, define the
quadratic module associated to L by

M, = {s+1tr(LS) |s € R[X] sos-polynomial
S € R[X]™™ sos-matrix}

{300 Ywi | pr € BRI w < RIXI")



A naive sos Farkas' lemma for semidefinite programming
Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.

Definition: For a pencil L € R[X]™*™, define the
quadratic module associated to L by

M, = {s+1tr(LS) |s € R[X] sos-polynomial
S € R[X]™™ sos-matrix}

{300 Ywi | pr € BRI w < RIXI")

Theorem: A pencil L € R[X]™*™ is infeasible if and only if —1 € M.



A naive sos Farkas' lemma for semidefinite programming
Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.

Definition: For a pencil L € R[X]™*™, define the d-truncated
quadratic module associated to L by

Mid) = {s 4+ tr(LS) |s € R[X] sos-polynomial,deg s < 2d
S € R[X]™*™ sos-matrix,deg S < 2d}

= {3202+ S wiLwi | pr € RXJa.wi € RIX]Y )

Theorem: A pencil L € R[X]™*™ is infeasible if and only if —1 € M.



A naive sos Farkas' lemma for semidefinite programming

Observation: If L € R[X]™*™ is a pencil and S € R[X]™*™ is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on S;.

Definition: For a pencil L € R[X]™*™, define the d-truncated
quadratic module associated to L by
Mid) = {s 4+ tr(LS) |s € R[X] sos-polynomial,deg s < 2d

S € R[X]™*™ sos-matrix,deg S < 2d}

= {3202+ S wiLwi | pr € RXJa.wi € RIX]Y )

Theorem: A pencil L € R[X]7*™ is infeasible if and

only if —1& M"Y,



A naive sos Farkas' lemma for semidefinite programming
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Problems: This gives a way of expressing infeasibility of an SDP by
feasibility of another SDP whose size is however exponential.
Moreover this is not yet strong duality.
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Then there exists A > 0 and W € R¥*™ such that AU > W*W and

VWX =g+ - + L.



The sums of squares dual of a semidefinite program

It can now be shown that the following provides a duality theory for
semidefinite programming where strong duality (zero gap & dual
attainment) always holds. Note that the size of the dual (which we do
not explicit) is polynomial in the size of the primal.

Theorem: Let L € R[X]™*™ be a pencil and ¢ € R[X] be linear. Then
£ >0on S, if and only if there exist
» quadratic sos-matrices Sy, ..., S, € R[X]™*™,
» matrices Uy, ..., U, € SR™™ W, ..., W, € Rkxm
S € SRIF™ and
> a real number a >0
such that

KUK 4 Y Wi X +tr(LS;) =0 (ie{1,...,n}),
UIEVVI*VVI (iE{l,...,n}),
(4 yV*W, X =a+tr(LS)

where Wy := 0.



Based on other ideas, such a duality theory has also been given by
Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and
its complexity implications

Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47 .8540&rep=replé&type=pdf
http://dx.doi.org/10.1007/BF02614433

See also:

Ramana & Tuncel & Wolkowicz: Strong duality for semidefinite
programming

SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/ ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/51052623495288350
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