The iterated square root ideal ${ }^{1}$ and the sums of squares dual of a semidefinite program ${ }^{2}$

Markus Schweighofer

Universität Konstanz

Solving Polynomial Equations
Algebraic Geometry with a view towards applications Institut Mittag-Leffler Kungliga Tekniska högskolan, Stockholm February 21-25, 2011

[^0]
The radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.

The radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the complex solutions a system of complex polynomial equations is the following:

The radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the complex solutions a system of complex polynomial equations is the following:

For given generators of an ideal $I \subseteq \mathbb{C}[X]$, compute generators of its radical ideal $\sqrt{I}:=\left\{f \in \mathbb{C}[\underline{X}] \mid \exists N \in \mathbb{N}: f^{N} \in I\right\}$.

The radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the complex solutions a system of complex polynomial equations is the following:

For given generators of an ideal $I \subseteq \mathbb{C}[\underline{X}]$, compute generators of its radical ideal $\sqrt{I}:=\left\{f \in \mathbb{C}[\underline{X}] \mid \exists N \in \mathbb{N}: f^{N} \in I\right\}$.

By Hilbert's Nullstellensatz (1893), $\sqrt{1}$ is the set of all polynomials vanishing on $V_{\mathbb{C}}(I)=\left\{x \in \mathbb{C}^{n} \mid \forall g \in I: g(x)=0\right\}$.

The real radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the complex solutions a system of complex polynomial equations is the following:

For given generators of an ideal $/ \subseteq \mathbb{C}[X]$, compute generators of its radical ideal $\sqrt{I}:=\left\{f \in \mathbb{C}[\underline{X}] \mid \exists N \in \mathbb{N}: f^{N} \in I\right\}$.

By Hilbert's Nullstellensatz (1893), \sqrt{I} is the set of all polynomials vanishing on $V_{\mathbb{C}}(I)=\left\{x \in \mathbb{C}^{n} \mid \forall g \in I: g(x)=0\right\}$.

The real radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the real solutions a system of real polynomial equations is the following:

For given generators of an ideal $/ \subseteq \mathbb{C}[X]$, compute generators of its radical ideal $\sqrt{I}:=\left\{f \in \mathbb{C}[\underline{X}] \mid \exists N \in \mathbb{N}: f^{N} \in I\right\}$.

By Hilbert's Nullstellensatz (1893), \sqrt{I} is the set of all polynomials vanishing on $V_{\mathbb{C}}(I)=\left\{x \in \mathbb{C}^{n} \mid \forall g \in I: g(x)=0\right\}$.

The real radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the real solutions a system of real polynomial equations is the following:

For given generators of an ideal $I \subseteq \mathbb{R}[\underline{X}]$, compute generators of its real radical ideal $\sqrt[r]{I}:=\left\{f \in \mathbb{R}[\underline{X}] \mid \exists N \in \mathbb{N}: \exists s \in \sum \mathbb{R}[\underline{X}]^{2}: f^{2 N}+s \in I\right\}$.

The real radical

Throughout the talk, $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ denotes a tuple of n variables.
A good step towards finding the real solutions a system of real polynomial equations is the following:

For given generators of an ideal $I \subseteq \mathbb{R}[\underline{X}]$, compute generators of its real radical ideal $\sqrt[r]{I}:=\left\{f \in \mathbb{R}[\underline{X}] \mid \exists N \in \mathbb{N}: \exists s \in \sum \mathbb{R}[\underline{X}]^{2}: f^{2 N}+s \in I\right\}$.

By Krivine's Real Nullstellensatz (1964), $\sqrt[r]{I}$ is the set of all polynomials vanishing on $V_{\mathbb{R}}(I)=\left\{x \in \mathbb{R}^{n} \mid \forall g \in I: g(x)=0\right\}$.

The radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.

The radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of \sqrt{I} are exactly the elements of A contained in each prime ideal of A above I.

The radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of \sqrt{I} are exactly the elements of A contained in each prime ideal of A above I.
$\left\{a \in A \mid a^{2} \in I\right\} \supseteq I$ is in general no ideal.

The radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of $\sqrt{ }$ are exactly the elements of A contained in each prime ideal of A above l.
$\left\{a \in A \mid a^{2} \in I\right\} \supseteq I$ is in general no ideal.

The real radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of $\sqrt[r]{I}$ are exactly the elements of A contained in each real prime ideal above l.
$\left\{a \in A \mid a^{2} \in I\right\} \supseteq I$ is in general no ideal.

The real radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of $\sqrt[r]{I}$ are exactly the elements of A contained in each real prime ideal above l.
$\sqrt[2]{I}:=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2}+s \in I\right\} \supseteq I$ is an ideal.

The real radical

Let A be a commutative ring and $I \subseteq A$ be an ideal.
The elements of $\sqrt[r]{I}$ are exactly the elements of A contained in each real prime ideal above 1 .
$\sqrt[2]{I}:=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2}+s \in I\right\} \supseteq I$ is an ideal.
To see this, let $a, b \in A$ and $s, t \in \sum A^{2}$ such that $a^{2}+s, b^{2}+t \in I$. Then $(a+b)^{2}+(a-b)^{2}+s+s+t+t=2\left(a^{2}+s\right)+2\left(b^{2}+t\right) \in I$.

The iterated square root ideal

Let A be a commutative ring and $I \subseteq A$ be an ideal.

The iterated square root ideal

Let A be a commutative ring and $I \subseteq A$ be an ideal.
Defining

$$
\sqrt[2^{k+1}]{I}:=\sqrt[2]{\sqrt[2^{k}]{I}}
$$

for $k \in \mathbb{N}$,

The iterated square root ideal

Let A be a commutative ring and $I \subseteq A$ be an ideal.
Defining

$$
\sqrt[2^{k+1}]{I}:=\sqrt[2]{\sqrt[2^{k}]{I}}
$$

for $k \in \mathbb{N}$, we see that

$$
\sqrt[2^{k}]{I}=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2^{k}}+s \in I\right\}
$$

The iterated square root ideal

Let A be a commutative ring and $I \subseteq A$ be an ideal.
Defining

$$
\sqrt[2^{k+1}]{I}:=\sqrt[2]{\sqrt[2^{k}]{I}}
$$

for $k \in \mathbb{N}$, we see that

$$
\sqrt[2^{k}]{I}=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2^{k}}+s \in I\right\}
$$

in particular

$$
\sqrt[r]{I}=\bigcup_{k \in \mathbb{N}} \sqrt[2^{k}]{I}
$$

The iterated square root ideal

Let A be a commutative ring and $I \subseteq A$ be an ideal.
Defining

$$
\sqrt[2^{k+1}]{I}:=\sqrt[2]{\sqrt[2^{k}]{I}}
$$

for $k \in \mathbb{N}$, we see that

$$
\sqrt[2^{k}]{I}=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2^{k}}+s \in I\right\}
$$

in particular

$$
\sqrt[r]{I}=\bigcup_{k \in \mathbb{N}} \sqrt[2^{k}]{I}
$$

and

$$
\sqrt[f]{I}=\sqrt[2^{k}]{l}
$$

for some $k \in \mathbb{N}$ if A is noetherian.

A semidefinite characterization of the square root ideal

For each $k \in \mathbb{N}$, let $\overrightarrow{x_{k}}$ denote the column vector of the first k monomials in $\mathbb{R}[\underline{X}]$ with respect to an arbitrary but fixed numbering of the monomials.

A semidefinite characterization of the square root ideal

For each $k \in \mathbb{N}$, let $\overrightarrow{x_{k}}$ denote the column vector of the first k monomials in $\mathbb{R}[\underline{X}]$ with respect to an arbitrary but fixed numbering of the monomials.

Each matrix $W \in \mathbb{R}^{k \times m}$ represents a polynomial $\operatorname{pol}(W):=\overrightarrow{x_{k}}{ }^{*} W \overrightarrow{x_{m}}$.

A semidefinite characterization of the square root ideal

For each $k \in \mathbb{N}$, let $\overrightarrow{x_{k}}$ denote the column vector of the first k monomials in $\mathbb{R}[\underline{X}]$ with respect to an arbitrary but fixed numbering of the monomials.

Each matrix $W \in \mathbb{R}^{k \times m}$ represents a polynomial $\operatorname{pol}(W):=\overrightarrow{x_{k}}{ }^{*} W \overrightarrow{x_{m}}$.
If $I \subseteq \mathbb{R}[\underline{X}]$ is an ideal, then

$$
\begin{aligned}
\sqrt[2]{I}=\left\{\operatorname{pol}(W) \mid k, m \in \mathbb{N}, U \in S \mathbb{R}^{m \times m},\right. & W \in \mathbb{R}^{k \times m}, \\
& \left.\operatorname{pol}(U) \in I, U \succeq W^{*} W\right\} .
\end{aligned}
$$

A semidefinite characterization of the square root ideal

For each $k \in \mathbb{N}$, let $\overrightarrow{x_{k}}$ denote the column vector of the first k monomials in $\mathbb{R}[\underline{X}]$ with respect to an arbitrary but fixed numbering of the monomials.

Each matrix $W \in \mathbb{R}^{k \times m}$ represents a polynomial $\operatorname{pol}(W):=\overrightarrow{x_{k}} * W \overrightarrow{x_{m}}$.
If $I \subseteq \mathbb{R}[\underline{X}]$ is an ideal, then

$$
\begin{aligned}
\sqrt[2]{I}=\left\{\operatorname{pol}(W) \mid k, m \in \mathbb{N}, U \in S \mathbb{R}^{m \times m},\right. & W \in \mathbb{R}^{k \times m} \\
& \left.\operatorname{pol}(U) \in I, U \succeq W^{*} W\right\} .
\end{aligned}
$$

Note that here $U \succeq W^{*} W \Longleftrightarrow\left(\begin{array}{cc}U & W^{*} \\ W & I_{k}\end{array}\right) \succeq 0$.

Semidefinite programming duality

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $\quad c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $-\operatorname{tr}\left(A_{0} S\right)$ subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0
$$

$$
\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize $c_{0}-\operatorname{tr}\left(A_{0} S\right)$ subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-\operatorname{tr}\left(A_{0} S\right)=a$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $\operatorname{tr}\left(A_{1} S\right)=c_{1}, \ldots, \operatorname{tr}\left(A_{n} S\right)=c_{n}$ $c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{1}=\operatorname{tr}\left(A_{1} S\right), \ldots, c_{n}=\operatorname{tr}\left(A_{n} S\right)$
$c_{0}-a=\operatorname{tr}\left(A_{0} S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0, a \in \mathbb{R}
$$

$$
c_{0}-a+c_{1} X_{1}+\cdots+c_{n} X_{n}=
$$

$$
\operatorname{tr}\left(A_{0} S\right)+X_{1} \operatorname{tr}\left(A_{1} S\right)+\cdots+X_{n} \operatorname{tr}\left(A_{n} S\right)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$

$$
c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=
$$

$$
\operatorname{tr}\left(A_{0} S+X_{1} A_{1} S+\cdots+X_{n} A_{n} S\right)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ as follows:
$(P) \quad$ minimize $c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$ $c_{0}+c_{1} X_{1}+\cdots+c_{n} X_{n}-a=$ $\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a
subject to $S \in S \mathbb{R}^{m \times m}$
$S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}\left(\left(A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}\right) S\right)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$ $S \succeq 0, a \in \mathbb{R}$
$\ell-a=$
$\operatorname{tr}(L S)$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
(P) minimize $\ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}$

$$
S \succeq 0, a \in \mathbb{R}
$$

$$
\ell-a=\operatorname{tr}(L S)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$

$$
L(x) \succeq 0
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1 ,

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$
\begin{array}{cl}
(P) & \text { minimize } \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{array}
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$
$L(x) \succeq 0$
(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$. We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear,

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$
$L(x) \succeq 0$
(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

We call a polynomial $\ell \in \mathbb{R}[\underline{X}]$ linear if it is of degree at most 1, i.e., there are $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that $\ell=c_{0} X_{1}+c_{1} X_{1}+\cdots+c_{n} X_{n}$.

We call a matrix polynomial $L \in \mathbb{R}[\underline{X}]^{m \times m}$ a pencil if it is symmetric and linear, i.e., there are $A_{0}, A_{1}, \ldots, A_{n} \in S \mathbb{R}^{m \times m}$ such that $L=A_{0}+X_{1} A_{1}+\cdots+X_{n} A_{n}$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$ subject to $\quad x \in \mathbb{R}^{n}$ $L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) $\begin{aligned} \text { maximize } & a \\ \text { subject to } & S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R} \\ & S \succeq 0 \\ & \ell-a=\operatorname{tr}(L S)\end{aligned}$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $\quad x \in \mathbb{R}^{n}$
$L(x) \succeq 0$
(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$
$S \succeq 0$
$\ell-a=\operatorname{tr}(L S)$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:
$(P) \quad$ minimize $\quad \ell(x)$
subject to $x \in \mathbb{R}^{n}$
$L(x) \succeq 0$
(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior.

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$
\begin{aligned}
(P) & \text { minimize } \\
\text { subject to } & x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a subject to $\quad S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$ $S \succeq 0$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap).

Semidefinite programming duality

A semidefinite program (P) and its standard dual (D) is given by a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ and a linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ as follows:

$$
\begin{aligned}
& (P) \quad \text { minimize } \quad \ell(x) \\
& \text { subject to } \quad x \in \mathbb{R}^{n} \\
& L(x) \succeq 0
\end{aligned}
$$

(D) maximize a subject to $S \in S \mathbb{R}^{m \times m}, a \in \mathbb{R}$

$$
S \succeq 0
$$

$$
\ell-a=\operatorname{tr}(L S)
$$

Weak duality: If x is feasible in (P) and (S, a) is feasible in (D), then $\ell(x) \geq a$. Indeed, $\ell(x)-a=\operatorname{tr}(L(x) S) \geq 0$ since the trace of the product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by $P^{*}, D^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ the optimal values of (P) and (D) respectively. Suppose that the feasible set of (P) has nonempty interior. Then $P^{*}=D^{*}$ (zero gap). Moreover, if $P^{*}=D^{*} \in \mathbb{R}$, then (D) attains the common optimal value (dual attainment).

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior.

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\} .
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

Each pencil $L \in \mathbb{R}[X]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\}
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

" $\Longleftarrow " ~ i s ~ w e a k ~ d u a l i t y: ~ I t ~ i s ~ t r i v i a l ~ s i n c e ~ t h e ~ r e p r e s e n t a t i o n ~$ $\ell=a+\operatorname{tr}(L S)$ is a certificate of nonnegativity on S_{L}.

Each pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ defines a spectrahedron

$$
S_{L}:=\left\{x \in \mathbb{R}^{n} \mid L(x) \succeq 0\right\}
$$

and a convex cone

$$
C_{L}:=\left\{\ell \in \mathbb{R}[\underline{X}]_{1} \mid \exists a \in \mathbb{R}_{\geq 0}: \exists S \in S \mathbb{R}_{\succeq 0}^{m \times m}: \ell=a+\operatorname{tr}(L S)\right\} .
$$

The duality we just formulated for our standard primal-dual pair of semidefinite programs can easily be reformulated as follows:

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be a linear polynomial. Suppose that S_{L} has non-empty interior. Then

$$
\ell \geq 0 \text { on } S_{L} \Longleftrightarrow \ell \in C_{L} .
$$

" $\Longleftarrow " ~ i s ~ w e a k ~ d u a l i t y: ~ I t ~ i s ~ t r i v i a l ~ s i n c e ~ t h e ~ r e p r e s e n t a t i o n ~$ $\ell=a+\operatorname{tr}(L S)$ is a certificate of nonnegativity on S_{L}.
" \Longrightarrow " is strong duality: It is a theorem about existence of a nonnegativity certificate.

Problem: The theorem fails in general if S_{L} has empty interior.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming. We want a version of Farkas' lemma characterizing all infeasible pencils.

Problem: The theorem fails in general if S_{L} has empty interior.
This is really a problem since one is interested for example in how to decide whether $S_{L}=\varnothing$ (semidefinite feasibility problem).

Definition: Call a pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ infeasible if $S_{L}=\varnothing$. In this case, call it strongly infeasible if

$$
\operatorname{dist}\left(\left\{L(x) \mid x \in \mathbb{R}^{n}\right\}, S \mathbb{R}_{\succeq 0}^{m \times m}\right)>0,
$$

and weakly infeasible otherwise.
Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if $-1 \in C_{L}$.

Diagonal pencils are never weakly infeasible. For them, Sturm's proposition collapses to Farkas' lemma from linear programming. We want a version of Farkas' lemma characterizing all infeasible pencils. More generally, we want a duality theory for semidefinite programming where strong duality always holds.

Idea: Allow more general certificates for nonnegativity on S_{L}.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable,

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[X]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on d for fixed n.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on d for fixed n.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on n for fixed d.

Idea: Allow more general certificates for nonnegativity on S_{L}.
Definition: Let $S \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil. We call S an sos-matrix if it satisfies the following equivalent conditions:
(i) $S=P^{*} P$ for some $s \in \mathbb{N}_{0}$ and some $P \in \mathbb{R}[\underline{X}]^{s \times m}$,
(ii) $S=\sum_{i=1}^{r} Q_{i}^{*} Q_{i}$ for some $r \in \mathbb{N}_{0}$ and $Q_{i} \in \mathbb{R}[\underline{X}]^{m \times m}$,
(iii) $S=\sum_{i=1}^{t} w_{i} w_{i}^{*}$ for some $t \in \mathbb{N}_{0}$ and $w_{i} \in \mathbb{R}[\underline{X}]^{m}$.

Remark: The convex cone of sos-matrices of degree at most $2 d$ is semidefinitely representable, i.e., a projection of a spectrahedron. This is just a generalization of the well known Gram matrix method for $\mathbb{R}[\underline{X}]=\mathbb{R}[\underline{X}]^{1 \times 1}$ due to Kojima and Hol \& Scherer. In other words, being an sos-matrix of degree at most $2 d$ can be expressed as a constraint of a semidefinite program by means of additional variables. The size of the semidefinite description (of this constraint) depends polynomially on n for fixed d.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X], w_{i} \in \mathbb{R}[X]^{m}\right\}
$$

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the quadratic module associated to L by
$M_{L}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix }\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X], w_{i} \in \mathbb{R}[X]^{m}\right\}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by

$$
\begin{gathered}
M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}] \text { sos-polynomial, deg } s \leq 2 d \\
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\} \\
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
\end{gathered}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by
$M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}]$ sos-polynomial, $\operatorname{deg} s \leq 2 d$

$$
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\}
$$

$$
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}^{\left(2^{n}-1\right)}$.

A naive sos Farkas' lemma for semidefinite programming Observation: If $L \in \mathbb{R}[X]^{m \times m}$ is a pencil and $S \in \mathbb{R}[X]^{m \times m}$ is an sos-matrix, then $\operatorname{tr}(L S)$ is obviously a polynomial nonnegative on S_{L}.

Definition: For a pencil $L \in \mathbb{R}[X]^{m \times m}$, define the d-truncated quadratic module associated to L by

$$
\begin{gathered}
M_{L}^{(d)}:=\{s+\operatorname{tr}(L S) \mid s \in \mathbb{R}[\underline{X}] \text { sos-polynomial, } \operatorname{deg} s \leq 2 d \\
\left.S \in \mathbb{R}[\underline{X}]^{m \times m} \text { sos-matrix, } \operatorname{deg} S \leq 2 d\right\} \\
=\left\{\sum_{i} p_{i}^{2}+\sum_{i} w_{i}^{*} L w_{i} \mid p_{i} \in \mathbb{R}[X]_{d}, w_{i} \in \mathbb{R}[X]_{d}^{m}\right\}
\end{gathered}
$$

Theorem: A pencil $L \in \mathbb{R}[\underline{X}]^{m \times m}$ is infeasible if and only if $-1 \in M_{L}^{\left(2^{n}-1\right)}$.

Problems: This gives a way of expressing infeasibility of an SDP by feasibility of another SDP whose size is however exponential. Moreover this is not yet strong duality.

How to control the complexity?

Lemma: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,

How to control the complexity?
Lemma: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

How to control the complexity?
Lemma: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

Now set $\vec{x}:=\left(\begin{array}{lllll}1 & X_{1} & X_{2} & \ldots & X_{n}\end{array}\right)^{*} \in \mathbb{R}[X]^{m}$ und

$$
\vec{y}:=\left(\begin{array}{llll}
1 & X_{1} & \ldots X_{n}^{2}
\end{array}\right)^{*} \in \mathbb{R}[\underline{X}]^{k} .
$$

$$
\text { (also } m=n+1 \text { und } k=1+2 n+\binom{n}{2} \text {). }
$$

How to control the complexity?
Lemma: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

$$
\left.\begin{array}{rl}
\text { Now set } \vec{x} & :=\left(\begin{array}{llll}
1 & X_{1} & X_{2} & \ldots X_{n}
\end{array}\right)^{*} \in \mathbb{R}[\underline{X}]^{m} \text { und } \\
\vec{y} & :=\left(\begin{array}{llll}
1 & X_{1} & \ldots X_{n}^{2}
\end{array}\right)^{*} \in \mathbb{R}[\underline{X}]^{k} . \\
\text { (also } m & =n+1 \text { und } k=1+2 n+\binom{n}{2}
\end{array}\right) . ~ \$
$$

Lemma: Let $\ell_{1}, \ldots, \ell_{t} \in \mathbb{R}[\underline{X}]$ be linear and $q_{1}, \ldots, q_{t} \in \mathbb{R}[\underline{X}]$ be quadratic. Let $U \in \mathbb{R}^{m \times m}$ be such that

$$
\vec{x}^{*} U \vec{x}=\ell_{1}^{2}+\cdots+\ell_{t}^{2}
$$

How to control the complexity?
Lemma: For any pencil $L \in \mathbb{R}[X]^{m \times m}$, the following are equivalent:
(i) S_{L} has empty interior,
(ii) There exists a non-zero linear polynomial $\ell \in \mathbb{R}[\underline{X}]$ and a quadratic sos-matrix $S \in S \mathbb{R}[\underline{X}]^{m \times m}$ such that $-\ell^{2}=\operatorname{tr}(L S)$.

$$
\left.\begin{array}{rl}
\text { Now set } \vec{x} & :=\left(\begin{array}{llll}
1 & X_{1} & X_{2} & \ldots X_{n}
\end{array}\right)^{*} \in \mathbb{R}[\underline{X}]^{m} \text { und } \\
\vec{y} & :=\left(\begin{array}{llll}
1 & X_{1} & \ldots X_{n}^{2}
\end{array}\right)^{*} \in \mathbb{R}[\underline{X}]^{k} . \\
\text { (also } m & =n+1 \text { und } k=1+2 n+\binom{n}{2}
\end{array}\right) . ~ \$
$$

Lemma: Let $\ell_{1}, \ldots, \ell_{t} \in \mathbb{R}[\underline{X}]$ be linear and $q_{1}, \ldots, q_{t} \in \mathbb{R}[\underline{X}]$ be quadratic. Let $U \in \mathbb{R}^{m \times m}$ be such that

$$
\vec{x}^{*} U \vec{x}=\ell_{1}^{2}+\cdots+\ell_{t}^{2}
$$

Then there exists $\lambda>0$ and $W \in \mathbb{R}^{k \times m}$ such that $\lambda U \succeq W^{*} W$ and

$$
\vec{y}^{*} W \vec{x}=\ell_{1} q_{1}+\cdots+\ell_{t} q_{t}
$$

The sums of squares dual of a semidefinite program It can now be shown that the following provides a duality theory for semidefinite programming where strong duality (zero gap \& dual attainment) always holds. Note that the size of the dual (which we do not explicit) is polynomial in the size of the primal.

Theorem: Let $L \in \mathbb{R}[\underline{X}]^{m \times m}$ be a pencil and $\ell \in \mathbb{R}[\underline{X}]$ be linear. Then $\ell \geq 0$ on S_{L} if and only if there exist

- quadratic sos-matrices $S_{1}, \ldots, S_{n} \in \mathbb{R}[\underline{X}]^{m \times m}$,
- matrices $U_{1}, \ldots, U_{n} \in S \mathbb{R}^{m \times m}, W_{1}, \ldots, W_{n} \in \mathbb{R}^{k \times m}$, $S \in S \mathbb{R}_{\succeq 0}^{m \times m}$ and
- a real number $a \geq 0$
such that

$$
\begin{array}{ll}
\vec{x}^{*} U_{i} \vec{x}+\vec{y}^{*} W_{i-1} \vec{x}+\operatorname{tr}\left(L S_{i}\right)=0 & (i \in\{1, \ldots, n\}), \\
U_{i} \succeq W_{i}^{*} W_{i} & (i \in\{1, \ldots, n\}), \\
\ell+\vec{y}^{*} W_{n} \vec{x}=a+\operatorname{tr}(L S) &
\end{array}
$$

where $W_{0}:=0$.

Based on other ideas, such a duality theory has also been given by Matt Ramana:
M. Ramana: An exact duality theory for semidefinite programming and its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540\&rep=rep1\&type=pdf
http://dx.doi.org/10.1007/BF02614433
See also:
Ramana \& Tunçel \& Wolkowicz: Strong duality for semidefinite programming
SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

[^0]: ${ }^{1}$ joint work with Tim Netzer
 ${ }^{2}$ joint work with Igor Klep

