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A semidefinite characterization of the square root ideal

For each k ∈ N, let −→xk denote the column vector of the first k
monomials in R[X ] with respect to an arbitrary but fixed numbering of
the monomials.

Each matrix W ∈ Rk×m represents a polynomial pol(W ) := −→xk
∗W−→xm.

If I ⊆ R[X ] is an ideal, then

2√I = {pol(W ) | k ,m ∈ N,U ∈ SRm×m,W ∈ Rk×m,

pol(U) ∈ I ,U �W ∗W }.

Note that here U �W ∗W ⇐⇒
(
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Each pencil L ∈ R[X ]m×m defines a spectrahedron

SL := {x ∈ Rn | L(x) � 0}

and a convex cone

CL := {` ∈ R[X ]1 | ∃a ∈ R≥0 : ∃S ∈ SRm×m
�0 : ` = a + tr(LS)}.

The duality we just formulated for our standard primal-dual pair of
semidefinite programs can easily be reformulated as follows:

Theorem: Let L ∈ R[X ]m×m be a pencil and ` ∈ R[X ] be a linear
polynomial. Suppose that SL has non-empty interior. Then

` ≥ 0 on SL ⇐⇒ ` ∈ CL.

“⇐=” is weak duality: It is trivial since the representation
` = a + tr(LS) is a certificate of nonnegativity on SL.

“=⇒” is strong duality: It is a theorem about existence of a
nonnegativity certificate.
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Problem: The theorem fails in general if SL has empty interior.

This is really a problem since one is interested for example in how to
decide whether SL = ∅ (semidefinite feasibility problem).

Definition: Call a pencil L ∈ R[X ]m×m infeasible if SL = ∅. In this
case, call it strongly infeasible if

dist({L(x) | x ∈ Rn}, SRm×m
�0 ) > 0,

and weakly infeasible otherwise.

Proposition (Jos Sturm): A pencil L is strongly infeasible if and only if
−1 ∈ CL.

Diagonal pencils are never weakly infeasible. For them, Sturm’s
proposition collapses to Farkas’ lemma from linear programming. We
want a version of Farkas’ lemma characterizing all infeasible pencils.
More generally, we want a duality theory for semidefinite programming
where strong duality always holds.
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Idea: Allow more general certificates for nonnegativity on SL.

Definition: Let S ∈ R[X ]m×m be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:
(i) S = P∗P for some s ∈ N0 and some P ∈ R[X ]s×m,
(ii) S =

∑r
i=1 Q∗i Qi for some r ∈ N0 and Qi ∈ R[X ]m×m,

(iii) S =
∑t

i=1 wiw∗i for some t ∈ N0 and wi ∈ R[X ]m.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable, i.e., a projection of a spectrahedron. This
is just a generalization of the well known Gram matrix method for
R[X ] = R[X ]1×1 due to Kojima and Hol & Scherer. In other words,
being an sos-matrix of degree at most 2d can be expressed as a
constraint of a semidefinite program by means of additional variables.
The size of the semidefinite description (of this constraint) depends
polynomially on d for fixed n.
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A naive sos Farkas’ lemma for semidefinite programming
Observation: If L ∈ R[X ]m×m is a pencil and S ∈ R[X ]m×m is an
sos-matrix, then tr(LS) is obviously a polynomial nonnegative on SL.

Definition: For a pencil L ∈ R[X ]m×m, define the

d -truncated

quadratic module associated to L by

M

(d)

L := {s + tr(LS) |s ∈ R[X ] sos-polynomial

, deg s ≤ 2d

S ∈ R[X ]m×m sos-matrix}

=
{∑

i

p2
i +

∑
i

w∗i Lwi | pi ∈ R[X ]

d

,wi ∈ R[X ]m

d

}

Problems: This gives a way of expressing infeasibility of an SDP by
feasibility of another SDP whose size is however exponential.
Moreover this is not yet strong duality.
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How to control the complexity?
Lemma: For any pencil L ∈ R[X ]m×m, the following are equivalent:

(i) SL has empty interior,

(ii) There exists a non-zero linear polynomial ` ∈ R[X ] and a
quadratic sos-matrix S ∈ SR[X ]m×m such that −`2 = tr(LS).

Now set −→x := (1 X1 X2 . . . Xn)
∗ ∈ R[X ]m und

−→y := (1 X1 . . .X 2
n )∗ ∈ R[X ]k .

(also m = n + 1 und k = 1 + 2n +
(n
2

)
).

Lemma: Let `1, . . . , `t ∈ R[X ] be linear and q1, . . . , qt ∈ R[X ] be
quadratic. Let U ∈ Rm×m be such that

−→x ∗U−→x = `21 + · · ·+ `2t .

Then there exists λ > 0 and W ∈ Rk×m such that λU �W ∗W and
−→y ∗W−→x = `1q1 + · · ·+ `tqt .
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The sums of squares dual of a semidefinite program
It can now be shown that the following provides a duality theory for
semidefinite programming where strong duality (zero gap & dual
attainment) always holds. Note that the size of the dual (which we do
not explicit) is polynomial in the size of the primal.

Theorem: Let L ∈ R[X ]m×m be a pencil and ` ∈ R[X ] be linear. Then
` ≥ 0 on SL if and only if there exist

I quadratic sos-matrices S1, . . . , Sn ∈ R[X ]m×m,
I matrices U1, . . . ,Un ∈ SRm×m, W1, . . . ,Wn ∈ Rk×m,

S ∈ SRm×m
�0 and

I a real number a ≥ 0
such that

−→x ∗Ui
−→x +−→y ∗Wi−1

−→x + tr(LSi ) = 0 (i ∈ {1, . . . , n}),
Ui �W ∗

i Wi (i ∈ {1, . . . , n}),
`+−→y ∗Wn

−→x = a + tr(LS)

where W0 := 0.



Based on other ideas, such a duality theory has also been given by
Matt Ramana:
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its complexity implications
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02614433
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Ramana & Tunçel & Wolkowicz: Strong duality for semidefinite
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SIAM J. Optim. 7 (1997), Issue 3, 641–662 (1997)
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