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Abstract. A linear matrix inequality (LMI) is a condition stating that a

symmetric matrix whose entries are affine linear combinations of variables is

positive semidefinite. Motivated by the fact that diagonal LMIs define poly-

hedra, the solution set of an LMI is called a spectrahedron. Linear images of

spectrahedra are called semidefinitely representable sets. Part of the interest in

spectrahedra and semidefinitely representable sets arises from the fact that one

can efficiently optimize linear functions on them by semidefinite programming,

like one can do on polyhedra by linear programming.

It is known that every face of a spectrahedron is exposed. This is also true

in the general context of rigidly convex sets. We study the same question for

semidefinitely representable sets. Lasserre proposed a moment matrix method

to construct semidefinite representations for certain sets. Our main result is

that this method can only work if all faces of the considered set are exposed.

This necessary condition complements sufficient conditions recently proved by

Lasserre, Helton and Nie.

Introduction

A linear matrix polynomial is a symmetric matrix whose entries are real linear
polynomials in n variables. Such a matrix can be evaluated in any point of Rn, and
the set of points where it is positive semidefinite is a closed convex subset of Rn.
If the matrix is diagonal, the resulting set is a polyhedron. Since sets defined by
general linear matrix polynomials inherit certain properties from polyhedra, they
are called spectrahedra. Sometimes also the term LMI (representable) sets has been
used.

Spectrahedra have long been of interest in applications, see for example the book
of Boyd, El Ghaoui, Feron, and Balakrishnan [5]. Most importantly, spectrahedra
are the feasible sets of semidefinite programs, which have been much studied in
recent years, as explained for example in Vandenberghe and Boyd [23]. Semidefinite
programming is a generalization of linear programming for which there exist efficient
algorithms.

Projections of spectrahedra will be called semidefinitely representable sets. They
are still useful for optimization. Indeed, instead of optimizing a linear function
on the projection, one can optimize the same function on the higher dimensional
spectrahedron itself.

In recent years, the fundamental question to characterize spectrahedra and their
projections geometrically has gained a lot of attention. Helton and Vinnikov have
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introduced the notion of rigid convexity, which is an obvious property of spectra-
hedra. They show that in dimension two this property characterizes spectrahedra,
and conjecture that the same is true in arbitrary dimension [9]. As for semidefi-
nitely representable sets, the only known property besides convexity is that they
are semialgebraic, i.e. described by a boolean combination of polynomial inequal-
ities. Indeed, Helton and Nie conjecture that every convex semialgebraic set is
semidefinitely representable [7]. Lasserre proposed a construction to approximate
convex semialgebraic sets by semidefinitely representable sets [12]. Under certain
conditions this approximation is exact, i.e. the original set is semidefinitely rep-
resentable itself. Helton and Nie have shown that these conditions are satisfied
for a surprisingly large class of sets, see [9] Theorem 5.1. They also prove that
Lasserre’s method can be applied locally for compact sets. This allows them to
show semidefinite representability for an even larger class of sets.

In this work, we investigate the facial geometry of spectrahedra, rigidly convex
sets and semidefinitely representable sets. It is known that all faces of a spectrahe-
dron are exposed. We review this fact in Section 2 and prove the same for rigidly
convex sets, as a consequence of Renegar’s result for hyperbolicity cones [20]. Our
main result is Theorem 3.5 in Section 3. We prove that Lasserre’s construction
can only be exact if all faces of the considered convex set are exposed. This is
a necessary condition which complements the sufficient conditions from the above
mentioned literature. We use real algebra, basic model theory, and convex geometry
in our proof.

1. Preliminaries

Let R[t] denote the polynomial ring in n variables t = (t1, . . . , tn) with coefficients
in R. A subset S of Rn is called basic closed if there exist polynomials p1, . . . , pm ∈
R[t] such that

S = S (p1, . . . , pm) =
{
x ∈ Rn

∣∣ p1(x) > 0, . . . , pm(x) > 0
}
.

A linear matrix polynomial (of dimension k in the variables t) is a linear polynomial
whose coefficients are real symmetric k × k-matrices, i.e. an expression A(t) =
A0 + t1A1 + · · · + tnAn with A0, . . . , An ∈ Symk(R). A subset S of Rn is called
a spectrahedron, if it is defined by a linear matrix inequality, i.e. if there exists a
linear matrix polynomial A(t) such that

S = S (A) =
{
x ∈ Rn

∣∣A(x) = A0 + x1A1 + · · ·+ xnAn � 0
}
,

where � 0 denotes positive semidefiniteness. It is obvious that spectrahedra are
closed and convex. They are also basic closed: A real symmetric matrix is posi-
tive semidefinite if and only if the coefficients of its characteristic polynomial have
alternating signs; write

det(A(t)− sIk) = c0(t) + c1(t)s+ · · ·+ ck−1(t)sk−1 + (−1)ksk

with pi ∈ R[t], then

S (A) = S (c0,−c1, . . . , (−1)k−1ck−1).

A further property of spectrahedra is their rigid convexity: A polynomial p ∈ R[t] is
called a real zero polynomial with respect to e ∈ Rn (RZe-polynomial) if p(e) > 0 and
all zeros of the univariate polynomial p(e+sv) ∈ R[s] are real, for every v ∈ Rn\{0}.
A set S is called rigidly convex if there exists e ∈ S and an RZe-polynomial p
such that S is the closure of the connected component of {x ∈ Rn | p(x) > 0}
containing e. Rigid convexity was introduced and studied by Helton and Vinnikov
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[9]. Rigidly convex sets are convex (see Section 5.3 in [9]); they are also basic
closed (see Remark 2.6 below). Furthermore, any spectrahedron with non-empty
interior is rigidly convex. The principal reason is that if A(t) is a linear matrix
polynomial with A0 � 0, then p(t) = det(A(t)) is an RZ0-polynomial defining
S (A) (see [9], Thm. 2.2). A much harder question is whether every rigidly convex
set is a spectrahedron. This has been shown for n = 2 and conjectured in general
by Helton and Vinnikov in [9]. The question is closely related to the famous Lax-
conjecture.

A subset S of Rn is called semidefinitely representable if it is the image of a spec-
trahedron S′ in Rm under a linear map Rm → Rn. A linear matrix representation
of S′ together with the linear map is called a semidefinite representation of S. In
contrast to spectrahedra, no necessary conditions other than convexity are known
for a semialgebraic set to be semidefinitely representable.

Various sufficient conditions have recently been given by Lasserre [12] as well as
Helton and Nie [8], [7]. Moreover, it has been shown that various operations, like
taking the interior or taking the convex hull of a finite union, preserve semidefinite
representability, see [16] and [15].

2. Faces of spectrahedra and rigidly convex sets

In this section, we study the facial structure of spectrahedra and rigidly convex
sets (see also [6] for a discussion of facial structures in a more abstract setting).
We review the result of Ramana and Goldman that every spectrahedron has only
exposed faces. We then discuss how the same result can be proven for rigidly convex
sets, mostly by going back to Renegar’s corresponding result for hyperbolicity cones.

Definitions 2.1. Let S be a closed convex subset of Rn with non-empty interior.
A supporting hyperplane of S is an affine hyperplane H in Rn such that S ∩H 6= ∅
and S \H is connected (equivalently, the zero set of a linear polynomial 0 6= ` ∈ R[t]
such that ` > 0 on S and {` = 0} ∩ S 6= ∅).

A face of S is a non-empty convex subset F ⊆ S with the following property:
For every x, y ∈ S, λ ∈ (0, 1), if λx+ (1− λ)y ∈ F , then x, y ∈ F .

A face F of S is called exposed if either F = S or there exists a supporting
hyperplane H of S such that H ∩ S = F . The hyperplane H is said to expose F .

The dimension of a face F is the dimension of its affine hull.

Remarks 2.2.
(1) H ∩ S is an exposed face of S for any supporting hyperplane H of S.
(2) For every face F ( S there exists a supporting hyperplane H of S such

that F ⊆ H.
(3) Every face of S is closed (since S is closed).
(4) If F1, F2 are faces of S with F1 ( F2, then dim(F1) < dim(F2).
(5) Let F be a face of S, and take x0 in the relative interior of F . For any

two points x 6= y ∈ Rn, let g(x, y) denote the line passing through x and y.
Then F consists exactly of x0 and those points x ∈ S \ {x0} such that x0

lies in the relative interior of g(x, x0) ∩ S.

The following is a combination of Theorem 1 and Corollary 1 in [19] (see Corol-
lary 1 in [6] for a more general statement).

Theorem 2.3 (Ramana and Goldman). Let A(t) be a linear matrix polynomial of
dimension k, S = S (A). For every linear subspace U of Rk, the set

FU =
{
x ∈ S | U ⊆ ker

(
A(x)

)}
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is a face of S or empty, and every face of S is of this form. Furthermore, every
face of S is exposed.

A similar result can be proven for rigidly convex sets, by reducing to the results of
Renegar on hyperbolicity cones that we now describe: A homogeneous polynomial
P in n+1 variables is called hyperbolic with respect to e ∈ Rn+1\{0} if P (e) > 0 and
all zeros of the univariate polynomial P (x− se) ∈ R[s] are real, for every x ∈ Rn+1.
The hyperbolicity cone of P is the connected component of {P > 0} containing e.
It is a convex cone in Rn+1. Its closure is called the closed hyperbolicity cone of P .

Theorem 2.4 (Renegar [20], Thm. 23). The faces of a closed hyperbolicity cone
are exposed.

Corollary 2.5. The faces of a rigidly convex set are exposed.

Proof. It is well-known and easy to see that a polynomial p ∈ R[t] is an RZe-
polynomial if and only if the homogenisation P (t, u) = udp( tu ) is hyperbolic with
respect to ẽ = (e, 1). Furthermore, the rigidly convex set S ⊆ Rn defined by
p (i.e. the closure of the connected component of {p > 0} containing e) is the
intersection of C, the closed hyperbolicity cone of P in Rn+1, with the hyperplane
H = {u = 1}.

Let F0 be a face of S. For any two points x 6= y ∈ Rn+1, let g(x, y) denote the
line passing through x and y. Take x0 in the relative interior of F0, and let F be
the set of all points z ∈ C such that x0 lies in the relative interior of g(z, x0) ∩ C.
One checks that F is a face of C and that F ∩H = F0 (see Remark 2.2 (5)). Since
F is exposed by Thm. 2.4, so is F0. �

The idea of the proof of Renegar’s theorem is the following: Let P be a ho-
mogeneous polynomial in n + 1 variables (t, u) that is hyperbolic with respect to
e ∈ Rn+1 \ {0}, and let C be the closed hyperbolicity cone of P . For every k > 0,
put

P (k)(t, u) =
dk

dsk
P
(
(t, u) + se

)∣∣∣∣
s=0

.

The polynomials P (k) are again hyperbolic with respect to e (by Rolle’s theorem)
and the corresponding closed hyperbolicity cones C(k) form an ascending chain
C = C(0) ⊆ C(1) ⊆ C(2) ⊆ · · · . For x ∈ C, define mult(x) as the multiplicity of 0
as a zero of the univariate polynomial P (x+se) ∈ R[s]. If mult(x) = m, then x is a
boundary point of C(m−1) and a regular point of {P (m−1) = 0}, i.e. (OP (m−1))(x) 6=
0. Now if F is a face of C and x is in the relative interior of F , then the tangent
space of P (m−1) in x exposes F as a face of C(m−1) and hence as a face of C.

This translates into the setting of rigid convexity as follows: Let p ∈ R[t] be
an RZ0-polynomial of degree d, and let S be the corresponding rigidly convex set;
write p =

∑d
i=0 pi with pi homogeneous of degree i, and put P (t, u) = udp( tu ) =∑d

i=0 pd−i(t)u
i. Define P (k) for k > 0 as above and put p(k)(t) = P (k)(t, 1), so that

p(k)(t) =
d∑
i=k

i!
(i− k)!

pd−i(t).

The polynomials p(k) are again RZ0-polynomials and the corresponding rigidly con-
vex sets form an ascending chain S = S(0) ⊆ S(1) ⊆ S(2) ⊆ · · · . For any x ∈ S,
we find that mult(x) is the multiplicity of 0 as a zero of the univariate polynomial∑d
i=0 pd−i(x)(1 + s)i ∈ R[s]. A simple computation shows that mult(x) is also the

multiplicity of 1 as a zero of the univariate polynomial p(sx) ∈ R[s].
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Now let F be a face of S, let x be a point in the relative interior of F , and
put m = mult(x). Then x is a boundary point of S(m−1) and a regular point of
{p(m−1) = 0}. The tangent space {x+ v | (Op(m−1)(x))tv = 0} exposes F as a face
of S.

Remark 2.6. It follows from Renegar’s construction that closed hyperbolicity
cones and rigidly convex sets are basic closed semialgebraic sets. Namely, if C
is the closed hyperbolicity cone of a hyperbolic polynomial P of degree d, then
C = S (P, P (1), . . . , P (d−1)); similarly, if S is a rigidly convex set corresponding to
an RZ0-polynomial p of degree d, then S = S (p, p(1), . . . , p(d−1)).

Alternatively, one can use the fact that the closed hyperbolicity cone of P co-
incides with the set of all x ∈ Rn+1 such that all zeros of P (x − se) ∈ R[s] are
nonnegative. This translates to an alternating sign condition on the coefficients
with respect to s, as explained in Section 1.

Example 2.7. Let p = t31 − t21 − t1 − t22 + 1 ∈ R[t1, t2]. One checks that p is an
irreducible RZ0-polynomial. The corresponding rigidly convex set, i.e. the closure
of the connected component of {p > 0} containing 0, is the basic closed set S =
S (p, 1− t1).

We have mult(x) = 1 for every boundary point x ∈ ∂S\{(1, 0)}, and mult(1, 0) =
2. Furthermore, p(1) = −t21 − t22 − 2t1 + 3, p(2) = 6 − t1. Every x ∈ ∂S \ {(1, 0)}
is a regular point of {p = 0} and is exposed as a face of S by the tangent line to
{p = 0} in x. The point (1, 0) is a regular point of {p(1) = 0} and is exposed as a
face of S by the tangent line to that curve in (1, 0), which is t1 = 1. We also see
that S = S (p, p(1), p(2)) (though p(2) is redundant):

t1

t2

By the theorem of Helton and Vinnikov, S is a spectrahedron. Explicitly, let
A(t1, t2) = A0 + t1A1 + t2A2 with

A0 =

 2 0 1
0 1 0
1 0 1

 , A1 =

 −2 0 −1
0 −1 0
−1 0 0

 , A2 =

 0 1 0
1 0 0
0 0 0

 .

For the characteristic polynomial, one finds χA(s) = c0+c1s+c2s2−s3 with c0 = p,
c1 = −t21 +5t1 +t22−4, c2 = 4−3t1. One checks that S = S (A) = S (c0,−c1, c2) =
S (c0,−c1). This gives an alternative description of S as a basic closed set.
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t1

t2

3. Exposed faces and Lasserre relaxations

For a certain class of convex semialgebraic sets, Lasserre has given an explicit
semidefinite representation [12] (see [10] for a less well known but related construc-
tion), as follows: Let p = (p1, . . . , pm) be an m-tuple of real polynomials in n

variables t, and set p0 = 1. Let QM(p) be the quadratic module generated by p,
i.e.

QM(p) =

{
m∑
i=0

σipi
∣∣ σi ∈∑R[t]2

}
where

∑
R[t]2 = {f2

1 + · · · + f2
r |r > 0, f1, . . . , fr ∈ R[t]}. We denote by R[t]d the

finite-dimensional vector space of polynomials of degree at most d, and write R[t]∨d
for its (algebraic) dual. Define

QM(p)d =

{
m∑
i=0

σipi
∣∣ σi ∈∑R[t]2; σipi ∈ R[t]d

}
.

Note that the inclusion QM(p)d ⊆ QM(p) ∩R[t]d is in general not an equality. Let

L (p)d =
{
L ∈ R[t]∨d

∣∣ L|QM(p)d
> 0, L(1) = 1

}
.

It is well-known that L (p)d is a spectrahedron in R[t]∨d (see for example Marshall
[14], 10.5.4). Now consider the projection π : R[t]∨d → Rn, L 7→ (L(t1), . . . , L(tn))
and put

S(p)d = π
(
L (p)d

)
,

a semidefinitely representable subset of Rn. The idea is to compare S(p)d with
S = S (p), the basic closed set determined by p. Note first that S(p)d contains S
and therefore its convex hull: For if x ∈ S, let Lx ∈ R[t]∨d denote evaluation in x;
then Lx ∈ L (p)d and π(Lx) = x. Note also that the sets S(p)d form a decreasing
sequence, i.e.

S(p)d+1 ⊆ S(p)d
holds for all d.

We call the set S(p)d the d-th Lasserre relaxation of conv(S) with respect to
p. If there exists d > 0 such that S(p)d = conv(S), we say that conv(S) possesses
an exact Lasserre relaxation with respect to p. The existence of an exact Lasserre
relaxation is a sufficient condition for the semidefinite representability of conv(S).

A characterization for exactness of Lasserre relaxations is the following proposi-
tion. The implication (2)⇒(1) is [12], Thm. 2.
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Proposition 3.1. Assume that S = S (p) has non-empty interior. For d ∈ N, the
following are equivalent:

(1) conv(S) ⊆ S(p)d ⊆ conv(S);
(2) Every ` ∈ R[t]1 with `|S > 0 is contained in QM(p)d.

Proof. We include the proof of (2)⇒(1) for the sake of completeness. So assume
that (2) holds and suppose that there exists x ∈ S(p)d \ conv(S). Thus there is
` ∈ R[t]1 with `|S > 0 and `(x) < 0. Furthermore, there exists a linear functional
L : R[t]d → R such that L|QM(p)d

> 0, L(1) = 1, and x =
(
L(t1), . . . , L(tn)

)
. By

assumption, ` belongs to QM(p)d, so 0 6 L(`) = `(L(t1), . . . , L(tn)) = `(x) < 0, a
contradiction.

For the converse, assume that (1) holds, and suppose that there exists ` ∈ R[t]1
with `|S > 0 but ` /∈ QM(p)d. Since S has non-empty interior, QM(p)d is a
closed convex cone in R[t]d (see for example Marshall [14], Lemma 4.1.4, or Pow-
ers and Scheiderer [17], Proposition 2.6). Thus there exists a linear functional
L : R[t]d → R such that L|QM(p)d

> 0, L(1) = 1, and L(`) < 0 (note that L(1) = 1
is non-restrictive; see the little trick in Marshall [13], proof of Theorem 3.1). Since
x = (L(t1), . . . , L(tn)) ∈ S(p)d ⊆ conv(S), we have 0 6 `(x) = L(`) < 0, a contra-
diction. �

An immediate consequence is that if conv(S) is closed (for example if S is
compact or convex), then (2) implies that conv(S) is semidefinitely representable.
Lasserre shows that (2) is satisfied for certain classes of sets, for example if all pi
are linear or concave and quadratic. These results have been extended substantially
by Helton and Nie [8, 7].

In the following, we will give a necessary condition for (2) in the case that S is
convex. Namely, all faces of S must be exposed. The following lemma and its proof
are a special case of Prop. II.5.16 in Alfsen [1].

Lemma 3.2. Let S be a closed convex subset of Rn. A face F of S is exposed if
and only if for every x ∈ S \ F there exists a supporting hyperplane H of S with
F ⊆ H and x /∈ H.

Proof. Necessity is obvious. To prove sufficiency, write F =
⋂
k>1 Uk with Uk open

subsets of Rn such that Rn \ Uk is compact for every k > 1 (note that F is closed
by Remark 2.2 (3)). Fix k > 1. For each x ∈ S \Uk, we can choose by hypothesis a
linear polynomial `x ∈ R[t] such that {`x = 0} is a supporting hyperplane of S with
`x|F = 0 und `x(x) > 0. Since S\Uk is compact, we may choose x1, . . . , xm ∈ S\Uk
such that `k :=

∑m
i=1 `xi

is strictly positive on S \ Uk. Clearly, `k|F = 0. Put

` :=
∞∑
k=1

`k
2k · ||`k||

,

where ||·|| is a norm on the space of linear polynomials. Then {` = 0} is a supporting
hyperplane of S that exposes F . �

Lemma 3.3. Let S be a closed convex subset of Rn with non-empty interior. A face
F of S is exposed if and only if F ∩U is an exposed face of S ∩U for every affine-
linear subspace U of Rn containing F with dim(U) = dim(F )+2 and U∩int(S) 6= ∅.

Proof. Note first that the condition is empty if F is of dimension > n− 1. Indeed,
F is always exposed in that case by Remark 2.2 (2),(4). Thus we may assume that
n > 2 and dim(F ) 6 n− 2.
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If H exposes F and U ∩ int(S) is non-empty, then H ∩ U exposes F in S ∩ U .
Conversely, assume that F ∩U is an exposed face of S∩U for every U satisfying the
hypotheses. We want to apply the preceding lemma. Let x ∈ S \ F , then we must
produce a supporting hyperplane H of S containing F with x /∈ H. Choose U to
be an affine-linear subspace of Rn of dimension dim(F ) + 2 containing F such that
x ∈ U and U ∩ int(S) 6= ∅. By hypothesis, there exists a supporting hyperplane
G of S ∩ U in U that exposes F as a face of S ∩ U . In particular, x /∈ G. Since
G ∩ S = F , it follows that G ∩ int(S) = ∅, hence by separation of disjoint convex
sets (see e.g. Barvinok [3], Thm. III.1.2), there exists a hyperplane H that satisfies
G ⊆ H and H ∩ int(S) = ∅. Since U ∩ int(S) 6= ∅, it follows that G ⊆ H ∩ U ( U ,
hence G = H ∩ U . Thus H is a supporting hyperplane of S containing F with
x /∈ H. �

We need the following technical lemma.

Lemma 3.4. Let S be a convex subset and U be an affine-linear subspace of Rn
intersecting the interior of S. Suppose that ` : Rn → R is an affine linear function
such that ` > 0 on S ∩ U . Then there exists an affine linear function `′ : Rn → R
such that `′ > 0 on S and `′|U = `|U .

Proof. Let N := {x ∈ U | `(x) < 0} and S′ be the convex hull of {x ∈ U | `(x) >
0} ∪ S. Then N and S′ are convex sets that we now prove to be disjoint.

Assume for a contradiction that there are λ ∈ [0, 1], x ∈ U and y ∈ S such
that `(x) > 0 and λx + (1 − λ)y ∈ N . Since neither x nor y lies in N , we have
λ 6∈ {0, 1}. Since U is an affine linear subspace, λx + (1 − λ)y ∈ U now implies
y ∈ U and therefore `(y) > 0, leading to the contradiction 0 > `(λx+ (1− λ)y) =
λ`(x) + (1− λ)`(y) > 0.

Without loss of generality N 6= ∅ (otherwise `|U = 0 and we can take `′ = 0).
Then by separation of non-empty disjoint convex sets (e.g., Thm. III.1.2 in Barvinok
[3]), we get an affine linear `′ : Rn → R, not identically zero, such that `′ > 0 on
S′ and `′ 6 0 on N . In particular, `′ > 0 on S and `′ cannot vanish at an interior
point of S. Since U intersects by hypothesis the interior of S, it is not possible that
`′ vanishes identically on U . Moreover, all x ∈ U with `(x) = 0 lie at the same
time in S′ and in the closure of N , implying that `′(x) = 0. This shows that the
restrictions of ` and `′ on U are the same up to a positive factor which we may
assume to be 1 after rescaling. �

We are now ready for the main result:

Theorem 3.5. Let S = S (p) be a basic closed convex subset of Rn with non-empty
interior. Suppose that there exists d > 1 such that the d-th Lasserre relaxation of
S with respect to p is exact, i.e.

S(p)d = S

holds. Then all faces of S are exposed.

In view of Proposition 3.1, we have the following equivalent formulation of the
same theorem:

Theorem (Alternative formulation). Let S = S (p) be a basic closed convex subset
of Rn with non-empty interior. Suppose that there exists d > 1 such that every
linear polynomial ` with ` > 0 on S is contained in QM(p)d. Then all faces of S
are exposed.
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Proof. We begin by showing that it is sufficient to prove that all faces of dimension
n − 2 are exposed. Let F be a face of S of dimension e. For e > n − 1 there is
nothing to show, so assume e 6 n − 2. If F is not exposed, then by Lemma 3.3
there exists an affine-linear subspace U of Rn containing F with dim(U) = e + 2
and U ∩ int(S) 6= ∅ and such that F is a non-exposed face of S ∩ U . Furthermore,
by Lemma 3.4, for every linear polynomial ` that is psd on S ∩ U there exists a
linear polynomial `′ that is psd on S and agrees with ` on U . Upon replacing Rn
by U and S by S ∩ U , we reduce to the case e = n− 2.

Now assume for contradiction that d > 1 as in the statement exists and that F
is a face of dimension n− 2 that is not exposed.

Step 1. There is exactly one supporting hyperplane H of S that contains F . For
if `1, `2 are non-zero linear polynomials with `i|F = 0 and `i|S > 0, put W := {`1 =
0} ∩ {`2 = 0}. Then ` := `1 + `2 defines a supporting hyperplane {` = 0} of S with
{` = 0} ∩ S = W ∩ S. If `1, `2 are linearly independent, then dim(W ) = n − 2 =
dim(F ), hence F = {` = 0} ∩ S, contradicting the fact that F is not exposed.

We may assume after an affine change of coordinates that H = {t1 = 0}, t1 >
0 on S, and that 0 lies in the relative interior of F . Note that any supporting
hyperplane of S containing 0 must contain F and therefore coincide with H.

Since F is not exposed, F0 = H∩S is a face of dimension n−1 with F contained
in its relative boundary. In particular, it follows that F is also contained in the
closure of ∂S \H.

Step 2. By the curve selection lemma (see e.g. Thm. 2.5.5. in Bochnak, Coste,
and Roy [4]), we may choose a continuous semialgebraic path γ : [0, 1] → ∂S such
that γ(0) = 0 ∈ F , γ

(
(0, 1]

)
∩ H = ∅. We relabel p0, . . . , pm into two groups

f1, . . . , fr, g1, . . . , gs as follows:

fi|γ([0,1]) = 0 (i = 1, . . . , r)
gj |γ((0,1]) > 0 (j = 1, . . . , s)

(Indeed, after restricting γ to [0, α] for suitable α ∈ (0, 1] and reparametrizing, we
can assume that each pi falls into one of the above categories.)

We claim that there exists an expression

(∗) t1 =
r∑
i=1

ρifi +
s∑
j=1

σjgj

with ρi, σj ∈
∑

R[t]2 and such that σj(0) = 0 for all j = 1, . . . , s.
To prove the existence of the expression (∗), consider the following statement:

(†) For each λ ∈ (0, 1] there exists a linear polynomial `λ ∈ R[t]1 such that
`λ(γ(λ)) = 0, `λ > 0 on S, and ||`λ|| = 1. For this `λ, there exist ρ(λ)

i , σ
(λ)
j ∈∑

R[t]2d such that

`λ =
r∑
i=1

ρ
(λ)
i fi +

s∑
j=1

σ
(λ)
j gj

and such that
σ

(λ)
j (γ(λ)) = 0

for all j = 1, . . . , s.

The statement (†) is true, with d > 1 not depending on λ: For λ ∈ (0, 1], let
`λ ∈ R[t]1 be such that {`λ = 0} is a supporting hyperplane of S passing through
γ(λ), and such that ||`λ|| = 1 and `λ|S > 0. By hypothesis, `λ ∈ QM({fi}, {gj})d



10 TIM NETZER, DANIEL PLAUMANN, AND MARKUS SCHWEIGHOFER

with d not depending on λ, which yields the desired representation. Note that
σ

(λ)
j (γ(λ)) = 0 is automatic, since gj(γ(λ)) 6= 0, but `λ(γ(λ)) = 0.

Furthermore, because the degree-bound d is fixed, (†) can be expressed as a first-
order formula in the language of ordered rings. Thus (†) holds over any real closed
extension field R of R, by the model-completeness of the theory of real closed fields.
Let R be any proper (hence non-archimedean) extension field and let ε ∈ R, ε > 0,
be an infinitesimal element with respect to R. We apply (†) with λ = ε and get

(‡) `ε =
r∑
i=1

ρ
(ε)
i fi +

s∑
j=1

σ
(ε)
j gj

with

σ
(ε)
j (γ(ε)) = 0

for all j = 1, . . . , s. Let O be the convex hull of R in R, a valuation ring with
maximal ideal m. Since int(S) 6= ∅, the quadratic module QM({fi}, {gj}) has
trivial support. As ||`ε|| = 1, it follows that all coefficients of the polynomials in
(‡) must lie in O (see e.g. the proof of Lemma 8.2.3 in Prestel and Delzell [18]). We
can therefore apply the residue map O → O/m ∼= R, a 7→ a to the coefficients of
(‡). From the uniqueness of the supporting hyperplane H = {t1 = 0} in 0 (Step 1),
it follows that `ε = c · t1 for some c ∈ R>0. This yields the desired expression (∗).

Step 3. The existence of (∗) leads to a contradiction: Substituting t1 = 0 in (∗)
gives

0 =
r∑
i=1

ρi(0, t′)fi(0, t′) +
s∑
j=1

σj(0, t′)gj(0, t′)

in R[t′], with t′ = (t2, . . . , tn). Since all fi(0, t′), gj(0, t′) are non-negative on F0,
which has non-empty interior in H, it follows that ρi(0, t′) = 0 whenever fi(0, t′) 6=
0. In other words, if t1 does not divide fi, then t21 divides ρi in R[t].

Going back to (∗) and substituting t2 = · · · = tn = 0 now gives

t1 =
r∑
i=1

ρi(t1, 0)fi(t1, 0) +
s∑
j=1

σj(t1, 0)gj(t1, 0)

Since σj(0) = 0 for all j = 1, . . . , s, we now know that t21 divides all terms on the
right-hand side, except possibly ρi(t1, 0)fi(t1, 0) for such i where t1|fi. In the latter
case, write fi = t1f̃i and note that f̃i vanishes on γ((0, 1]) since fi does and t1 does
not. Thus f̃i(0) = 0 by continuity which implies t1|f̃i(t1, 0), so t21|fi(x1, 0) after all.
It follows that t21 divides t1, a contradiction. �

Remarks 3.6. (1) Note that whether the faces of S are exposed is a purely
geometric condition, independent of the choice of the polynomials p. Thus
if S has a non-exposed face, there do not exist polynomials p defining S

that yield an exact Lasserre relaxation for S.
(2) The theorem does not imply that a basic closed convex set with a non-

exposed face cannot be semidefinitly representable, as we will see in the
example below. We have only shown that Lasserre’s explicit approach does
not work in that case.

Example 3.7. Consider the basic closed semialgebraic set S defined by p1 = t2−t31,
p2 = t1 + 1, p3 = t2, p4 = 1− t2.
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t1

t2

non-exposed face

The point (0, 0) is a non-exposed face of S since the only supporting hyperplane
of S passing through (0, 0) is the vertical line {t2 = 0}, whose intersection with S

is strictly bigger than {(0, 0)}. Therefore, there do not exist polynomials p with
S = S (p) such that all linear polynomials that are non-negative on S belong to
QM(p)d for some fixed value of d. On the other hand, the preordering generated
by p1, p2, p3, p4 as above (i.e. the quadratic module generated by all products of the
pi) contains all polynomials that are non-negative on S. This follows from results
of Scheiderer. Indeed, by the local-global principle [22, Corollary 2.10] it suffices to
show that the preordering generated by the pi is locally saturated. At the origin
this follows from the results in [21] (in particular, Theorem 6.3 and Corollary 6.7).
At all other points it follows already from [22], Lemma 3.1.

However, from the result of Helton and Nie, we can deduce that S is in fact
semidefinitely representable: For S is the (convex hull of) the union of the sets
S1 = [−1, 0] × [0, 1] and S2 = S (t2 − t31, t1, 1 − t2). The set S1 is obviously
semidefinitely representable (even a spectrahedron), while S2 possesses an exact
Lasserre-relaxation: More precisely, we claim that QM(t2 − t31, t1, 1− t2)3 contains
all linear polynomials ` ∈ R[t1, t2] such that `|S2 > 0. It suffices to show this for the
tangents `a = t2 − 3a2t1 + 2a3 to S2 passing through the points (a, a3), a ∈ [0, 1]
(The claim then follows from Farkas’s lemma). Write `a = t31 − 3a2t1 + 2a3 +
(t2 − t31). The polynomial t31 − 3a2t1 + 2a3 ∈ R[t1] is non-negative on [0,∞) and
is therefore contained in QM(t1)3 ⊆ R[t1] (see Kuhlmann, Marshall, and Schwartz
[11], Thm. 4.1), which implies the claim.

Remark 3.8. We do not know if the conclusion of Theorem 3.5 remains true for
conv(S) in place of S, if S is not assumed to be convex. It seems unlikely that our
proof can be extended to that case. More generally, is every face of any Lasserre
relaxation exposed?

Note added in proof: João Gouveia [2] showed that our Theorem 3.5 is optimal
in the sense that the questions in Remark 3.8 have negative answers. He also gave
an alternative proof of our main theorem which is yet unpublished.
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