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ABSTRACT. Let p be a real zero polynomial in n variables. Then p defines a rigidly
convex set C(p). We construct a linear matrix inequality of size n + 1 in the same
n variables that depends only on the cubic part of p and defines a spectrahedron
S(p) containing C(p). The proof of the containment uses the characterization of
real zero polynomials in two variables by Helton and Vinnikov. We exhibit many
cases where C(p) = S(p).

In terms of optimization theory, we introduce a small semidefinite relaxation of
a potentially huge hyperbolic program. If the hyperbolic program is a linear pro-
gram, we introduce even a finitely convergent hierachy of semidefinite relaxations.
With some extra work, we discuss the homogeneous setup where real zero poly-
nomials correspond to homogeneous polynomials and rigidly convex sets corre-
spond to hyperbolicity cones.

The main aim of our construction is to attack the generalized Lax conjecture
saying that C(p) is always a spectrahedron. We show that the “weak real zero
amalgamation conjecture” of Sawall and the author would imply the following
partial result towards the generalized Lax conjecture: Given finitely many planes
in Rn, there is a spectrahedron containing C(p) that coincides with C(p) on each
of these planes. This uses again the result of Helton and Vinnikov.
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1. INSTEAD OF AN INTRODUCTION

I started to write these notes during my sabbatical winter term 2018/2019 but
still did not finish them due to lack of time. The notes are thus still incomplete
and probably contain numerous errors. I do not yet know what is the best way to
publish them. All readers are kindly invited to report any errors (from typographic
to fatal), e.g., by electronic mail to:

markus.schweighofer@uni-konstanz.de
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Suggestions and remarks are also highly welcome. I will try to correct and expand
these notes in the future. This version is still far from being suitable for publica-
tion, probably parts of it will be caught up in ongoing projects, also with other
collaborators. This third version of the notes does no longer contain much of the
material about real zero amalgamation which has now become part of the preprint
[SS] with David Sawall. That is why the preprint got shorter compared to its sec-
ond version [https://arxiv.org/abs/1907.13611v2] that contains still a
version of the “real zero amalgamation conjecture” which has been disproved in
the meanwhile [SS].

The structure of the notes or even the title will change in the future. If you want
to reference some content in the future, please check for newer or even published
versions of the text. I nevertheless decided to make the notes available on the
arXiv preprint server since I plan to give some talks about the material.

This article lacks a proper introduction. We consider rigidly convex sets in the
affine setting and hyperbolicity cones in the homogeneous setting [Vin2]. While
we will formally introduce these notions, the reader who is not yet familiar with
them should first have a look at some survey articles [Wag, Pem, Fis]. We will
assume that the reader knows about the definition and the most basic properties
of spectrahedra [Lau].

An extremely important theorem, the Helton-Vinnikov theorem [HV, Vin1, Han]
and some weaker versions or predecessors of it [GKVW, PV] (see [HV, §8] for the
complicated history) show that in dimension two each rigidly convex set is a spec-
trahedron. In the homogeneous setting, it shows that in dimension three each
hyperbolicity cone is spectrahedral. To my knowledge, all existing proofs of this
theorem are very deep [HV, Vin1, Han] and not easily accessible. Although it com-
plicates a bit our approach, we therefore take care to use whenever possible only
a weaker version of the theorem (with hermitian instead of symmetric matrices)
whose proof is considerably easier. Perhaps the most elementary proof of it can be
found in [GKVW].

The open question whether, regardless of the dimension, every rigidly convex
set is a spectrahedron, or in the homogeneous setting whether each hyperbolic-
ity cone is spectrahedral, is now widely known as the generalized Lax conjecture
(GLC). This conjecture that has motivated our work has first been formulated in
[HV, Subsection 6.1] together with a stronger conjecture which turned out to be
false [Vin2, Proposition 7] as Brändén showed [Brä1].

There are a number of very interesting partial results towards the generalized
Lax conjecture, see [HV, BK, Brä2, Ami, Kum2, Kum3, Sau] and the references
therein. Some of the constructions in these references lead to huge linear matrix in-
equalities describing hyperbolicity cones [Brä2, Ami]. In the light of the recent re-
sult [RRSW], the huge size of the matrices is no longer surprising although [RRSW]
does says little for these concrete examples. Under the complexity-theoretic as-
sumption VP 6= VNP which is an algebraic analog of P 6= NP, Oliveira [Oli]
showed loosely speaking that the hyperbolicity cones Amini’s multivariate match-
ing polynomials [Ami] cannot in general not be defined by small linear matrix
inequalities.

Our basic idea here is that we produce very small size natural spectrahedral
outer approximations to rigidly convex sets and hyperbolicity cones. To the best
of our knowledge, these are new although they turn out to be more or less known

https://arxiv.org/abs/1907.13611v2
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for quadratic real zero and hyperbolic polynomials and they are related to a con-
struction of [Sau] in the case of the “general” spectrahedron. The fact that our
constructions yield actually a relaxation seems to be non-trivial and relies on the
Helton-Vinnikov theorem or some weaker versions of it. In view of the lower
complexity bounds proved in [RRSW, Oli] for the size of a describing linear ma-
trix inequality, our approach seems at first sight hopeless since we produce linear
matrix inequalities of very small size.

However, there is an important additional twist which allows us to prove a
partial result and leaves room for speculations whether GLC could be attacked in
the same way. The basic idea is to try to apply our construction to a new real zero
polynomial in the original variables and many more new variables. The new real
zero polynomial should yield back the original one when all new variables are set
to zero. Due to the big number of new variables, the linear matrix inequality we
now produce has huge size in perfect accordance with the results of [RRSW, Oli].

In [SS], the authors present the “real zero amalgamation” conjecture (as said
above, a stronger version has been conjectured in the last version of this preprint
[https://arxiv.org/abs/1907.13611v2] but has been disproved in [SS]).
It would allow to “amalgamate” two real zero polynomials with only two shared
variables that agree whenever you set non-common variables to zero. By “amal-
gamating” we mean to find a third real zero polynomial that yields the first or sec-
ond polynomial, respectively, when you set all the non-corresponding variables to
zero.

Our main result is that the mentioned amalgamation conjecture would have im-
plications on GLC. We show that it would imply that each rigidly convex set can be
“wrapped” into a spectrahedron. By “wrapping” we mean that the rigidly convex
set can be packed into a spectrahedron which is tied to the rigidly convex set with
finitely many cords. A bit less vaguely, the cords are one-dimensional curves lying
on the boundary of both, the rigidly convex set and the spectrahedron. Mathemat-
ically speaking, for each rigidly convex set and finitely given many given planes
(two-dimensional subspaces) there would always exist a spectrahedron contain-
ing the rigidly convex set and coinciding with it on the given planes. In proving
this, we use once more the Helton-Vinnikov theorem or a weaker version of it.

The prototype of all rigidly convex sets are polyhedra. Curiously, our work can
even be applied to yield a spectrahedral relaxation of a polyhedron. This makes
sense if the polyhedron has a large number of facets since we produce a small size
linear matrix inequality. In this case, we can even make a hierachy of relaxations
out of our construction which converges finitely. Just like in the Lasserre hierarchy
of semidefinite relaxations for polynomial optimization problems [Lau], moment
and localization matrices play a big role. Here, we use moment and localization
matrices filled with real numbers to define our relaxation. In the Lasserre hierar-
chy, the matrices are filled with unknowns which one hopes to become moments
when solving the semidefinite program. Moment matrices play thus a completely
different role here than in the Lasserre hierarchy.

What seems to be strange at first sight is that in general (in the non-LP-case) our
relaxations are based on “moments” (actually a kind of pseudo-moments which is
different from the notion of pseudo-moments in the Lasserre context) up to degree
three only. This makes however a lot of sense for people that are acquainted with

https://arxiv.org/abs/1907.13611v2
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tensor decomposition methods like Jennrich’s algorithm [Har] many of which are
also based on degree three moments.

Our “pseudo-moments” correspond to real zero polynomials. When the real
zero polynomial is a product of linear polynomials, these are actual moments of
a sum of Dirac measures. When the real zero polynomial has more generally a
certain symmetric determinantal representation, we deal with certain “tracial mo-
ments”.

Some of our results, like Proposition 3.8 or Proposition 3.14 are related to the
question if there is a generalization of certain operations from moments to pseudo-
moments. Namely, one can rotate and shift a point-configuration and the behavior
of the moments of the corresponding sum of Dirac measures is mimicked. This
will be another line of future research whose applications are yet unclear.

Let us say a word why we work mainly with rigidly convex sets before going to
hyperbolicity cones (i.e., we prefer, at least in a first stage, to work in the affine set-
ting rather than in the homogeneous one): Comparing Definitions 3.19 and 6.18,
it becomes clear that in the homogeneous setup, there are more technical steps in
our construction which makes also all the proofs a bit more confusing. Moreover,
GLC can be perfectly formulated in the setting of rigidly convex sets. Also, rigidly
convex sets of very small dimension can more easily be visualized. In general,
we feel the more natural setup for our method is the affine one although the ho-
mogeneous one is also important and cannot be simply deduced from the affine
one.

1.1. Numbers. We always write N and N0 for the sets of positive and nonnega-
tive integers, R and C for the fields of real and complex numbers, respectively. We
denote the complex imaginary unit by i so that the letter i can be used for other
purposes such as summations.

1.2. Polynomials and power series. Let K be a field. We will always denote by
x = (x1, . . . , xn) an n-tuple of distinct variables so that

K[x] := K[x1, . . . , xn] and K[[x]] := K[[x1, . . . , xn]]

denote the rings of polynomials and (formal) power series in n variables over K,
respectively. The number n of variables will thus often be fixed implicitly although
suppressed from the notation. Sometimes, we need an additional variable x0 so
that K[x0, x] = K[x0, . . . , xn] denotes the ring of polynomials in n+ 1 variables over
K. We allow of course the case n = 0 since it is helpful to avoid case distinctions,
for example in inductive proofs. We also use the letter t to denote another variable
so that K[t] and K[[t]] denote the rings of univariate polynomials and formal power
series over K, respectively. For n ∈N0 and α ∈Nn

0 , we denote

|α| := α1 + . . . + αn

and call
xα := xα1

1 · · · x
αn
n

a monomial. Hence

K[[x]] =

 ∑
α∈Nn

0

aαxα | aα ∈ K

 .
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The degree deg p of a power series p = ∑α∈Nn
0

aαxα with all aα ∈ K is defined as a
supremum in the (naturally) ordered set {−∞} ∪N0 ∪ {∞} by

deg p := sup{|α| | aα 6= 0} ∈ {−∞} ∪N0 ∪ {∞}
which entails deg 0 = −∞ and

K[x] = {p ∈ K[[x]] | deg p < ∞}.
We call a polynomial constant, linear, quadratic, cubic and so on if its degree is less
than or equal to 0, 1, 2, 3 and so on.

1.3. Matrices. For any set S, we denote by Sm×n the set of all matrices with m
columns and n rows over S. It is helpful to allow the empty matrix which is for
each m, n ∈ N0 the only element of Sm×0 = S0×n. For any matrix A ∈ Sm×n,
we denote by ST ∈ Sn×m its transpose. For a matrix A ∈ Cm×n, we denote by
A∗ ∈ Cn×m its complex conjugate transpose.

We tend to view n-tuples over a set S, i.e., elements of Sn, as column vectors,
i.e., elements of Sn×1. In this sense, we can transpose column vectors and get row
vectors or vice versa. Analogously, we can apply the complex conjugate transpose
to complex column vectors to get row vectors and vice versa.

If R is a commutative ring (where a ring in our sense is always associative with
1), d ∈N0 and A ∈ Rd×d, then the determinant det A is declared in the usual way.
For each n ∈ N0, we denote by In ∈ Rd×d the unity matrix of size d for which
det Id = 1 (even when d = 0, i.e., the determinant of the empty matrix is one).

A matrix A ∈ Cd×d is called hermitian if A = A∗ which is equivalent to v∗Av ∈
R for all v ∈ Cd. A matrix U ∈ Cd×d is called unitary if U∗U = Id which is
equivalent to UU∗ = Id and also to ‖Uv‖ = ‖v‖ for all v ∈ Cd. We will use many
times and often without mentioning the spectral theorem for hermitian matrices
that says that for any hermitian A ∈ Cd×d there exists a unitary U ∈ Cd×d such
that U∗AU is a diagonal matrix. In this situation, the diagonal matrix is obviously
real and the diagonal elements are the eigenvalues of A.

A hermitian matrix all of whose (real) eigenvalues are nonnegative is called
positive semidefinite (psd). If all its eigenvalues are even positive, it is called posi-
tive definite (pd). If all its eigenvalues are nonpositive or negative then it is called
negative semidefinite (nsd) or negative definite (nd), respectively. A definite matrix is
one that is pd or nd. It is easy to see that a matrix A ∈ Cd×d is psd if and only if
v∗Av ≥ 0 (i.e., v∗Av is real and nonnegative) for all v ∈ Cn. The analogous char-
acterizations for pd, nsd and nd matrices should be clear. Using the intermediate
value theorem, it follows that A ∈ Cd×d is definite if and only if v∗Av ∈ R \ {0}
for all v ∈ Cd \ {0}.

For matrices A, B ∈ Cd×d, we write A � B (or equivalently B � A) if B− A is
psd and A ≺ B (or equivalently B � A) if B− A is pd.

A real matrix A ∈ Rd×d is of course symmetric if and only if it is hermitian.
It is called skew-symmetric if A = −AT . A real unitary matrix is called orthogonal.
A matrix U ∈ Rd×d is thus obviously orthogonal if ‖Uv‖ = ‖v‖ for all v ∈ Rd.
The spectral theorem for symmetric matrices that we will often use silently says
that for any symmetric A ∈ Rd×d there exists an orthogonal U ∈ Rd×d such that
U∗AU is a diagonal matrix. A real matrix is obviously psd if and only if it is
symmetric and its (real) eigenvalues are nonnegative. It is thus easy to see that
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a matrix A ∈ Rd×d is psd if and only if A is symmetric and v∗Av ≥ 0 for all
v ∈ Rn. The analogous characterizations for pd, nsd and nd matrices are clear.
Moreover, A ∈ Rd×d is definite if and only if A is symmetric and v∗Av 6= 0 for
all v ∈ Rd \ {0}. In particular, the notation A � 0 means for A ∈ Rd×d that A is
symmetric and v∗Av ≥ 0 for all v ∈ Rd.

If A, B ∈ Rd×d, then C := A + iB ∈ Cd×d is hermitian if and only if A is
symmetric and B is skew-symmetric, or in other words, if the matrix

R :=
(

A −B
B A

)
∈ R(2d)×(2d)

is symmetric. Now if C is hermitian, one easily checks that

(v + iw)∗C(v + iw) =

(
v
w

)T
R
(

v
w

)
for all v, w ∈ Rn. Hence it is clear that C is psd if and only if R is psd.

1.4. Matrix polynomials. Matrices whose entries are polynomials are often called
matrix polynomials. As said above, we allow the empty matrix and therefore the
empty matrix polynomial. We define the degree of the empty matrix polynomial
to be ∞ and the degree of a non-empty matrix polynomial to be the maximum
of the degrees of its entries. Hence the degree of a matrix polynomial is always
from N0 except for the zero matrix polynomial which has degree ∞. Exactly as for
polynomial, we say that a matrix polynomial is constant, linear, quadratic, cubic
and so on if its degree is less than or equal to 0, 1, 2, 3 and so on. In numerical linear
algebra, linear matrix polynomials are often called matrix pencils, especially if
they are univariate, i.e., only one variables is involved. Here it will be convenient
to reserve the term pencil for symmetric linear real matrix polynomials in one or
several variables. A pencil of size d in n variables x = (x1, . . . , xn) is thus of the
form

A0 + x1 A1 + . . . + xn An

where A0, A1, . . . , An ∈ Rd×d are symmetric. The determinant of such a pencil is
of course a polynomial of degree at most d.

1.5. Convex sets and cones. A subset C of a real vector space V is called convex if
it contains with any two of its points v, w ∈ C also the line segment

{λv + (1− λ)w | λ ∈ [0, 1]}

joining them. We call it a cone what many authors call a “convex cone”, namely a
subset C of a real vector space V that contains the origin, is closed under addition
and under multiplication with nonnegative scalars, i.e., 0 ∈ C, v + w ∈ C for all
v, w ∈ C and λv ∈ C for all v ∈ C and λ ≥ 0. For example, the set

{A ∈ Rd×d | A � 0}

of psd matrices is a cone inside the vector space Rd×d of matrices of size d. Most
of the convex sets and cones we will consider will however live in the vector space
Rd.



8 M. SCHWEIGHOFER

1.6. Affine half spaces, polyhedra and spectrahedra. A subset of Rn of the form
{a ∈ Rn | `(a) ≥ 0} where ` ∈ R[x] = R[x1, . . . , xn] is a non-constant linear poly-
nomial is called an affine half space. A finite intersection of such half spaces is called
a polyhedron. A subset of Rn of the form {a ∈ Rn | L(a) � 0} where L ∈ R[x]d×d

is a pencil of size d for some d ∈ N0 is called a spectrahedron. Hence polyhedra
are exactly the spectrahedra that can be defined by diagonal pencils. Spectrahedra
are more flexible than polyhedra and unlike polyhedra allow for round shapes in
their geometry. On the other hand, they still share many good properties with
polyhedra. Restating the definition more explicitly, S ⊆ Rn is a spectrahedron if
and only if there exists d ∈ N0 and symmetric matrices A0, A1, . . . , An ∈ Rd×d

such that
S = {a ∈ Rn | A0 + a1 A1 + . . . + an An � 0}.

Here one could equivalently require A0, A1, . . . , An to be complex hermitian ma-
trices instead of symmetric real matrices as can be seen easily by the above trans-
lation of a psd condition for a complex matrix into a psd condition of a real matrix
of double size. Using block diagonal matrices, one sees immediately that finite
intersections of spectrahedra are again spectrahedra.

1.7. Elementary combinatorics. We use some standard notation from elementary
combinatorics. For ` ∈N0, the factorial of `

`! := `(`− 1) · · · 1
denotes the number of permutations of ` objects (in particular 0! = 1). For k, ` ∈
N0, the binomial coefficient (

`

k

)
:=

`!
(`− k)!k!

denotes the number of choices of k objects among `. For α ∈ Nn
0 , the multinomial

coefficient (
|α|
α

)
:=
(

α1 + . . . + αn

α1 . . . αn

)
:=

|α|!
α1! . . . αn!

denotes the number of ways of depositing |α| distinct objects into n distinct bins,
with αi objects in the i-th bin for each i ∈ {1, . . . , n}. For n = 1 this notation agrees
with the one for binomial coefficients which fortunately does not lead to a conflict.

2. REAL ZERO POLYNOMIALS AND SPECTRAHEDRA

2.1. Definition and examples. The following definition stems from [HV, §2.1].

Definition 2.1. We say that p ∈ R[x] is a real zero polynomial if for all a ∈ Rn and
λ ∈ C,

p(λa) = 0 =⇒ λ ∈ R.

Remark 2.2. If p ∈ R[x] is a real zero polynomial, then p(0) 6= 0.

Proposition 2.3. Let p ∈ R[x]. Then p is a real zero polynomial if and only if for
each a ∈ Rn, the univariate polynomial

p(ta) = p(ta1, . . . , tan) ∈ R[t]

splits (i.e., is a product of non-zero linear polynomials) in R[t].

Proof. The “if” direction is easy and the “only if” direction follows from the fun-
damental theorem of algebra. �
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Example 2.4. Let p ∈ R[x] be a quadratic real zero polynomial with p(0) = 1.
Then p can be uniquely written as

p = xT Ax + bTx + 1

with a symmetric matrix A ∈ Rn×n and a vector b ∈ Rn. For a ∈ Rn the univariate
quadratic polynomial p(ta) = aT Aat2 + bTat + 1 splits in R[t] if and only if its
discriminant (bTa)2 − 4aT Aa = aT(bbT − 4A)a is is nonnegative. Hence p is a real
zero polynomial if and only if

bbT − 4A � 0.

Lemma 2.5. Let A, B ∈ Cd×d be hermitian and suppose A is definite. Then for all
λ ∈ C,

det(A + λB) = 0 =⇒ λ ∈ R.

Proof. The case A ≺ 0 can be reduced to the case A � 0 by scaling p with (−1)d.
WLOG A � 0. Since there is a unitary matrix U ∈ Cd×d such that U∗AU is
diagonal, we can assume that A is diagonal. The diagonal entries d1, . . . , dn of A
are positive. Multiplying both A and B from the left and the right by the diagonal
matrix whose diagonal entries are the inverted square roots of d1, . . . , dn changes
the determinant of A + λB but preserves the condition det(A + λB) = 0. Hence
WLOG A = Id. Now det(B− (− 1

λ )Id) = 0. But then − 1
λ is an eigenvalue of the

hermitian matrix B and thus real. Hence λ is real as well. �

The most obvious example of real zero polynomials are products of linear poly-
nomials that do not vanish at the origin. But this is just the special case where all
Ai are diagonal matrices of the following more general example:

Proposition 2.6. Let A0, A1, . . . , An ∈ Cd×d be hermitian matrices such that A0 is
definite and

p = det(A0 + x1 A1 + . . . + xn An),

then p is a real zero polynomial.

Proof. If a ∈ Rn and λ ∈ C with p(λa) = 0, then det(A0 + λB) = 0 where B :=
a1 A1 + . . . + an An ∈ Cd×d and Lemma 2.5 implies λ ∈ R. �

2.2. The Helton-Vinnikov theorem. The following celebrated partial converse to
Proposition 2.6 has been obtained in 2006 by Helton and Vinnikov [HV, Theorem
2.2, §4]. For a short account of the long history of partial results, we refer to [HV,
§8]. Recently, a purely algebraic proof of this theorem has been given by Hanselka
[Han, Theorem 2].

Theorem 2.7 (Helton and Vinnikov). If p ∈ R[x1, x2] is a real zero polynomial of
degree d with p(0) = 1, then there exist symmetric A1, A2 ∈ Rd×d such that

p = det(Id + x1 A1 + x2 A2).

A weaker version of this theorem will be enough for most of our purposes.
Since this weaker version seems to be considerably easier to prove (see mainly
[GKVW], also [PV] and [Han, §7]), we state it here. this weaker version as a corol-
lary. In the following, we will always prefer to use the corollary instead of the
theorem.
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Corollary 2.8 (Helton and Vinnikov). If p ∈ R[x1, x2] is a real zero polynomial of
degree d with p(0) = 1, then there exist hermitian matrices A1, A2 ∈ Cd×d such
that

p = det(Id + x1 A1 + x2 A2).

Example 2.9. Consider a quadratic real zero polynomial p ∈ R[x1, x2] with p(0) =
1. Write

p = xT Ax + bTx + 1

with a symmetric matrix A ∈ Rn×n and a vector b ∈ Rn. Write moreover

A =

(
a11 a12
a12 a22

)
and b =

(
b1
b2

)
.

Then bbT − 4A � 0 by Example 2.4. Hence the leading prinicipal minors r :=
b2

1 − 4a11 and s := det(bbT − 4A) are nonnegative. Consider the real symmetric
matrices

A1 :=
1
2

det
(

b1 −
√

r 0
0 b1 +

√
r

)
and

A2 :=
1
2r

(
b2

1b2 − b1b2
√

r− 4a11b2 + 4a12
√

r
√

rs√
rs b2

1b2 + b1b2
√

r− 4a11b2 − 4a12
√

r

)
.

Then one can easily verify that p = det(I2 + x1 A1 + x2 A2).

2.3. Rigidly convex sets.

Definition 2.10. Let p ∈ R[x] be a polynomial. Then we call

Z(p) := {a ∈ Rn | p(a) = 0}

the (real) zero set defined by p.

Definition 2.11. Let p ∈ R[x] be a real zero polynomial. Then we call

C(p) := {a ∈ Rn | ∀λ ∈ [0, 1) : p(λa) 6= 0}

the rigidly convex set defined by p.

A priori, it is not even clear that rigidly convex sets are convex. This was how-
ever already known to Gårding, see Theorem 2.15 below. In the case where p has
a determinantal representation of the kind considered in Proposition 2.6 above, it
is however easy to show that C(p) is not only convex but even a spectrahedron:

Proposition 2.12. Suppose d ∈ N0, A0, A1, . . . , An ∈ Cd×d be hermitian, A0 � 0
and

p = det(A0 + x1 A1 + . . . + xn An).

Then
C(p) = {a ∈ Rn | A0 + a1 A1 + . . . + an An � 0}

and
C(p) \ Z(p) = {a ∈ Rn | A0 + a1 A1 + . . . + an An � 0}.
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Proof. The second statement follows easily from the first. To prove the first, let
a ∈ Rn and set B := a1 A1 + . . . + an An. We have to show

(∀λ ∈ [0, 1) : det(A0 + λB) 6= 0) ⇐⇒ A0 + B � 0.

Since A0 is positive definite, there exists a (unique) pd matrix
√

A0 whose square
is A0. Rewriting both the left and right hand side of our claim, it becomes

(∀λ ∈ [0, 1) : det(Id + λC) 6= 0) ⇐⇒ Id + C � 0.

where C :=
√

A0
−1B
√

A0
−1. Since C is hermitian, we find a unitary matrix U ∈

Cn×n such that U∗CU is a diagonal matrix with diagonal entries d1, . . . , dn ∈ R.
Our claim can be rewritten(

∀λ ∈ [0, 1) :
d

∏
i=1

(1 + λdi) 6= 0

)
⇐⇒ ∀i ∈ {1, . . . , n} : 1 + di ≥ 0

which is easily checked. �

Remark 2.13. For n ∈ {0, 1}, it is trivial that each rigidly convex set in Rn is a spec-
trahedron. For n = 2 this follows from Helton-Vinnikov Corollary 2.8 together
with Proposition 2.12. Whether this continues to holds for n > 2 is unknown and
is the topic of Section 8 below.

If S ⊆ Rn and a ∈ Rn, we write S + a := {b + a | b ∈ S}. Gårding proved the
following result in a more elementary way [Går]. For convenience of the reader,
we include here a proof but allow ourselves the luxury to base it on the Helton-
Vinnikov Corollary 2.8 although this is an overkill.

Theorem 2.14 (Gårding). Let p ∈ R[x] be a real zero polynomial and a ∈ C(p) \
Z(p). Then the shifted polynomial p(x + a) is a real zero polynomial as well and
C(p) = C(p(x + a)) + a.

Proof. We first show that p(x + a) is a real zero polynomial. To this end, let b ∈ Rn

and λ ∈ C such that p(λb + a) = 0. We have to show λ ∈ R. We have b 6= 0 since
a /∈ Z(p). If a = µb for some µ ∈ R, then p((λ + µ)a) = 0 implies λ + µ ∈ R and
thus λ ∈ R. Hence we can now suppose that a and b are linearly independent. By
an affine transformation, we can even suppose that a and b are the first two unit
vectors in Rn. Without loss of generality, we can thus assume that the number of
variables is n = 2. Also WLOG p(0) = 1. By the Helton-Vinnikov Corollary 2.8,
we can write

p = det(Id + x1 A1 + x2 A2)

with hermitian A1, A2 ∈ Cd×d where d := deg p. The hypothesis a ∈ C(p) \ Z(p)
now translates into A := Id + A1 � 0 by Proposition 2.12. From det(A + λA2) = 0
and Lemma 2.5, we get λ ∈ R.

To prove the second statement, let b ∈ Rn. We show that

(∗) b ∈ C(p) ⇐⇒ b− a ∈ C(p(x + a)).

The case where a and b are linearly dependent is an easy exercise. Suppose there-
fore that a and b are linearly independent. After an affine transformation, we can
even assume that a and b are the first two unit vectors. Hence we can reduce to the
case where the number of variables n equals 2. By the Helton-Vinnikov Corollary,
we can choose hermitian matrices A1, A2 ∈ Cd×d such that

p = det(Id + x1 A1 + x2 A2)
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so that
C(p) = {c ∈ R2 | Id + c1 A1 + c2 A2 � 0}

by Proposition 2.12. Then

p(x + a) = det((Id + A1) + x1 A1 + x2 A2)

and Id + A1 � A1 � 0 so that

C(p(x + a)) = {c ∈ R2 | Id + A1 + c1 A1 + x2 A2 � 0}.

again by Proposition 2.12. Our claim (∗) now translates into

Id + A2 � 0 ⇐⇒ Id + A1 − A1 + A2 � 0.

which holds trivially. �

Theorem 2.15 (Gårding). If p is a real zero polynomial, then C(p) \ Z(p) and C(p)
are convex.

Proof. Call for the moment a subset S ⊆ Rn star-shaped if for all x ∈ S, we have
λx ∈ S for each λ ∈ [0, 1]. Clearly, a subset S ⊆ Rn is convex if and only if S− a
is star-shaped for each a ∈ S. To show that C(p) \ Z(p) is convex, we therefore fix
a ∈ C(p) \ Z(p) and show that (C(p) \ Z(p))− a is star-shaped. By Theorem 2.14,
(C(p) \ Z(p))− a equals C(q) \ Z(q) for some real zero polynomial q ∈ R[x] and
therefore is obviously star-shaped by Definition 2.11.

Finally, to prove that C(p) is convex, note that

C(p) = {a ∈ Rn | ∀λ ∈ (0, 1) : λa ∈ C(p) \ Z(p)}

=
⋂

λ∈(0,1)

{a ∈ Rn | λa ∈ C(p) \ Z(p)}

is an intersection of convex sets and therefore convex. �

3. THE RELAXATION

3.1. The linear form associated to a polynomial. All power series are formal. We
refer to [God, §3], [Rob, §6.1] and [Rui, §2] for an introduction to power series.

Definition 3.1. Suppose aα ∈ R for all α ∈Nn
0 and consider the power series

p = ∑
α∈Nn

0

aαxα ∈ R[[x]].

Then we call for d ∈N0, the polynomial

truncd p := ∑
α∈Nn

0
|α|≤d

aαxα ∈ R[x]

the truncation of p at degree d.

Definition 3.2. Let p ∈ R[[x]] be a power series.
(a) If p has constant coefficient 0, then the power series

exp p :=
∞

∑
k=0

pk

k!
∈ R[[x]]
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is well-defined because all monomials appearing in pk have degree at least k
so that

truncd exp p = truncd

d

∑
k=0

pk

k!

for all d ∈N0. We call it the exponential of q.
(b) If p has constant coefficient 1, then the power series

log p :=
∞

∑
k=1

(−1)k+1

k
(p− 1)k ∈ R[[x]]

is well-defined because all monomials appearing in (p − 1)k have degree at
least k so that

truncd log p = truncd

d

∑
k=1

(−1)k+1

k
(p− 1)k

for all d ∈N0. We call it the logarithm of p.

The following can be found for example in [God, Lemma 4.1], [Rob, §5.4.2,
Proposition 2] or [Rob, §6.1.3]

Proposition 3.3. Consider the sets

A := {p ∈ R[[x]] | trunc0 p = 0} and

B := {p ∈ R[[x]] | trunc0 p = 1}.
Then the following hold:
(a) exp : A→ B and log : B→ A are inverse to each other.
(b) exp(p + q) = (exp p)(exp q) for all p, q ∈ A
(c) log(pq) = (log p) + (log q) for all p, q ∈ B

Proof. (a) can be proven in two different ways: One way is to play it back to known
facts about converging power series from calculus [Rob, §5.4.2, Proposition 2].
Note that the argument given in [God, Lemma 4.1] looks innocent but in reality
needs good knowledge of multivariate power series [Rui, §I.1, §I.2]. The other
way to prove it is by using formal composition and derivation of power series:
Deduce the result from the univariate case n = 1 by formally deriving the formal
composition (in either way) of the univariate logarithmic and exponential power
series [Rob, §6.1.3].

(b) is an easy calculation:

exp(p + q) =
∞

∑
k=0

(p + q)k

k!
=

∞

∑
k=0

1
k!

k

∑
i=0

(
k
i

)
piqk−i

=
∞

∑
k=0

k

∑
i=0

pi

i!
qk−i

(k− i)!
= (exp p)(exp q)

(c) follows easily from (a) and (b). �

Definition 3.4. Let p ∈ R[[x]] satisfy p(0) 6= 0 and let d ∈N0. We define the linear
form Lp,d on R[x] associated to p with respect to the virtual degree d by specifying it
on the monomial basis of R[x], namely by setting

Lp,d(1) = d
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and by requiring the identity of formal power series

− log
p(−x)
p(0)

= ∑
α∈Nn

0
α 6=0

1
|α|

(
|α|
α

)
Lp,d(xα)xα

to hold. If p ∈ R[x], then we call Lp := Lp,deg p the linear form associated to p.

Example 3.5. Suppose p ∈ R[[x]] such that

trunc3 p = 1 + ∑
i∈{1,...,n}

aixi + ∑
i,j∈{1,...,n}

i≤j

aijxixj + ∑
i,j,k∈{1,...,n}

i≤j≤k

aijkxixjxk

where ai, aij, aijk ∈ R. Then

trunc3(− log p(−x)) = trunc3

(
3

∑
`=1

(−1)`

`
(p(−x)− 1)`

)
= ∑

i∈{1,...,n}
aixi − ∑

i,j∈{1,...,n}
i≤j

aijxixj + ∑
i,j,k∈{1,...,n}

i≤j≤k

aijkxixjxk

+
1
2

 ∑
i∈{1,...,n}

aixi

2

−

 ∑
i∈{1,...,n}

aixi


 ∑

i,j∈{1,...,n}
i≤j

aijxixj

+
1
3

 ∑
i∈{1,...,n}

aixi

3

It follows that

Lp,d(xi) = ai,
1
2

Lp,d(x2
i ) = −aii +

1
2

a2
i ,

1
3

Lp,d(x3
i ) = aiii − aiaii +

1
3

a3
i

for all i ∈ {1, . . . , n},

Lp,d(xixj) = −aij + aiaj,

Lp,d(x2
i xj) = aiij − aiaij − ajaii + a2

i aj

for all i, j ∈ {1, . . . , n} with i < j, and

2Lp,d(xixjxk) = aijk − aiajk − ajaik − akaij + 2aiajak

for all i, j, k ∈ {1, . . . , n} with i < j < k.

Proposition 3.6. (a) If p, q ∈ R[[x]] satisfy p(0) 6= 0 6= q(0) and d, e ∈N0, then

Lpq,d+e = Lp,d + Lq,e.

(b) If p, q ∈ R[x] satisfy p(0) 6= 0 6= q(0), then

Lpq = Lp + Lq.
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Proof. Part (b) follows from (a) by observing that deg(pq) = deg p + deg q for
all p, q ∈ R[x]. To prove (a), we suppose WLOG p(0) = 1 = q(0) and thus
(pq)(0) = 1. By Definition 3.4, we then have to show that the following identity
of formal power series holds:

− log((pq)(−x)) = − log(p(−x))− log(q(−x)).

This follows from Proposition 3.3(c). �

Lemma 3.7. Let L be a linear form on the vector subspace V of R[x] generated by
the monomials of degree k. Then

∑
α∈Nn

0
|α|=k

1
k

(
k
α

)
L((Ux)α)(Ux)α ∈ V

is the same polynomial for all orthogonal matrices U ∈ Rn×n.

Proof. Denote the i-th line of U by ui (so that ui is a row vector) and the j-th entry
of ui by uij for all i, j ∈ {1, . . . , n}. In the following, we often form the product of a
row vector u ∈ Rn ⊆ R[x]n with the column vector x ∈ R[x]n which is of course
an element of R[x]. Then

∑
|α|=k

(
k
α

)
L((Ux)α)(Ux)α =

n

∑
i1,...,ik=1

L(ui1 x · · · uik x)ui1 x · · · uik x

=
n

∑
i1,...,ik=1

n

∑
j1,...,jk=1

ui1 j1 · · · uik jk L(xj1 · · · xjk )
n

∑
`1,...,`k=1

ui1`1 · · · uik`k
x`1 · · · x`k

=
n

∑
`1,...,`k=1

n

∑
j1,...,jk=1

(
n

∑
i1,...,ik=1

ui1 j1 · · · uik jk ui1`1 · · · uik`k

)
L(xj1 · · · xjk )x`1 · · · x`k

=
n

∑
`1,...,`k=1

n

∑
j1,...,jk=1

(
n

∑
i1=1

ui1 j1 ui1`1︸ ︷︷ ︸
=

{
1 if j1 = `1
0 otherwise

)
· · ·
(

n

∑
ik=1

uik jk uik`k︸ ︷︷ ︸
=

{
1 if jk = `k
0 otherwise

)
L(xj1 · · · xjk )x`1 · · · x`k

=
n

∑
`1,...,`k=1

L(x`1 · · · x`k
)x`1 · · · x`k

= ∑
|α|=k

(
k
α

)
L(xα)xα

for all orthogonal matrices U ∈ Rn×n. Multiplying with 1
k gives the result. �

Proposition 3.8. Let U ∈ Rn×n be an orthogonal matrix.
(a) If p ∈ R[[x]] with p(0) 6= 0 and d ∈N0, then

Lp(Ux),d(q(Ux)) = Lp,d(q).

(b) If p ∈ R[x] with p(0) 6= 0, then

Lp(Ux)(q(Ux)) = Lp(q).

Proof. Part (b) follows easily from (a) since deg(p(Ux)) = deg p for all p ∈ R[x].
To prove (a), fix p ∈ R[[x]] with p(0) 6= 0 and d ∈ N0. It suffices by linearity to
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prove Lp(Ux),d((Ux)α) = Lp,d(xα) for all α ∈ Nn
0 with α 6= 0. WLOG p(0) = 1.

From Definition 3.2(b), one gets easily

log(p(U(−x))) = (log p)(−Ux).

This means by Definition 3.4 that

∑
α∈Nn

0
α 6=0

1
|α|

(
|α|
α

)
Lp(Ux),d(xα)xα = ∑

α∈Nn
0

α 6=0

1
|α|

(
|α|
α

)
Lp,d(xα)(Ux)α.

We rewrite the left hand side by means of Lemma 3.7 to obtain

∑
α∈Nn

0
α 6=0

1
|α|

(
|α|
α

)
Lp(Ux),d((Ux)α)(Ux)α = ∑

α∈Nn
0

α 6=0

1
|α|

(
|α|
α

)
Lp(xα),d(Ux)α.

Substituting UTx for x, we finally get

∑
α∈Nn

0
α 6=0

1
|α|

(
|α|
α

)
Lp(Ux),d((Ux)α)xα = ∑

α∈Nn
0

α 6=0

1
|α|

(
|α|
α

)
Lp,d(xα)xα.

Comparing coefficients, we get the result. �

Definition 3.9. A polynomial is called homogeneous if all its monomials are of the
same degree. If p ∈ R[x] is a polynomial of degree d ∈N0, then the homogeneous
polynomial

p∗ := xd
0 p
(

x1

x0
, . . . ,

xn

x0

)
∈ R[x0, x]

is called its homogenization (with respect to x0). In addition, we set

p∗ := 0 ∈ R[x0, x].

The “shifted homogenization” of a polynomial used in Part (b) of the following
lemma appears for real zero polynomials already in Brändén [Brä1] and [NT].

Lemma 3.10. (a) For all p ∈ R[[x]] with p(0) 6= 0, the power series

q := (1 + t)d p
(

x1

1 + t
, . . . ,

xn

1 + t

)
∈ R[[t, x]]

satisfies q(0) 6= 0 and

Lq,d( f ) = Lp,d( f (1, x))

for all d ∈N0 and f ∈ R[t, x].
(b) For all p ∈ R[x] with p(0) 6= 0, the polynomial

q := p∗(1 + t, x1, . . . , xn) ∈ R[t, x]

satisfies q(0) 6= 0 and
Lq( f ) = Lp( f (1, x))

for all f ∈ R[t, x].
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Proof. Part (b) follows from (a) by setting d := deg p and observing that deg p =
deg q. To prove (a), we let d ∈ N0 and suppose WLOG p(0) = 1 so that q(0) = 1.
By Definition 3.4, it remains to show the identity

− log(q(−t,−x1, . . . ,−xn)) = ∑
k∈N0
α∈Nn

0
(k,α) 6=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
Lp(xα)tkxα

of formal power series. By Proposition 3.3(c), it suffices to prove the identities

− log((1− t)d) =
∞

∑
k=1

1
k

Lp,d(1)tk

and

− log
(

p
(
−x1

1− t
, . . . ,

−xn

1− t

))
= ∑

k∈N0
α∈Nn

0
α 6=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
Lp,d(xα)tkxα

where one should note that the argument of the logarithm in the second identity
is a power series since

1
1− t

=
∞

∑
i=0

ti.

Again by Proposition 3.3(c), we get − log((1− t)d) = d log(1− t). Together with
Lp,d(1) = d and Definition 3.2(b), this yields the first identity. To prove the second
identity, we substitute

xi
1− t

= xi

∞

∑
i=0

ti

for xi in the defining identity of Lp,d from Definition 3.4 for each i ∈ {1, . . . , n} to
see that its left hand side equals

∑
α∈Nn

0
α 6=0

1
|α|

(
|α|
α

)
Lp,d(xα)

xα

(1− t)|α|
.

So it remains to show that for α ∈Nn
0 with α 6= 0, we have

(|α|α )

|α|(1− t)|α|
=

∞

∑
k=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
tk.

Fix α ∈Nn
0 with α 6= 0. The multinomial coefficient on the right hand side divided

by the one on the left hand side yields equals the binomial coefficient (k+|α|
k ) which

becomes (k+|α|−1
|α|−1 ) when multiplied with |α|

k+|α| . So it remains to show that(
∞

∑
i=0

ti

)|α|
=

∞

∑
k=0

(
k + |α| − 1
|α| − 1

)
tk.

This is clear since the number of tuples of length |α| of nonnegative integers that
sum up to k is the binomial coefficient on the right hand side. Indeed, choosing
such a tuple amounts to partition {1, . . . , k} into |α| discrete intervals. This in
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turn is equivalent to choosing |α| − 1 elements as separating landmarks in the set
{1, . . . , k + |α| − 1}. �

Definition 3.11. Let p ∈ R[x] and a ∈ Rn. Then we define the a-transform p[a] of
p by

p[a] := p∗(1 + aTx, x) ∈ R[x].

In other words, 0[a] = 0 and if p is a polynomial of degree d ∈N0, then

p[a] = (1 + aTx)d p
(

x1

1 + aTx
, . . . ,

xn

1 + aTx

)
.

Remark 3.12. Let p ∈ R[x] and a ∈ Rn.

(a) Of course, we have always deg(p[a]) ≤ deg p. Unfortunately, the degree of
p[a] might sometimes be strictly smaller than the one of p, for example if p =
1 + x1 ∈ R[x1] and a = −1 ∈ R = R1 where p[a] = (1− x1) + x1 = 1 ∈ R[x1].
But the reader easily verifies that the degrees of p and p[a] coincide if and only
if the homogeneous polynomial p∗(aTx, x) is not the zero polynomial.

(b) It is an easy exercise to show that

p[a][b] = p[a + b]

in the case where deg p = deg(p[a]).

Proposition 3.13. Suppose p ∈ R[x] is a real zero polynomial and a ∈ Rn. Then
p[a] is again a real zero polynomial.

Proof. Suppose b ∈ Rn and λ ∈ C such that p[a](λb) = 0. We have to show
λ ∈ R. If 1 + λaTb = 0, then aTb 6= 0 and thus λ = − 1

aTb ∈ R. Suppose therefore

1 + λaTb 6= 0. Then p
(

λ
1+λaTb b

)
= 0 and thus c := λ

1+λaTb ∈ R since p is a real
zero polynomial. If c = 0, then λ = 0 ∈ R and we are done. Suppose therefore
c 6= 0. Then λ = c + λcaTb and hence λ(1− caTb) = c 6= 0 which again implies
λ ∈ R. �

Proposition 3.14. Let a ∈ Rn, p ∈ R[x] with p(0) 6= 0 and d ∈N0. Then

Lp[a],d( f (x)) = Lp,d( f (x + a))

for all f ∈ R[x].

Proof. WLOG p(0) = 1 and thus p[a](0) = 1. For the duration of this proof,
we denote by � the the partial order on Nn

0 which stand for the componentwise
natural order, i.e.,

α � β :⇐⇒ ∀i ∈ {1, . . . , n} : αi ≤ βi

for α, β ∈Nn
0 . From Lemma 3.10, we know that

− log(p∗(1− t,−x1, . . . ,−xn)) = ∑
k∈N0
α∈Nn

0
(k,α) 6=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
Lp,d(xα)tkxα.
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Substituting aTx for t in this identity, yields

− log(p[a](−x)) = ∑
k∈N0
α∈Nn

0
(k,α) 6=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
Lp,d(xα)(aTx)kxα

= ∑
k∈N0
α∈Nn

0
(k,α) 6=0

1
k + |α|

(
k + |α|

k α1 . . . αn

)
Lp,d(xα)

 ∑
β∈Nn

0
|β|=k

(
k
β

)
aβxβ

 xα

= ∑
α,β∈Nn

0
(α,β) 6=0

1
|α|+ |β|

(
|α|+ |β|
|β| α1 . . . αn

)
Lp,d(xα)

(
|β|
β

)
aβxα+β

= ∑
α,β∈Nn

0
(α,β) 6=0

1
|α|+ |β|

(
|α|+ |β|

α β

)
Lp,d(xα)aβxα+β

= ∑
γ∈Nn

0
γ 6=0

∑
α∈Nn

0
α�γ

1
|γ|

(
|γ|

α γ− α

)
Lp,d(xα)aγ−αxγ

= ∑
γ∈Nn

0
γ 6=0

1
|γ|

(
|γ|
γ

) ∑
α∈Nn

0
α�γ

(
γ1

α1

)
· · ·
(

γn

αn

)
Lp,d(xα)aγ−α

 xγ

= ∑
γ∈Nn

0
γ 6=0

1
|γ|

(
|γ|
γ

)
Lp,d

(
n

∏
i=1

γi

∑
αi=1

(
γi
αi

)
xi

αi ai
γi−αi

)
xγ

= ∑
γ∈Nn

0
γ 6=0

1
|γ|

(
|γ|
γ

)
Lp,d((x + a)γ)xγ.

This implies Lp[a],d(xα) = Lp,d((x + a)α) for all α ∈ Nn
0 with α 6= 0. By linearity,

this shows the claim. �

3.2. Linear forms and traces.

Lemma 3.15. Let
∞

∑
k=1

aktk ∈ C[[t]] (a1, a2, . . . ∈ C)

be a univariate power series with positive radius of convergence. Let p ∈ C[x] be
a polynomial with p(0) = 0. Then there is some ε > 0 such that for each z ∈ C

with |z| < ε, the series
∞

∑
k=1

ak p(z)k

is absolutely convergent even after fully expanding ak p(z)k into the obvious sum
of mk many terms where m is the number of monomials in p.
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Proof. We have to bound the finite partial sums of the absolute values of the in-
dividual terms from above (see for example [T1, Definition 8.2.4] or [Rui, §I.1]).
Write p = t1 + . . . + tm where each ti involves only one monomial of p. We have
to find ε > 0 and C ∈ R such that for each z ∈ C with |z| < ε and for each ` ∈ N,
we have

`

∑
k=1

m

∑
i1=1

. . .
m

∑
ik=1
|akti1(z) · · · tik (z)| ≤ C.

WLOG m > 0. Let r > 0 denote the radius of convergence of the univariate power
series. Choose $ ∈ R with 0 < $ < r. As p(0) = 0, each ti vanishes at the origin.
By continuity, we can choose ε > 0 such that

|ti(z)| ≤
$

m
for all i ∈ {1, . . . , m} and z ∈ C with |z| < ε. Since a univariate power series
converges absolutely inside the radius of convergence [T2, Theorem 4.1.6(b)], we
can set C := ∑∞

k=1 |ak|$k < ∞. For each ` ∈N and z ∈ C with |z| < ε, we have

`

∑
k=1

m

∑
i1=1

. . .
m

∑
ik=1
|akti1 · · · tik | ≤

`

∑
k=1

mk|ak|
( $

m

)k
=

`

∑
k=1
|ak|$k ≤ C.

�

Definition 3.16. Let A1, . . . , An ∈ Cd×d and α ∈ Nn
0 . The α-Hurwitz product of

A1, . . . , An is the matrix that arises as follows: First, form all words in n letters
where the i-th letter appears exactly αi times. Then turn each word into a product
of matrices by substituting Ai for the i-th letter. Finally, sum up all matrices that
arise in this way. Formally, we can define it as

hurα(A1, . . . , An) := ∑
f : {1,...,|α|}→{1,...,n}
∀i∈{1,...,n}:# f−1(i)=αi

A f (1) · · · A f (|α|) ∈ Cd×d.

In particular, hur0(A1, . . . , An) = Id.

Proposition 3.17. Suppose d ∈N0 and A1, . . . , An ∈ Cd×d are hermitian. Then

p := det(Id + x1 A1 + . . . + xn An) ∈ R[x]

and

Lp,d(xα) =
1

(|α|α )
tr(hurα(A1, . . . , An))

for all α ∈Nn
0 .

Proof. For q ∈ C[x], we denote by q∗ ∈ C[x] the polynomial which arises from q
by applying the complex conjugation to the coefficients. We have

p∗ = (det(Id + x1 A1 + . . . + xn An))
∗ = (det((Id + x1 A1 + . . . + xn An)

T))∗

= (det(Id + x1 AT
1 + . . . + xn AT

n ))
∗ = det(Id + x1 A∗1 + . . . + xn A∗n)

= det(Id + x1 A1 + . . . + xn An) = p

and therefore p ∈ R[x]. It is easy to see that Hurwitz products of hermitian ma-
trices are again hermitian and therefore have real diagonal entries and henceforth
real trace.
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It is clear that Lp,d(1) = d = tr(Id) = tr(hur0(A1, . . . , An)). By Definition 3.4, it
remains to show that

(∗) − log(p(−x)) = ∑
α∈Nn

0
α 6=0

1
|α| tr(hurα(A1, . . . , An))xα.

The real multivariate power series on both sides converge absolutely in a neigh-
borhood of the origin in Rn. For the left hand side this follows from Lemma 3.15
by recollecting terms belonging to the same monomial. For the right hand side, we
argue as follows: The number of words of length k in n letters is nk. If the entries
of each Ai are bounded in absolute value by c > 0, then the entries of a product
of the Ai with k many factors are bounded in absolute value by dk−1ck. Then the
trace of such a product is bounded by (dc)k. Hence we get

∑
α∈Nn

0
|α|=k

∣∣∣∣ 1
|α| hurα(A1, . . . , An)aα

∣∣∣∣ ≤ (cdn)k‖a‖k
∞ ≤

(
1
2

)k

for all a ∈ Rn with ‖a‖∞ ≤ 1
2cdn .

By the identity theorem for multivariate real power series [Rui, Proposition 2.9],
it suffices to show that both series in (∗) converge absolutely to the same value in
a neighborhood of the origin in Cn. It is a subtle issue that uses Lemma 3.15 and
rearrangement of absolutely convergent series (cf. Proposition [Rui, Proposition
1.6]) to show that for all a in a neighborhood of the origin in Rn, the left hand
side of (∗) evaluated at a (i.e., (− log(p(−x)))(a) equals − log(p(−a)) where the
first log stands for the operation on power series defined in Definition 3.2 and the
second one for the usual real logarithm. On the other hand, the right hand side of
(∗) evaluates at a from a small neighborhood of the origin to

∑
α∈Nn

0
α 6=0

1
|α| tr(hurα(a1 A1, . . . , an An)) =

∞

∑
k=1

1
k

tr((a1 A1 + . . . + an An)
k).

It now suffices to fix a ∈ Rn such that the hermitian matrix

B := a1 A1 + . . . + an An ∈ Cd×d

is of operator norm strictly less than 1 (or equivalently has all eigenvalues in the
open real interval (−1, 1)) and to show that

− log(det(In − B)) =
∞

∑
k=1

1
k

tr(Bk).

Since the operator norm is sub-multiplicative, the matrix C := ∑∞
k=1

1
k Bk ∈ Cd×d

exists. Obviously, C is hermitian and its eigenvalues, listed according to their al-
gebraic multiplicity, arise from the eigenvalues of In − B by taking minus the real
logarithm. Since determinant and trace are the product and sum, respectively, of
the eigenvalues counted with algebraic multiplicity, we thus get the result. �

The traces of Hurwitz products appearing in Proposition 3.17 are in general
hard to deal with. It is an easy but absolutely crucial observation that this is dif-
ferent for Hurwitz products with up to three factors.
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Corollary 3.18. Suppose d ∈N0 and A1, . . . , An ∈ Cd×d are hermitian. Set

p := det(Id + x1 A1 + . . . + xn An) ∈ R[x].

Then

Lp,d(1) = tr(Id),

Lp,d(xi) = tr(Ai),

Lp,d(xixj) = tr(Ai Aj) = tr(Aj Ai) and

Lp,d(xixjxk) = Re tr(Ai Aj Ak) = Re tr(Ai Ak Aj) = Re tr(Aj Ai Ak)

= Re tr(Aj Ak Ai) = Re tr(Ak Ai Aj) = Re tr(Ak Aj Ai)

for all i, j, k ∈ {1, . . . , n}.

Proof. The first three statements are trivial. For the last statement, note that

(tr(ABC))∗ = (tr((ABC)T))∗ = (tr(CT BT AT))∗ = tr(C∗B∗A∗) = tr(CBA)

for all hermitian A, B, C ∈ Cd×d. �

3.3. Relaxing hyperbolic programs.

Definition 3.19. Let p ∈ R[[x]] be a power series with p(0) 6= 0 and d ∈ N0.
Consider the symmetric matrices

A0 :=


Lp,d(1) Lp,d(x1) . . . Lp,d(xn)
Lp,d(x1) Lp,d(x2

1) . . . Lp,d(x1xn)
...

...
...

Lp,d(xn) Lp,d(x1xn) . . . Lp,d(x2
n)

 ∈ R(n+1)×(n+1)

and

Ai :=


Lp,d(xi) Lp,d(xix1) . . . Lp,d(xixn)

Lp,d(xix1) Lp,d(xix2
1) . . . Lp,d(xix1xn)

...
...

...
Lp,d(xixn) Lp,d(xix1xn) . . . Lp,d(xix2

n)

 ∈ R(n+1)×(n+1)

for i ∈ {1, . . . , n}.
(a) We call the linear matrix polynomial

Mp,d := A0 + x1 A1 + . . . + xn An ∈ R[x](n+1)×(n+1)

the pencil associated to p with respect to the virtual degree d and

Sd(p) := {a ∈ Rn | Mp,d(a) � 0}

the spectrahedron associated to p with respect to the virtual degree d.
(b) In the case where p is a polynomial, we call

Mp := Mp,deg p

the pencil associated to p and

S(p) := Sdeg p(p)

the spectrahedron associated to p.
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(c) We call the linear matrix polynomial

Mp,∞ ∈ R[x]n×n

that arises from Mp,d (for no matter what d ∈N0) by deleting the first row and
column the pencil associated to p with respect to infinite virtual degree and

S∞(p) := {a ∈ Rn | Mp,∞(a) � 0}
the spectrahedron associated to p with respect to infinite virtual degree.

Remark 3.20. Let p ∈ R[[x]] be a power series with p(0) 6= 0. Then

S0(p) ⊆ S1(p) ⊆ S2(p) ⊆ S3(p) ⊆ S4(p) ⊆ . . . ⊆ S∞(p).

Remark 3.21. Let p ∈ R[x] be a polynomial with p(0) 6= 0. Note that Mp and
therefore S(p) depend only on the cubic part trunc3 p of p. Indeed, if one assumes
moreover that p(0) = 1 then this is a polynomial dependance on the correspond-
ing coefficients of p, more exactly a cubic one which could be written down ex-
plicitly by the expressions of Example 3.5 for the values of Lp on the monomials of
degree at most 3.

Lemma 3.22. Let p ∈ R[x] be a power series with p(0) 6= 0, d ∈N0, a ∈ Rn and

v =
(
v0 v1 . . . vn

)T ∈ Rn+1.

Then vT Mp,d(a)v = Lp,d((v0 + v1x1 + . . . + vnxn)2(1 + a1x1 + . . . + anxn)).

Proof. For the moment denote x0 := 1 an a0 := 1. Then

vT Mp,d(a)v =
n

∑
i=0

n

∑
j=0

vivj

n

∑
k=0

akLp,d(xixjxk)

= Lp,d

((
n

∑
i=0

vixi

)(
n

∑
j=0

vjxj

)(
n

∑
k=0

akxk

))
.

�

Lemma 3.23. Suppose U ∈ Rn×n is an orthogonal matrix and consider the orthog-
onal matrix

Ũ :=
(

1 0
0 U

)
∈ R(n+1)×(n+1)

(a) If p ∈ R[[x]] is a power series with p(0) 6= 0 and d ∈N0, then

Mp(Ux),d = ŨT Mp,d(Ux)Ũ.

(b) If p ∈ R[x] is a polynomial with p(0) 6= 0, then

Mp(Ux) = ŨT Mp(Ux)Ũ.

(c) If p ∈ R[[x]] is a power series with p(0) 6= 0, then

Mp(Ux),∞ = UT Mp,∞(Ux)U.

Proof. Part (c) is immediate from (a). Part (b) follows from (a) by observing that
deg(p(Ux)) = deg p for all polynomials p ∈ R[x]. To prove (a), we let p ∈ R[[x]]
be a power series with p(0) 6= 0 and d ∈N0. We can rewrite the claim as

ŨMp(Ux),dŨT = Mp,d(Ux)
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which in turn is equivalent to

ŨMp(Ux),d(U
Tx)ŨT = Mp,d

by the automorphisms of the power series ring R[x] given by x 7→ Ux and x 7→
UTx. For each v ∈ Rn, we denote by ṽ ∈ Rn+1 the vector that arises from v by
prepending 1. By continuity, homogeneity and the identity theorem for multivari-
ate polynomials, it suffices to show that

ṽTŨMp(Ux),d(U
Ta)ŨT ṽ = ṽT Mp,d(a)ṽ

for all a, v ∈ Rn. By Lemma 3.22, this is equivalent to

Lp(Ux),d((1 + (UTv)Tx)2(1 + (UTa)Tx)) = Lp,d((1 + vTx)2(1 + aTx))

for all a, v ∈ Rn which follows easily from Proposition 3.8(a) after rewriting the
left hand side as Lp(Ux),d((1 + vTUx)2(1 + aTUx)). �

Proposition 3.24. Let p ∈ R[x] with p(0) 6= 0 and U ∈ Rn×n an orthogonal matrix.
Then

C(p(Ux)) = {UTa | a ∈ C(p)},
S(p(Ux)) = {UTa | a ∈ S(p)} and

Sd(p(Ux)) = {UTa | a ∈ Sd(p)}
for all d ∈N0 ∪ {∞}.

Proof. We have

C(p(Ux)) = {a ∈ Rn | ∀λ ∈ [0, 1) : p(U(λa)) 6= 0}
= {a ∈ Rn | ∀λ ∈ [0, 1) : p(λUa) 6= 0}
= {UTa ∈ Rn | ∀λ ∈ [0, 1) : p(λa) 6= 0} = {UTx | x ∈ C(p)}

and using Lemma 3.23(b),

S(p(Ux)) = {a ∈ Rn | Mp(Ux)(a) � 0}
= {a ∈ Rn | Mp(Ua) � 0}
= {UTa ∈ Rn | Mp(a) � 0}
= {UTa ∈ Rn | a ∈ S(p)}.

The last statement follows in a similar way from Lemma 3.23(a). �

Lemma 3.25. Let p ∈ R[x] be a polynomial with p(0) 6= 0 and set d := deg p.
Then

P :=
(

1 aT

0 In

)
∈ R(n+1)×(n+1)

is invertible and
Mp[a],d = PT(Mp + aTxMp(0))P.

Proof. For each v ∈ Rn, we denote by ṽ ∈ Rn+1 the vector that arises from v by
prepending 1. By continuity, homogeneity and the identity theorem for multivari-
ate polynomials, it suffices to show that

ṽT Mp[a],d(b)ṽ = ṽT PT(Mp(b) + aTbMp(0))Pṽ
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for all b, v ∈ Rn. Fixing b, v ∈ Rn and setting w := Pṽ =

(
1 + aTv

v

)
∈ Rn+1, this

amounts to show

ṽT Mp[a],d(b)ṽ = wT Mp(b)w + (aTb)wT Mp(0)w.

Applying Lemma 3.22, this is equivalent to

Lp[a],d((1 + vTx)2(1 + bTx)) =

Lp(((1 + aTv) + vTx)2(1 + bTx)) + aTbLp(((1 + aTv) + vTx)2)

for all b, v ∈ Rn which follows easily from Proposition 3.14 after rewriting the left
hand side as Lp((1 + vT(x + a))2(1 + bT(x + a))). �

Lemma 3.26. Suppose m, n ∈N0 with m ≤ n and q ∈ R[x] with q(0) 6= 0. Set

r := q(x1, . . . , xm, 0, . . . , 0) ∈ R[x1, . . . , xm].

Then
(a) Lq,d(p) = Lr,d(p) for all p ∈ R[x1, . . . , xm] and d ∈N0
(b) {a ∈ Rm | (a, 0, . . . , 0) ∈ C(q)} = C(r)
(c) {a ∈ Rm | (a, 0, . . . , 0) ∈ Sd(q)} ⊆ Sd(r) for all d ∈N0 ∪ {∞}

Proof. (a) By linearity, it suffices to consider the case where p is a monomial. If
p = 1, then Lq,d(p) = d = Lr,d(p). It remains to show that Lq,d(xα) = Lr,d(xα) for
all a ∈ Nm

0 with α 6= 0. But this follows from Definitions 3.4 and 3.2(b) since the
power series log r arises from the power series log q by substituting the variables
xm+1, . . . , xn with 0.

(b) is clear.
(c) follows from (a) together with Lemma 3.22. �

Proposition 3.27. Fix d ∈N0. Then

(A, B) 7→ tr(AB)

is a scalar product on the real vector space of hermitian matrices in Cd×d. In par-
ticular, tr(AB) ∈ R for all hermitian A, B ∈ Cd×d.

Proof. Identifying each matrix of size d with a “long” vector of size d2 by reading
its entries in the usual way, the scalar product is induced by the usual complex
scalar product on Cd. Since all diagonal entries of a hermitian matrix are real and
all other entries have the opposite imaginary part of its mirror entry, the claim
easily follows. �

Lemma 3.28. Suppose d ∈N0 and A1, . . . , An ∈ Cd×d are hermitian. Set

p := det(Id + x1 A1 + . . . + xn An) ∈ R[x].

For all a ∈ Rn and
v =

(
v0 v1 . . . vn

)T ∈ Rn+1,

we then have

vT Mp,d(a)v = tr((v0 Id + v1 A1 + . . . + vn An)
2(Id + a1 A1 + . . . + an An)).

Proof. Corollary 3.18, Lemma 3.22 and Proposition 3.27. �
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Since M2 is hermitian for each hermitian M ∈ Cd×d, Proposition 3.27 shows
that the traces occurring in the next definition are real. Moreover, since M2 is even
psd for each hermitian M ∈ Cd×d and the trace of a product of two psd matrices
nonnegative, we see that the two occurrences of “ =⇒ ” could equivalently be
replaced by “⇐⇒ ” in the next definition.

Definition 3.29. We call U perfect if it is a subset of {A ∈ Cd×d | A hermitian} that
satisfies

∀A ∈ U : ((∀M ∈ U : tr(M2 A) ≥ 0) =⇒ A � 0).

We call (U, V) an admissible couple if U ⊆ V ⊆ {A ∈ Cd×d | A hermitian} and

∀A ∈ U : ((∀M ∈ V : tr(M2 A) ≥ 0) =⇒ A � 0).

Remark 3.30. (a) Let U ⊆ Cd×d be perfect and k ∈N0. Then


A 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 A

 ∈ C(kd)×(kd)

∣∣∣∣∣∣∣∣∣∣
A ∈ U


is again perfect.

(b) Let U ⊆ Cd×d and V ⊆ Ce×e be perfect and suppose 0 ∈ U and 0 ∈ V. Then{(
A 0
0 B

)
∈ C(d+e)×(d+e)

∣∣∣∣ A ∈ U, B ∈ V
}

is again perfect.
(c) Let U ⊆ Cd×d be perfect and Q ∈ Cd×d be a unitary matrix (e.g., a permutation

matrix). Then

{Q∗AQ | A ∈ U}

is again perfect.

Remark 3.31. The following is an easy exercise that we leave to the reader:

(a) The following sets are perfect:
• {λId | λ ∈ R}
• {A ∈ Rd×d | A diagonal}
• {A ∈ Rd×d | A symmetric}
• {A ∈ Cd×d | A hermitian}

(b) If V is a perfect set and U is contained in it, then (U, V) is an admissible couple.

Example 3.32. Let A ∈ Cd×d be hermitian. We claim that the real span of

Id, A, A2, . . . , Ad−1

is perfect. Indeed, by conjugating A with a suitable unitary matrix, one eas-
ily reduces to the case where A is a diagonal matrix with diagonal entries a =
(a1, . . . , ad) ∈ Rn. By conjugating it once more with a permutation matrix, we can
moreover suppose that the first n entries a1, . . . , an of a are pairwise distinct and
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all other entries an+1, . . . , ad are repetitions of entries of a1, . . . , an. Consider now
the Vandermonde matrix

H :=


1 a1 a2

1 . . . ad−1
1

1 a2 a2
2 . . . ad−1

2
...

...
...

...
1 ad a2

d . . . ad−1
d

 ∈ Rd×d

whose columns are the diagonals of the diagonal matrices Id, A, . . . , Ad−1. The
top left d× d submatrix is invertible since it is again a Vandermonde matrix with
pairwise different rows. Hence the projection of the column space of H on the first
d components is Rd. The rows n + 1 to d of H are repetitions of the first n rows
of H. The entries of each element in the column space follow the same pattern.
Hence it suffices to apply Remark 3.30(a) n-times to the perfect set R = R1×1

(each time with a possibly different appropriate number of repetitions k), then
use several times Remark 3.30(b) and finally apply Remark 3.30(c) with a suitable
permutation matrix.

Proposition 3.33. Suppose d ∈N0, A1, . . . , An ∈ Cd×d,

U := {v0 Id + v1 A1 + . . . + vn An | v0, v1, . . . , vn ∈ R},
U∞ := {v1 A1 + . . . + vn An | v1, . . . , vn ∈ R}

and (U, V) is an admissible couple (in particular, each Ai is hermitian). Set

p := det(Id + x1 A1 + . . . + xn An) ∈ R[x].

(a) We have

C(p) = {a ∈ Rn | ∀M ∈ V : tr(M2(Id + a1 A1 + . . . + an An)) ≥ 0},
Sd(p) = {a ∈ Rn | ∀M ∈ U : tr(M2(Id + a1 A1 + . . . + an An)) ≥ 0} and

S∞(p) = {a ∈ Rn | ∀M ∈ U∞ : tr(M2(Id + a1 A1 + . . . + an An)) ≥ 0}.

(b) C(p) ⊆ Sd(p) ⊆ S∞(p)
(c) If U is perfect, then C(p) = Sd(p).
(d) If U∞ is perfect, then C(p) = Sd(p) = S∞(p).

Proof. The first statement in (a) follows directly from Proposition 2.12 together
with Definition 3.29. The remaining statements of (a) follow easily from Lemma
3.28 and Definition 3.19. Statement (b) is a direct consequence of (a) since U∞ ⊆
U ⊆ V. Part (c) and (d) now follow directly from Definition 3.29. �

Example 3.34. Let A1, . . . , An ∈ Rd×d by symmetric and consider

p := det(Id + x1 A1 + . . . + xn An) ∈ R[x]

which has degree at most d.

(a) Suppose the Ai together with Id generate the vector space of all real symmetric
matrices of size d, then C(p) = Sd(p).

(b) Suppose the Ai themselves generate the vector space of all real symmetric ma-
trices of size d, then even C(p) = S∞(p).
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For real zero polynomials having a determinantal representation as in Propo-
sition 3.33 whose size equals their degree, the following is an immediate conse-
quence of Proposition 3.33. However, in the general case we have to argue in a
much more subtle way. Actually, this is the first place in this article where we
wouldn’t know how to avoid the Helton-Vinnikov theorem (in form of Corollary
2.8).

Theorem 3.35. Let p be a real zero polynomial. Then C(p) ⊆ S(p).

Proof. WLOG p(0) = 1. For n ≤ 2, the claim follows from Proposition 3.33(b)
where we use the Helton-Vinnikov Corollary 2.8 for n = 2. We now suppose
n > 2 and reduce it to the already proven case n = 2. Let a ∈ C(p). We have to
show Mp(a) � 0. By continuity and homogeneity, it suffices to show(

1 vT)Mp(a)
(

1
v

)
≥ 0

for all v ∈ Rn. By Lemma 3.22, this is equivalent to

Lp((1 + vTx)2(1 + aTx)) ≥ 0.

To prove this, choose an orthogonal matrix U ∈ Rn×n such that w := UTv and
b := UTa lie both in R2 × {0} ⊆ Rn. By Proposition 3.8(b), it suffices to show

Lq((1 + wTx)2(1 + bTx)) ≥ 0

where q := p(Ux) ∈ R[x]. Here q and henceforth r := q(x1, x2, 0, . . . , 0) ∈ R[x1, x2]
are of course also real zero polynomials. By Lemma 3.26(a), it is enough to show

Lr((1 + wTx)2(1 + bTx)) ≥ 0.

Now observe that a ∈ C(p) implies b ∈ C(q) and thus (b1, b2) ∈ C(r). But C(r) ⊆
S(r) by the already proven case n = 2. Hence Mr(b1, b2) � 0 and we can conclude
by Lemma 3.22. �

3.4. Relaxing linear programs. We now come back to the most basic example of
hyperbolic polynomials, namely products of linear polynomials non-vanishing at
the origin. The rigidly convex sets they define are exactly the polyhedra contain-
ing the origin in their interior. The complexity behavior of optimization of linear
functions over polyhedra is mainly governed by the number of linear inequalities
they are defined by [MG]. For polyhedra with a huge number of facets, it is there-
fore reasonable to try to find reasonable outer approximations defined by a small
linear matrix inequality. This fits of course into the above more general frame-
work. However, in this special case, we get new interpretations, simplifications
and extensions of the construction presented above:

First, we will be able to interpret the matrix coefficients Ai of the pencil from
Definition 3.19 as moment matrices and localization matrices [Lau]. This might
remind the reader of Lasserre’s moment relaxations. But Lasserre’s relaxation is
a lift-and-project method where “moment matrices” are actually matrices filled
with unknowns having the structure of moment matrices. Our method is not a
lift-and-project method and the matrices are actual moment matrices filled with
real numbers.

Second, the proofs for the case of linear programming will simplify dramati-
cally. In particular, we will not need any version of the Helton-Vinnikov Theorem
2.7.
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Third, we will not restrict to moments of degree three in this case but will go to
arbitrarily high moments and thus present a hierarchy of relaxations for which we
can prove finite convergence at level d− 1 if d is the number of linear inequalities.

Proposition 3.36. Let d ∈N0 and a1, . . . , ad ∈ Rn and p := ∏d
i=1(1 + aT

i x). Then

Lp(q) =
d

∑
i=1

q(ai)

for all q ∈ R[x], i.e., Lp is integration with respect to the sum of the Dirac measures
in the points ai.

Proof. In the case d = 0, we have p = 1 and thus Lp = 0. The case d ≥ 2 reduces to
the case d = 1 by means of Proposition 3.6(b). Hence we suppose now that d = 1
and write a := a1. By linearity, it suffices to treat the case where q is a monomial.
For the constant monomial q = 1, we have that Lp(q) = deg p = 1 = q(a). For the
other monomials, we have to show

−
∞

∑
k=1

(aT
1 x)k

k
=

∞

∑
k=1

1
k ∑

α∈Nn
0

|α|=k

(
|α|
α

)
aα

1 xα

in view of Definitions 3.4 and 3.2(b). But this follows from the multinomial theo-
rem. �

The following generalizes Definition 3.19(b).

Definition 3.37. Let p ∈ R[x] with p(0) 6= 0 and d ∈N0. Set s := (d+n
d ) = (d+n

n ) =
#E where

E = {xα | α ∈Nn
0 , |α| ≤ d}

is the set of monomials in n variables of degree at most d. Fix an order on these
monomials, i.e., write E = {m1, . . . , ms}. Consider the symmetric matrices

A0 := (Lp(mimj))1≤i≤s
1≤j≤s

and Ak := (Lp(xkmimj))1≤i≤s
1≤j≤s

for k ∈ {1, . . . , n}. Then we call the linear matrix polynomial

M(d)
p := A0 + x1 A1 + . . . + xn An ∈ R[x]s×s

the d-th pencil associated to p and

S(d)(p) := {a ∈ Rn | M(d)
p (a) � 0}

the d-th spectrahedron associated to p.

Lemma 3.38. Let p ∈ R[x] be a polynomial with p(0) 6= 0, a ∈ Rn and d ∈ N0.
Let m1, . . . , ms be the pairwise distinct monomials in n variables of degree at most
d in the order that has been fixed in Definition 3.37. Let v ∈ Rs. Then

vT M(d)
p (a)v = Lp((v1m1 + . . . + vsms)

2(1 + a1x1 + . . . + anxn)).

Lemma 3.39. Let a1, . . . , ad ∈ Rn and i ∈ {1, . . . , d}. Then there exists a polynomial
q ∈ R[x] \ {0} with deg q < d such that q(ai) 6= 0 and q(aj) = 0 for all j ∈
{1, . . . , d} \ {i}.



30 M. SCHWEIGHOFER

Proof. The polynomial ∏j∈{1,...,d}\{i}(xT(aj − ai)) 6= 0 cannot vanish on the whole
of Rn. So we can choose v ∈ Rn with vTaj 6= vTai for all j ∈ {1, . . . , d} \ {i}. Now
set q := ∏j∈{1,...,d}\{i}(vTaj − vTx) �

Theorem 3.40. Let p ∈ R[x] be a product of linear polynomials with p(0) 6= 0.
Then the following hold:

(a) C(p) ⊆ S(d)(p) for each d ∈N0 (“relaxation”)
(b) S(0)(p) ⊇ S(1)(p) ⊇ S(2)(p) ⊇ S(3)(p) ⊇ . . . (“hierarchy”)
(c) If d := deg p ≥ 1, then C(p) = S(d−1)(p) (“finite convergence”)

Proof. WLOG p(0) = 1. Write p = ∏d
i=1(1 + aT

i x) with a1, . . . , ad ∈ Rn. Then d =
deg p. For example by Proposition 2.12 (interpreting the product representation of
p as a diagonal determinantal representation), we have

C(p) = {a ∈ Rn | 1 + aT
1 x ≥ 0, . . . , 1 + aT

d x ≥ 0}.
(a) Let a ∈ C(p). We have to show Mp,e(a) � 0 for all e ∈ N0. By Lemma

3.38, this is equivalent to Lp(q2(1 + aTx)) ≥ 0 for all q ∈ R[x]. This means by
Proposition 3.36 that

d

∑
i=1

q(ai)
2(1 + aTai) ≥ 0

for all q ∈ R[x]. But even more is true: For each i ∈ {1, . . . , d}, 1 + aTai = 1 +
aT

i a ≥ 0 since a ∈ C(p) and therefore q(ai)
2(1 + aTai) ≥ 0.

(b) is clear from Definition 3.37.
(c) One inclusion has been proven already in (a). For the other one, let a ∈

Rn \ C(p). We show that a /∈ S(d−1)(p). By Lemma 3.38 and Proposition 3.36,
this means we have to show that there exists a polynomial q ∈ R[x] \ {0} with
deg q ≤ d− 1 such that

d

∑
j=1

q(aj)
2(1 + aT

j a) < 0.

Choose i ∈ {1, . . . , d} such that 1 + aT
i a < 0. By Lemma 3.39, we can choose a

polynomial q ∈ R[x] \ {0} with deg q < d such that q(ai) 6= 0 and q(aj) = 0 for all
j ∈ {1, . . . , d} \ {i}. Then

d

∑
j=1

q(aj)
2(1 + aT

j a) = q(ai)
2(1 + aT

i a) < 0.

�

4. TIGHTENING THE RELAXATION

Let p ∈ R[x] be real zero polynomial. By Theorem 3.35, S(p) is an outer spec-
trahedral approximation of C(p), i.e., C(p) ⊆ S(p). If p has high degree, then
we cannot expect in general that this is a good approximation since S(p) is de-
fined by a very small linear matrix inequality. In this section, we analyze qual-
itatively a very simple idea of how to improve the spectrahedral outer approxi-
mation. The price we will have to pay is of course that we will need more linear
matrix inequalities (of the same size however). Roughly, the idea is to “move
the origin”. More precisely, choose a point a ∈ C(p) \ Z(p) that is different



SPECTRAHEDRAL RELAXATIONS OF HYPERBOLICITY CONES 31

from the origin. By Theorem 2.14, the polynomial p(x + a) is again a real zero
polynomial and we have C(p(x + a)) + a = C(p). In general, we do however
not have that S(p(x + a)) + a = S(p). This seems to a lacking theoretical prop-
erty at first sight but turns out to be a fortunate fact that we can take advantage
of. Namely, we have C(p(x + a)) ⊆ S(p(x + a)) by Theorem 3.35 and therefore
C(p) = C(p(x + a)) + a ⊆ S(p(x + a)) + a so that S(p(x + a)) + a is another outer
spectrahedral relaxation of C(p) that will in general be different from S(p). Hence
the intersection

S(p) ∩ (S(p(x + a)) + a)
will in general be an improved outer approximation of C(p). It is defined by two
linear matrix inequalities of size n + 1 each which could of course be combined
into a single one of size 2n + 2. Instead of choosing two points inside C(p) \ Z(p),
namely the origin and a, we could now more generally choose finitely many points
a1, . . . , ak ∈ C(p) \ Z(p) (the origin must not necessarily be among them) and
consider the spectrahedron

k⋂
i=1

(S(p(x + ai)) + ai) ⊇ C(p)

defined by a linear matrix inequality of size k(n + 1). In practice, it seems like
S(p(x + a)) + a tightly approximates C(p) in a neighborhood of a ∈ C(p) \ Z(p).
If this is right, then one would get a very tight outer approximation by choosing
a1, . . . , ak ∈ C(p) \ Z(p) in such way that each point in C(p) ∩ Z(p) is close to one
of the ai. This might of course have a very large price, namely that the number of
points k might have to be very large.

Now we want to support the just presented view on how to make the approxi-
mation tighter. To this end, we prove a rather theoretical result that says that if we
take all points of C(p) \ Z(p) instead of just finitely many, then the corresponding
intersection equals C(p). This is Corollary 4.4 below. It does of course not imply
that C(p) is a spectrahedron since we deal now with an infinite intersection. In
fact, we prove a more precise theorem that provides an evidence for our idea that
it might be sufficient to choose the points close to the boundary of C(p) provided
each boundary point is close to one of the ai. This is Theorem 4.3 where we inter-
sect not over all points of C(p) \ Z(p) but only over those lying outside of a fixed
closed subset D of C(p) \ Z(p). A good imagination is that C(p) is a potato, Z(p)
ist skin and D the peeled potato (where the removed part inevitably is a bit more
than the skin).

Our theoretical theorem actually works even for a certain polyhedral instead
of spectrahedral outer approximation that we will now introduce. This is a poor
man’s version of the spectrahedron introduced in Definition 3.19(a). When no
intersection comes into play, then we use actually just an affine half space or in
exceptional cases the full space, namely the one that is defined by the linear in-
equality that corresponds to the top left entry of the pencil that defines the spec-
trahedron.

Definition 4.1. Let p ∈ R[[x]] be a power series with p(0) 6= 0 and d ∈ N0. We
call

Pd(p) := {a ∈ Rn | Lp,d(1) + Lp,d(x1)b1 + . . . + Lp,d(xn)bn ≥ 0}
the polyhedron associated to p with respect to the virtual degree d.
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In Remark 6.23 below, we will give an interesting interpretation of this half-
space for which we do not yet have the necessary notions.

Remark 4.2. (a) If p ∈ R[[x]] satisfies trunc1 p = 1 + a1x1 + . . . + anxn, then

Pd(p) = {b ∈ Rn | d + a1b1 + . . . + anbn ≥ 0}
by Example 3.5 and Definition 3.4(a).

(b) Let p ∈ R[[x]] with p(0) 6= 0, then Pd(p) is either an affine half space or the
full space depending on whether trunc1 p is a constant polynomial or not.

(c) If p ∈ R[x] is a real zero polynomial of degree at most d, then we have

C(p) ⊆ Sd(p) ⊆ Pd(p)

where the first inclusion follows from Theorem 3.35 and the second is trivial.
(d) Let p ∈ R[x] is a real zero polynomial of degree at most d. The inclusion

C(p) ⊆ Pd(p)

is trivial contrary to the finer statement from (c). To show it, suppose WLOG
p(0) = 1, deg p = d and write trunc1 p = 1+ a1x1 + . . .+ anxn with a1, . . . , an ∈
R. We have to show that d + a1b1 + . . . + anbn ≥ 0 for all b ∈ C(p). Fixing
b ∈ C(p), write

(∗) p(tb) =
e

∏
i=1

(1 + dit)

for some e ∈ {0, . . . , d} and d1, . . . , de ∈ R×. By Definition 2.11, we have that
p(tb) has no roots in the interval [0, 1). In other words, we have di ≥ −1 for
all i ∈ {1, . . . , e}. Extracting the coefficient of t on both sides of (∗), we get
a1b1 + . . . + anbn = d1 + . . . + de and therefore

d + a1b1 + . . . + anbn = d + d1 + . . . + de ≥ d− e ≥ 0.

Theorem 4.3. Suppose d ∈ N0, p ∈ R[x] is a real zero polynomial of degree at
most d and D a closed subset of C(p) \ Z(p). Then

C(p) =
⋂

a∈C(p)\(Z(p)∪D)

Sd(p(x + a)) + a =
⋂

a∈C(p)\(Z(p)∪D)

Pd(p(x + a)) + a

where the empty intersection is interpreted as Rn.

Proof. Recall that p(x + a) is a real zero polynomial for each a ∈ C(p) \ Z(p) by
Theorem 2.14.

Both inclusions from left to right follow essentially from Theorem 3.35: For each
a ∈ C(p) \ Z(p), we have C(p) = C(p(x + a)) + a and

C(p(x + a)) ⊆ S(p(x + a)) ⊆ Sd(p(x + a))

by Remark 4.2(c) so that C(p) ⊆ S(p(x + a)) + a ⊆ P(p(x + a)) + a.
It remains to show that

C(p) ⊇
⋂

a∈C(p)\(Z(p)∪D)

Pd(p(x + a)) + a

We even show that for each half-line H emanating from the origin,

H ∩ C(p) ⊇ H ∩
⋂

a∈H∩(C(p)\(Z(p)∪D))

(Pd(p(x + a)) + a).
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where the empty intersection stands of course again for Rn. Using Proposition
3.8(a), one easily reduces to the case where H is the positive first axis

H = R≥0 × {0} ⊆ Rn.

By Lemma 3.26(a), we can reduce to the case n = 1 since p(x1, 0, . . . , 0) ∈ R[x1] has
again degree at most d. So suppose from now on that we have just one variable
x = x1. Then H = R≥0. WLOG p(0) = 1. Write

p =
d

∏
i=1

(1 + aix)

with a1, . . . , ad ∈ R. The roots of p are then the− 1
a1

, . . . ,− 1
ad

. If none of these roots
is positive, then C(p)∩ H = R≥0 and there is nothing to show. For now on we can
therefore suppose that d ≥ 1 and

r := − 1
a1

is the smallest positive root of p so that H ∩ C(p) = [0, r]. In particular, r > 0 and
a1 < 0. Since D is closed and r /∈ D, we can choose ε > 0 such that r − ε > 0
and H ∩ D ⊆ [0, r − ε]. Then (r − ε, r) ⊆ H ∩ (C(p) \ (Z(p) ∪ D)). It therefore is
enough to show that

(∗)
⋂

a∈(r−ε,r)

Pd(p(x + a)) + a ⊆ (−∞, r].

For a ∈ R \ Z(p) ⊇ (r− ε, r), the polynomial

(∗∗) pa :=
p(x + a)

p(a)
=

d

∏
i=1

1 + ai(x + a)
1 + aia

=
d

∏
i=1

(
1 +

ai
1 + aia

x
)

has constant coefficient 1. Proposition 3.36 hence implies that Lpa is for each a ∈
R \ Z(p) ⊇ (r− ε, r) integration with respect to the sum of the Dirac measures in
the points a1

1+a1a , . . . , ad
1+ada . Now suppose that b lies in the left hand side of (∗).

Then we have

d + (b− a)
d

∑
i=1

ai
1 + aia

= Lpa ,d(1) + (b− a)Lpa ,d(x) ≥ 0

for all a ∈ (r− ε, r). Now let a converge to r from below and consider what hap-
pens in (∗). We have that 1 + a1a converges to 0 from above. Hence the first term
in the sum in (∗∗) converges to −∞. The i-th term of the sum shows the same
behavior in the case where ai = a1. All other terms of the sum converge to some
real number. Hence the whole sum converges to −∞. The term b− a converges
to b − r from above. If b − r wer positive, then the left hand side of (∗) would
converge to −∞ while being nonnegative all the time. Hence b− r ≤ 0, i.e., b lies
in the right hand side of (∗). �

Corollary 4.4. Let p ∈ R[x] be a real zero polynomial. Then

C(p) =
⋂

a∈C(p)\Z(p)

S(p(x + a)) + a.
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5. EXACTNESS FOR QUADRATIC REAL ZERO POLYNOMIALS

It is quite trivial that C(p) = S(p) for linear real zero polynomials p ∈ R[x].
One way of seeing this is via Remark 4.2 which shows that C(p) = P1(p) = S(p)
for all real zero polynomials p ∈ R[x] of degree 1. Since S(p) depends only on the
cubic part trunc3 p of p by Remark 3.21, there seems to be no way that C(p) = S(p)
in general if the degree of of the real zero polynomial p is bigger than three. But
worse than that, one lacks in general exactness also for cubic real zero polynomials
as the reader will easily find. The next theorem shows that our relaxation at least
is exact for quadratic real zero polynomials.

Theorem 5.1. Let p be a quadratic real zero polynomial. Then C(p) = S(p).

Proof. From Theorem 3.35, we know already C(p) ⊆ S(p). To show the reverse
S(p) ⊆ C(p), we show that it holds after intersecting with an arbitrary line through
the origin. Instead of an arbitrary line, we can without loss of generality consider
the first axis in Rn by Proposition 3.24. By Lemma 3.26(c), it is enough to show
Sdeg p(q) ⊆ C(q) for q := p(x1, 0, . . . , 0) ∈ R[x1]. If deg q = 0, then C(q) = R and
there is nothing to show. If deg q = 1, say q = 1 + ax1 with a non-zero a ∈ R,
then the bottom right entry of Mq,deg p is a2 + x1a3 by Proposition 3.36 and hence
Sdeg p(q) ⊆ {b ∈ R | a2 + a3b ≥ 0} = {b ∈ R | 1 + ab ≥ 0}. Finally, if deg q = 2,
then Sdeg p(q) = S(q) = S(1)(q) = C(q) by Theorem 3.40. �

The preceding proof makes use of the Helton-Vinnikov Theorem 2.7 or Corol-
lary 2.8 indirectly through Theorem 3.35. However, we need it only for quadratic
polynomials. So we can use Example 2.9 instead and therefore our proof is self-
contained.

The next corollary was explicitly mentioned by Netzer and Thom [NT, Corol-
lary 5.4] but most likely was known before. Netzer and Thom use a hermitian
linear matrix inequality of size 2b

n
2 c to describe a rigidly convex set given by a

quadratic polynomial in Rn whereas we need just a symmetric linear matrix in-
equality of size only n + 1. While the proof of Netzer and Thom is still very inter-
esting for other reasons, the result could actually also be proven by reducing it, via
projective space, to the case of the unit ball (cf. [Går, Page 958]). The well-known
description of the unit ball in Rn by a symmetric linear matrix inequality of size n
(see for example [Kum1, Page 591]) shows that one can for n ≥ 2 even get down to
size n instead of n + 1. If n = 2k + 1 for some k ∈ N0, then Kummer shows that n
is the minimal size of a real symmetric linear matrix inequality describing the unit
ball. In general, he shows that n

2 is a lower bound [Kum1, Theorem 1].

Corollary 5.2. The rigidly convex set defined by a quadratic real zero polynomial
is always a spectrahedron.

If p ∈ R[x] is a quadratic real zero polynomial, then it follows easily from this
corollary and from Proposition 8.4 below that there exists q ∈ R[x], d ∈ N0 and
symmetric matrices A1, . . . , An ∈ Rd×d such that

pq = det(Id + x1 A1 + . . . + xn An)

and C(p) ⊆ C(q). Our aim is now to prove this without using Proposition 8.4
by studying det(Mp) and see which cofactor q we get. We begin with a technical
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lemma that in particular gives a very nice determinantal representation of the real
zero polynomial 1− x2

1 − . . .− x2
n.

Lemma 5.3. Let d1, . . . , dn ∈ R. Consider the matrix

M :=


x0 −d1x1 . . . −dnxn
−d1x1 −d1x0

...
. . .

−dnxn −dnx0

 ∈ R[x0, x](n+1)×(n+1).

where the empty space is filled by zeros. Then

det M = xn−1
0 (x2

0 + d1x2
1 + . . . + dnx2

n)det(M(1, 0)).

Proof. Setting r := x2
0 + d1x2

1 + . . .+ dnx2
n, we show that x0 det M = xn

0 r det(M(1, 0)).
Of course, x0 det M is the determinant of the matrix N that arises from M by mul-
tiplying the first row with x0. To compute the determinant of N, we subtracting
xi times its (i + 1)-th row from its first row for each i ∈ {1, . . . , n}. This results
in an upper triangular matrix with diagonal entries r,−d1x0, . . . ,−dnx0. The de-
terminant of N is the product of the diagonal entries, i.e., xn

0 r(−d1) · · · (−dn) =
xn

0 r det M(1, 0). �

Using this lemma, we will now be able to compute the determinant of Mp for
quadratic p ∈ R[x].

Theorem 5.4. For all quadratic p ∈ R[x] with p(0) = 1,

det(Mp) = (det(Mp(0)))
(

1 + trunc1 p
2

)n−1
p.

Proof. For the constant polynomial p = 1 ∈ R[x], we have Lp = 0 by Definition
3.4 or Example 3.5 and hence Mp = Mp(0) = 0 ∈ R(n+1)×(n+1) by Definition 3.19.
For a polynomial p ∈ R[x] of degree one, i.e., p = bTx + 1 for some b ∈ Rn with
b 6= 0, Proposition 3.36 or Example 3.5 yields Mp = (1 + bTx)Mp(0) and

Mp(0) =
(

1 bT

bT bbT

)
∈ R(n+1)×(n+1)

has rank one and therefore vanishing determinant.
Hence it suffices to show the claim for all polynomials p ∈ R[x] of degree two.

But for fixed degree polynomials p, both sides of the claimed equation depend
continuously (in fact even polynomially) on the coefficients of p (the top left entry
of Mp(0) is then the constant degree and therefore makes no trouble). Hence it is
enough to show the equations for all polynomials of the form

p = xT Ax + bTx + 1

for some symmetric matrix A ∈ Rn×n and some vector b ∈ Rn such that A 6= 0
and 4A 6= bbT . Fix some p of this form. Set

q := p
[
− b

2

]
= xT Ax +

(
1− bT

2
x
)

bTx +

(
1− bT

2
x
)2

= xT Ax +

(
−1

2
+

1
4

)
(bTx)2 + 1 = xT

(
A− 1

4
bbT
)

x + 1.
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Choose an orthogonal matrix U such that

D := UT
(

A− 1
4

bbT
)

U

is diagonal and consider the polynomial

r := q(Ux) = xT Dx + 1

of degree two. By Example 3.5, we have

Mr =

(
2 −2xT D

−2Dx −2D

)
= M(1, x)

where

M :=
(

2x0 −2xT D
−2Dx −2x0D

)
∈ R[x0, x](n+1)×(n+1)

By Lemma 5.3, we have

det M = xn−1
0 r∗ det(Mr(0))

where r∗ ∈ R[x0, x] denotes the homogenization of r defined in Definition 3.9. By
Remark 3.12, we have p = q

[
b
2

]
so that Lemma 3.25 yields

det(Mp) = det
(

Mq +
bTx

2
Mq(0)

)
.

Rewriting the right hand side in view of q = r(UTx) by means of Lemma 3.23, we
get

det(Mp) = det
(

Mr(UTx) +
bTx

2
Mr(0)

)
= det

(
M
(

1 +
bTx

2
, UTx

))
=

(
1 +

bTx
2

)n−1

(det(Mr(0)) r∗
(

1 +
bTx

2
, UTx

)

Now we use r∗(x0, UTx) = q∗ to see that

det(Mp) = (det(Mr(0))
(

1 + trunc1 p
2

)n−1
q∗
(

1 +
bTx

2
, x
)

.

We result follows thus from

q∗
(

1 +
bTx

2
, x
)
= q

[
b
2

]
= p.

�

The following theorem follows easily from the previous one in the case where
the matrix Mp(0) ∈ R(n+1)×(n+1) is invertible. In the general case, its proof is
clearly inspired by the proof of the previous theorem.

Theorem 5.5. Let p ∈ R[x] be a quadratic real zero polynomial with p(0) = 1.
Then there exist symmetric matrices A1, . . . , An ∈ R(n+1)×(n+1) such that

p
(

1 + trunc1 p
2

)n−1
= det(In+1 + x1 A1 + . . . + xn An).
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Proof. Write
p = xT Ax + bTx + 1

where A ∈ Rn×n is symmetric and b ∈ Rn. Set

q := xT
(

A− 1
4

bbT
)

x + 1 ∈ R[x].

Choose an orthogonal matrix U such that

D := UT
(

A− 1
4

bbT
)

U

is diagonal with diagonal entries

d1, . . . , dm︸ ︷︷ ︸
all different
from zero

, 0, . . . , 0︸ ︷︷ ︸
n−m zeros

.

By Example 2.4, we have that each di is negative.
We first treat the special case where m = 0. In this case A = 1

4 bbT and thus

p =
(

1 + bT x
2

)2
. Then we choose Ai as a diagonal matrix which arises from the

identity matrix by replacing the first two diagonal entries by 1
2 bi.

From now on, we consider the case m > 0. Then we consider the polynomial

r := q(Ux) = d1x2
1 + . . . + dmx2

m + 1 ∈ R[x1, . . . , xm]

of degree two and we set

M :=



x0 −d1x1 . . . −dmxm
−d1x1 −d1x0

...
. . .

−dmxm −dmx0
x0

. . .
x0


∈ R[x0, x](n+1)×(n+1)

where the empty space is filled by zeros. Using Lemma 5.3, we see easily that

det M = xn+1
0 r∗ det(M(1, 0)).

Evaluating M in (1 + bT x
2 , UTx), we get another matrix

N ∈ R[x](n+1)×(n+1)

of the form N = B0 + x1B1 + . . . + xnBn with symmetric B0, . . . , Bn ∈ R(n+1)×(n+1)

such that

det N =

(
1 +

bTx
2

)n+1(
q− 1 +

(
1 +

bTx
2

)2)
det(M(1, 0))

=

(
1 +

bTx
2

)n+1

p det(M(1, 0)) = c
(

1 + trunc1 p
2

)n+1
p

for some c ∈ R×. Note that B0 = N(0) = M(1, 0) is a diagonal matrix. Recalling
that each di is negative, it is actually a diagonal matrix with only positive diagonal
entries. Hence, it is easy to find an invertible diagonal matrix D ∈ R(n+1)×(n+1)
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such that DB0D = In+1. Setting Ai := DBiD = D2Bi for each i ∈ {0, . . . , n}, we
have A0 = In+1 and

det(A0 + x1 A1 + . . . + xn An) = c′
(

1 + trunc1 p
2

)k
p

for some c′ ∈ R. Evaluating in 0, we see that c′ = 1. �

As promised before Lemma 5.3, we have no found our cofactor

q :=
(

1 + trunc1 p
2

)n−1

such that pq has the desired determinantal representation. Note that the required
inclusion C(p) ⊆ C(q) holds since

C(p) ⊆ P2(p) = C
(

1 + trunc1 p
2

)
= C(q)

where the inclusion follows from Remark 4.2(c)(d).
Unfortunately, for real zero polynomials p of higher degree it is not true that

one can always choose the cofactor q from Proposition 8.4 below to be a power of
linear polynomial. This is discussed in detail in [AB, Section 7] where even other
shapes for the cofactor are excluded. Indeed, from [AB, Theorem 7.3] (setting there
n := 8 and k := 2) one can deduce the existence of a quartic real zero polynomial
in 11 variables that it will never be of the shape det(IN + x1 A1 + . . . + xn An) with
symmetric matrices A ∈ RN×N after being multiplied with a power of a linear
polynomial. We are not aware of any cubic example like that. But at least the
arguments in [Kum1, Example 12] show that

p := 10− 3x2
1 − 6x2 − x2

1x2 − 3x2
2 + x3

2 − 3x2
3 + x2x2

3 ∈ R[x1, x2, x3]

is a real zero polynomial such that that there is no linear polynomial ` ∈ R[x1, x2, x3]
and k ∈N such that p`k has a determinantal representation of the form

p`k = det(I3+k + x1 A1 + . . . + xn An)

with symmetric matrices A1, . . . , An ∈ R(3+k)×(3+k) (but they do not seem to ex-
clude such a representation with matrices of size bigger than 3 + k). Since p can
easily be checked to be irreducible in R[x1, x2, x3], [Kum1, Proposition 8] implies
then together with Lemma 8.2 that there are a cubic q ∈ R[x1, x2, x3] and symmet-
ric matrices A1, A2, A3 ∈ R6×6 such that pq = det(I6 + x1 A1 + x2 A2 + x3 A3).

6. HYPERBOLICITY CONES AND SPECTRAHEDRAL CONES

Recall Definition 3.9 of homogeneous polynomials.

6.1. Hyperbolic polynomials. The following is the homogeneous analog of Defi-
nition 2.1.

Definition 6.1. Let p ∈ R[x] be a homogeneous. We call a vector e ∈ Rn with
e 6= 0 a hyperbolicity direction of p if for all a ∈ Rn and λ ∈ C,

p(a− λe) = 0 =⇒ λ ∈ R.

In this case, we call p hyperbolic with respect to e or hyperbolic in direction e. We call p
hyperbolic if it is hyperbolic with respect to some direction.
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Remark 6.2. (a) If p ∈ R[x] is hyperbolic with respect to e ∈ Rn, then p(e) 6= 0.
(b) If p ∈ R[x] is hyperbolic, then the number of variables n is of course greater or

equal to 1 since R0 contains only the zero vector which can never be a hyper-
bolicity direction by definition.

The following is the analog of Proposition 2.3.

Proposition 6.3. Let p ∈ R[x] and e ∈ Rn with e 6= 0. Then p is hyperbolic in
direction e if and only if for each a ∈ Rn, the univariate polynomial

p(a− te) ∈ R[t]

splits (i.e., is a product of non-zero linear polynomials) in R[t].

Proof. The “if” direction is easy and the “only if” direction follows from the fun-
damental theorem of algebra. �

Definition 6.4. Let p ∈ R[x] be hyperbolic in direction e and let a ∈ Rn.
(a) The zeros of p(a− te) ∈ R[t] are called the eigenvalues of a (with respect to p

in direction e). When we speak of their multiplicity, we mean their multiplicity
as roots of p.

(b) The weighted sum of the eigenvalues of a where the weights are the multiplic-
ities is called the trace of a (with respect to p in direction e). We denote it by
trp,e(a).

The following is the analog of Proposition 2.6.

Proposition 6.5. Let A1, . . . , An ∈ Cd×d be hermitian matrices and e ∈ Rn with
e 6= 0 such that e1 A1 + . . . + en An is definite. Then

p := det(x1 A1 + . . . + xn An) ∈ R[x]

is hyperbolic (of degree d) in direction e.

Proof. If a ∈ Rn and λ ∈ C with p(a − λe) = 0, then det(A − λB) = 0 where
A := a1 A1 + . . . + an An ∈ Cd×d and B := e1 A1 + . . . + en An ∈ Cd×d is definite.
We have to show λ ∈ R. WLOG λ 6= 0. Then det(B + 1

λ (−A)) = 0 and thus
1
λ ∈ R by Lemma 2.5. Hence λ ∈ R. �

6.2. Hyperbolicity cones versus rigidly convex sets. The following is the analog
of Definition 2.11.

Definition 6.6. Let p ∈ R[x] be hyperbolic in direction e. Then we call

C(p, e) := {a ∈ Rn | ∀λ ∈ R : (p(a− λe) = 0 =⇒ λ ≥ 0)}
the hyperbolicity cone of p with respect to e.

A priori, it is not clear that hyperbolicity cones are cones. We will see this in
Theorem 6.12 below but again it was already known to Gårding [Går, Theorem 2].

Proposition 6.7. Let p ∈ R[x]. Then p is hyperbolic in direction of the first unit
vector u of Rn if and only if its dehomogenization

q := p(1, x2, . . . , xn) ∈ R[x2, . . . , xn]

is a real zero polynomial.
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Proof. First, suppose that p is hyperbolic in direction of the first unit vector u.
We show that q is a real zero polynomial. To this end, consider a ∈ Rn−1 and
λ ∈ C such that q(λa) = 0. We have to show that λ ∈ R. WLOG λ 6= 0. We
show that µ := 1

λ ∈ R. We have p(u + λ(0, a)) = q(λa) = 0. By homogeneity,
p((0, a) + µu) = 0. Since p is hyperbolic in direction u, we have indeed µ ∈ R.

Conversely, suppose that q is a real zero polynomial. To show that p is hy-
perbolic in direction u, we fix a ∈ Rn and λ ∈ C such that p(a − λu) = 0. We
have to show that λ ∈ R. If λ = a1, then this is trivial. Hence suppose λ 6= a1
and set µ := 1

a1−λ . It is enough to show that µ ∈ R. By homogeneity, we have
q(µa2, . . . , µan) = 0 and thus µ ∈ R.

For the rest of the proof suppose that q is a real zero polynomial (in particular,
q(0) 6= 0 as mentioned in Remark 2.2) and a ∈ Rn−1.

(a) We have

(1, a) ∈ C(p, u) Definition 6.6⇐⇒ ∀λ ∈ R : (p((1, a)− λu) = 0 =⇒ λ ≥ 0)

⇐⇒ ∀λ ∈ R : (p(1− λ, a) = 0 =⇒ λ ≥ 0)

⇐⇒ ∀λ ∈ R<0 : p(1− λ, a) 6= 0

⇐⇒ ∀λ ∈ R>0 : p(1 + λ, a) 6= 0

homogeneity⇐⇒ ∀λ ∈ R>0 : q
(

a
1 + λ

)
6= 0

⇐⇒ ∀λ ∈ (0, 1) : q(λa) 6= 0
q(0) 6=0⇐⇒ ∀λ ∈ [0, 1) : q(λa) 6= 0

Definition 2.10⇐⇒ a ∈ C(q).

(b) We observe

(0, a) ∈ C(p, u) Definition 6.6⇐⇒ ∀λ ∈ R : (p((0, a)− λu) = 0 =⇒ λ ≥ 0)

⇐⇒ ∀λ ∈ R : (p(−λ, a) = 0 =⇒ λ ≥ 0)

⇐⇒ ∀λ ∈ R<0 : p(−λ, a) 6= 0

⇐⇒ ∀λ ∈ R>0 : p(λ, a) 6= 0
homogeneity⇐⇒ ∀λ ∈ R>0 : q

( a
λ

)
6= 0

⇐⇒ ∀λ ∈ R>0 : q(λa) 6= 0
q(0) 6=0⇐⇒ ∀µ ∈ R≥0 : ∀λ ∈ [0, 1) : q(λµa) 6= 0

Definition 2.10⇐⇒ ∀µ ∈ R≥0 : µa ∈ C(q).

�

6.3. The homogeneous Helton-Vinnikov theorem.

Remark 6.8. Let R be a ring. We can multiply finitely many matrices over this ring
provided that for each factor (but the last one) its number of columns matches the
number of rows of the next factor. Row and column vectors of elements can of
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course also be factors of such a product since they can be seen as matrices with a
single row or column, respectively. Because of associativity of the matrix product,
one does not have to specify parentheses in such a product of matrices over R.
Now if M is an R-module, we can declare the product AB ∈ Mk×m of a matrix
A ∈ Rk×` and a matrix B ∈ M`×m in the obvious way. In this way, we can now
also declare products of finitely many matrices exactly as above even if the last
factor is not a matrix over R but over M. One has again the obvious associativity
laws that allow to omit parentheses. We will use this in the proofs of Theorem 6.9
and Proposition 6.21 below for the case R = R[x] and M = R[x]d×d. For example,
we will write xT A for x1 A1 + . . . + xn An if A is the column vector with entries
A1, . . . , An ∈ Cd×d.

The following is the homogeneous version of the Helton-Vinnikov Theorem 2.7.

Theorem 6.9 (Helton and Vinnikov). If p ∈ R[x1, x2, x3] is hyperbolic of degree d
in direction e ∈ R3 such that p(e) = 1, then there exist symmetric A1, A2, A3 ∈
Rd×d such that e1 A1 + e2 A2 + e3 A3 = Id and

p = det(x1 A1 + x2 A2 + x3 A3).

Proof. We reduce it to the Helton-Vinnikov theorem for real zero polynomials 2.7.
Denote the first unit vector in R3 by u. Choose an orthogonal matrix U ∈ R3×3

such that Ue = u and set q := p(UTx). Then q ∈ R[x1, x2, x3] is also homogeneous
of degree d but is hyperbolic in direction u. By Proposition 6.7, the polynomial r :=
q(1, x2, x3) ∈ R[x2, x3] is a real zero polynomial of some degree d′ ∈ {0, . . . , d}.
By the Helton-Vinnikov theorem, we can choose symmetric B′2, B′3 ∈ Rd′×d′ such
that r = det(Id′ + x2B′2 + x3B′3) (note that r(0) = q(u) = q(Ue) = p(e) = 1).
Appending d− d′ zero columns and lines to B′2 and B′3, we get symmetric matrices
B2, B3 ∈ Rd×d such that r = det(Id + x2B2 + x3B3). Setting B1 := Id, we see
that q = det(x1B1 + x2B2 + x3B3) = det(xT B) where B designates the row vector
with entries B1, B2, B3 and we use the notation introduced in Remark 6.8. Hence
p = q(Ux) = det((Ux)T B) = det(xTUT B) = det(xT A) where A := UT B is a
row vector whose entries are symmetric matrices A1, A2, A3 ∈ Rd×d. It remains to
check that eT A = Id. Indeed, eT A = eTUT B = (Ue)T B = uT B = B1 = Id. �

The following is the homogeneous version Corollary 6.10 which is a weaker
version of the Helton-Vinnikov Theorem 6.9. It can be derived from Corollary 2.8
in exactly the same manner as we derived Theorem 6.9 from Theorem 2.7.

Corollary 6.10 (Helton and Vinnikov). If p ∈ R[x1, x2, x3] is hyperbolic of degree
d in direction e ∈ R3 such that p(e) = 1, then there exist hermitian A1, A2, A3 ∈
Cd×d such that e1 A1 + e2 A2 + e3 A3 = Id and

p = det(x1 A1 + x2 A2 + x3 A3).

6.4. Basics on hyperbolicity cones. The following is the analog of Proposition
2.12.

Proposition 6.11. Let d ∈N0, A1, . . . , An ∈ Cd×d be hermitian, e ∈ Rn, e 6= 0

e1 A1 + . . . + en An � 0

and
p = det(x1 A1 + . . . + xn An).
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Then
C(p, e) = {a ∈ Rn | a1 A1 + . . . + an An � 0}

and
C(p, e) \ Z(p) = {a ∈ Rn | a1 A1 + . . . + an An � 0}.

Proof. The second statement follows easily from the first. To prove the first, set
A0 := e1 A1 + . . . + en An, let a ∈ Rn and set B := a1 A1 + . . . + an An. We have to
show

(∀λ ∈ R : (det(B− λA0) = 0 =⇒ λ ≥ 0)) ⇐⇒ B � 0.

Since A0 is positive definite, there exists a (unique) positive definite matrix
√

A0
matrix whose square is A0. Rewriting both the left and right hand side of our
claim, it becomes

(∀λ ∈ R : (det(C− λId) = 0 =⇒ λ ≥ 0)) ⇐⇒ C � 0

where C :=
√

A0
−1B
√

A0
−1. This is clear. �

The following is the analog of Theorem 2.14.

Theorem 6.12 (Gårding). Let p ∈ R[x] be hyperbolic in direction e and a ∈ C(p, e) \
Z(p) with a 6= 0. Then a is also a hyperbolicity direction of p and C(p, e) = C(p, a).

Proof. We suppose that e and a are linearly independent since otherwise all state-
ments are trivial.

We first show that a is also a hyperbolicity direction of p. Now let b ∈ Rn

and λ ∈ C such that p(b − λa) = 0. We have to show λ ∈ R. The case where
b is a linear combination of e and a ist again easy and we leave it to the reader.
Hence we can now suppose that e, a and b are linearly independent. By an affine
transformation, we can even suppose that these are the first three unit vectors in
Rn. Without loss of generality, we can thus assume that the number of variables is
n = 3. Also WLOG p(e) = 1. By the Helton-Vinnikov Corollary 6.10, we can write

p = det(x1 Id + x2 A + x3B)

with hermitian A, B ∈ Cd×d where d := deg p. The hypothesis a ∈ C(p, e) \ Z(p)
now translates into A � 0 by Proposition 6.11. From det(B− λA) = 0 and Lemma
2.5, we get λ ∈ R.

To prove the second statement, fix b ∈ Rn. We show that

(∗) b ∈ C(p, e) ⇐⇒ b ∈ C(p, a).

If b is a linear combination of e and a, this is a an exercise that we leave to the
reader (make a case distinction according to the signs of the coefficients in this
linear combination). From now on suppose that e, a and b are linearly indepen-
dent. Suppose therefore that a and b are linearly independent. After an affine
transformation, we can even assume that e, a and b are the first three unit vectors.
Hence we can reduce to the case where the number of variables n equals 3. By the
Helton-Vinnikov Corollary 6.10, we can choose hermitian matrices A, B ∈ Cd×d

such that
p = det(x1 Id + x2 A + x3B)

so that
C(p, e) = {c ∈ R3 | c1 Id + c2 A + c3B � 0}
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by Proposition 6.11. Since A � 0 as mentioned above, Proposition 6.11 further-
more gives

C(p, a) = {c ∈ R3 | c1 Id + c2 A + c3B � 0}.
But now of course C(p, e) = C(p, a). �

Now we come to the analog of Theorem 2.15

Theorem 6.13 (Gårding). Let p ∈ R[x] be hyperbolic in direction e. Then both
(C(p, e) \ Z(p)) ∪ {0} and C(p, e) are cones.

Proof. We start with C := (C(p, e) \ Z(p)) ∪ {0}. We have to show 0 ∈ C, C + C ⊆
C and R≥0C ⊆ C. One checks immediately the first and the third property. For
the second one, let a, b ∈ C. By Theorem 6.12, a and b are then hyperbolicity
directions of p and we have C(p, a) = C(p, e) = C(p, b). Since a ∈ C(p, b), we have
p(a + b) = p(a− (−1)b) 6= 0. It remains to show that a + b ∈ C(p, e). Because of
C(p, e) = C(p, b), we can equivalently show that a + b ∈ C(p, b). To this end, let
p(a + b− λb) = 0 . We have to show that λ ≥ 0. Because of p(a− (λ− 1)b) = 0
and a ∈ C(p, b), we have even λ− 1 ≥ 0.

To prove that C(p, e) is also convex, we observe that

C(p, e) =
⋂
ε>0
{a ∈ Rn | ∀λ ∈ R : (p(a− λe) = 0 =⇒ λ + ε > 0)}

=
⋂
ε>0
{a ∈ Rn | ∀λ ∈ R : (p(a− (λ− ε)e) = 0 =⇒ λ > 0)}

=
⋂
ε>0

({a ∈ Rn | ∀λ ∈ R : (p(a− λe) = 0 =⇒ λ > 0)} − εe)

=
⋂
ε>0

((C(p, e) \ Z(p))− εe)

is an intersection of convex sets. �

6.5. Relaxing conic hyperbolic programs.

Definition 6.14. Let p ∈ R[[x]] be a power series with p(0) 6= 0 and d ∈ N0.
Consider the symmetric matrices A0, A1, . . . , An ∈ R(n+1)×(n+1) from Definition
3.19. Then denote

M∗p,d := x0 A0 + x1 A1 + . . . + xn An = x0Mp,d

(
x
x0

)
∈ R[x](n+1)×(n+1).

The following is just a slight generalization of Lemma 3.22.

Lemma 6.15. Let p ∈ R[x] be a power series with p(0) 6= 0, d ∈ N0, a =
(a0 a1 . . . an)T ∈ Rn+1 and

v = (v0 v1 . . . vn)
T ∈ Rn+1.

Then vT M∗p,d(a)v = Lp,d((v0 + v1x1 + . . . + vnxn)2(a0 + a1x1 + . . . + anxn)).

Proof. Completely analogous to the proof of Lemma 3.22. �

The following is a homogeneous version of Lemma 3.23(a).
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Lemma 6.16. Suppose U ∈ Rn×n is an orthogonal matrix and consider the orthog-
onal matrix

Ũ :=
(

1 0
0 U

)
∈ R(n+1)×(n+1).

Denote by x̃ the column vector of variables x0, . . . , xn. If p ∈ R[[x]] is a power
series with p(0) 6= 0 and d ∈N0, then

M∗p(Ux),d = ŨT M∗p,d(Ũx̃)Ũ.

Proof. This follows easily by homogenization from Lemma 3.23(a). �

Lemma 6.17. Let e ∈ Rn and p ∈ R[x] such that e 6= 0 and p(e) 6= 0. Let d ∈
N0. Denote the first unit vector in Rn by u. Let U1, U2 ∈ Rn×n be orthogonal
matrices such that Uie = ‖e‖u for i ∈ {1, 2}. Setting qi := p(UT

i x) ∈ R[x] and
ri := qi(1, x2, . . . , xn) ∈ R[x2, . . . , xn], we have ri(0) 6= 0 for i ∈ {1, 2} and

UT
1 M∗r1,d(U1x)U1 = UT

2 M∗r2,d(U2x)U2.

Proof. It is clear that ri(0) = qi(ei) = p(e) 6= 0 for i ∈ {1, 2}. The matrix W̃ :=
U1UT

2 ∈ Rn×n is orthogonal and satisfies W̃u = u. Hence W̃ can be written in the
form

W̃ =

(
1 0
0 W

)
∈ Rn×n

for some orthogonal matrix W ∈ R(n−1)×(n−1). We have q1(W̃x) = q2 and there-
fore r1(Wy) = r2 where y is the column vector with entries x2, . . . , xn. By Lemma
6.16, we have

M∗r2,d = W̃T M∗r1,d(W̃x)W̃.

Replacing here x by U2x, we get

M∗r2,d(U2x) = U2UT
1 M∗r1,d(U1x)U1UT

2

and thus
UT

2 M∗r2,d(U2x)U2 = UT
1 M∗r1,d(U1x)U1

as desired. �

The following is the analog of Definition 3.19.

Definition 6.18. Denote the first unit vector in Rn by u. Let p ∈ R[x] be hyperbolic
in direction e of degree d and choose an orthogonal matrix U ∈ Rn×n such that
Ue = ‖e‖u. Consider the polynomial q := p(UTx) which obviously is hyperbolic
in direction u and the polynomial r := q(1, x2, . . . , xn) ∈ R[x2, . . . , xn] which is
a real zero polynomial by Proposition 6.7. Then the homogeneous linear matrix
polynomial

Mp,e := UT M∗r,d(Ux)U ∈ R[x]n×n

does not depend on the choice of U by Lemma 6.17. We call it the the pencil associ-
ated to p with respect to e. Moreover, we call the cone

S(p, e) := {a ∈ Rn | Mp,e(a) � 0} = {a ∈ Rn | M∗r,d(Ua) � 0}

the spectrahedral cone associated to p with respect to e.
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Remark 6.19. Let p ∈ R[x] be hyperbolic in direction e. Then it is obvious that λp
is hyperbolic in direction µe and

S(p, e) = S(λp, µe)

for all λ, µ ∈ R with µ > 0.

Proposition 6.20. Let p ∈ R[x] be hyperbolic in direction e.
(a) If p is non-constant, then the directional derivative

De p =
d
dt

p(x + te)|t=0

of p in direction e is again hyperbolic in direction e.
(b) For all a ∈ Rn, we have

eT Mp,e(a)e = ‖e‖2 trp,e(a).

(c) The map
Rn → R, a 7→ trp,e(a)

is linear.

Proof. (a) follows essentially from Definition 6.1 and from Rolle’s theorem. To
prove the other statements, we can suppose WLOG ‖e‖ = 1 and p(e) = 1 by
Remark 6.19 and Definition 6.4. Set d := deg p and denote the first unit vector
in Rn by u. Choose an orthogonal matrix U ∈ Rn×n such that Ue = u and con-
sider q := p(UTx) which is hyperbolic in direction u and r := q(1, x2, . . . , xn) ∈
R[x2, . . . , xn] which is a real zero polynomial with r(0) = q(u) = p(e) = 1. Write
trunc1 r = 1 + b2x2 + . . . + bnxn with b2, . . . , bn ∈ R and set c := Ua ∈ Rn. By the
Definitions 6.14, 3.19 and 6.18 as well as Example 3.5, we have

eT Mp,e(a)e = eTUT M∗r,d(c)Ue = uT M∗r,d(c)u

= Lr,d(1)c1 + Lr,d(X2)c2 + . . . + Lr,d(Xn)cn

= dc1 + b2c2 + . . . + bncn.

Now fix a ∈ Rn and write p(a− te) = p(e)∏d
i=1(λi − t) with λ1, . . . , λd ∈ R. The

coefficient of td−1 in the univariate polynomial f := q(Ua− tu) = p(a− te) ∈ R[t]
is (−1)d−1 p(e) trp,e(a) = (−1)d−1 trp,e(a). Since the coefficients of the monomials

xd
1 , xd−1

1 x2, . . . , xd−1
1 xn

in the polynomial q are 1, b2, . . . , xn, respectively, it is an easy exercise to see that
the coefficient of td−1 in f is also given by

(−1)d−1(dc1 + b2c2 + . . . + bncn) = (−1)deT Mp,e(a)e.

It follows that eT Mp,e(a)e = trp,e(a). Since a ∈ Rn was arbitrary and c = Ua
depends of course linearly on a, we get also (c). �

The following is a sharpening of Proposition 3.33:

Proposition 6.21. Suppose d ∈N0 and A1, . . . , An ∈ Cd×d,

U := {v1 A1 + . . . + vn An | v1, . . . , vn ∈ R}
and (U, V) is an admissible couple (in particular, each Ai is hermitian). Set

p := det(x1 A1 + . . . + xn An) ∈ R[x]



46 M. SCHWEIGHOFER

and let e ∈ Rn \ {0} such that

e1 A1 + . . . + en An = Id.

(a) We have

C(p, e) = {a ∈ Rn | ∀M ∈ V : tr(M2(a1 A1 + . . . + an An)) ≥ 0} and

S(p, e) = {a ∈ Rn | ∀M ∈ U : tr(M2(a1 A1 + . . . + an An)) ≥ 0}.

(b) C(p) ⊆ S(p, e)
(c) If U is perfect, then C(p) = S(p, e).

Proof. The first claim in (a) follows immediately from Proposition 6.11 together
with Definition 3.29. To prove the second statement in (a), we choose an orthogo-
nal matrix W ∈ Rn×n such that We = ‖e‖u where u denotes the first unit vector in
Rn. Set q := p(WTx) and consider the real zero polynomial r := q(1, x2, . . . , xn) ∈
R[x2, . . . , xn]. According to Definition 6.18, we now have

S(p, e) = {a ∈ Rn | M∗r,d(Wa) � 0}.
We now use a lot the notation explained in Remark 6.8. Write A for the column
vector with entries A1, . . . , An. Then B := WA is again a column vector whose
entries are matrices B1, . . . , Bn ∈ Cn×n. Because of A = WT B, we obviously have
that

U = {vT A | v ∈ Rn} = {vT B | v ∈ Rn},
i.e., the Ai generate the same real vector space as the Bi. Substituting x by WTx in
the equation p = det(xT A) that defines p, we get

q = p(WTx) = det((WTx)T A) = det(xTWA) = det(xT B).

Observing that B1 = uT B = uTWA = (WTu)T A = eT A = In, we see that

r = q(1, x2, . . . , xn) = det(Id + x2B2 + . . . + xnBn)

and hence
vT M∗r,dv = tr((vT B)2(xT B)).

for all v ∈ Rn due to Lemma 6.15. Substituting here Wa for x, we get

vT M∗r,d(Wa)v = tr((vT B)2(Wa)T B) = tr((vT B)2aTWT B) = tr((vT B)2aT A)

for all a, v ∈ Rn and thus

M∗r,d(Wa) � 0 ⇐⇒ ∀M ∈ U : tr(M2aT A) ≥ 0

for all a ∈ Rn. �

We can now prove the homogeneous version of Theorem 3.35. For polynomi-
als that have a hermitian determinantal representation like in Proposition 6.21, it
follows immediately from that lemma. For other polynomials, we will again need
the Helton-Vinnikov theorem, this time in its form of Corollary 6.10.

Theorem 6.22. Let p ∈ R[x] be hyperbolic in direction e. Then C(p, e) ⊆ S(p, e).

Proof. For n ≤ 3, the claim follows from Proposition 6.21(b) where we use the
Helton-Vinnikov Corollary 6.10 for n = 3. Note that for n ≤ 2, the Ai in Propo-
sition 6.21 can obviously be chosen to be diagonal and we do not need Helton-
Vinnikov.
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We now suppose n > 3 and reduce it to the already proven case n = 3. Fix
a ∈ C(p, e) and v ∈ Rn. We have to show

(∗) vT Mp,e(a)v ≥ 0.

Denote again by u the first unit vector in Rn and choose an orthogonal matrix U ∈
Rn×n such that Ue = u, w := Uv ∈ R3×{0} ⊆ Rn and b := Ua ∈ R3×{0} ⊆ Rn.
Set q := p(UTx) and consider the real zero polynomial

r := q(1, x2, . . . , xn) ∈ R[x2, . . . , xn].

By Definition 6.18, our Claim (∗) can now more concretely be formulated as

(∗∗) wT M∗r,d(b)w ≥ 0

where d := deg p. By means of Lemma 6.15, the claim becomes

(∗ ∗ ∗) Lr,d((w1 + w2x2 + w3x3)
2(b1 + b2x2 + b3x3)) ≥ 0

where we took into account that w, b ∈ R3 × {0} ⊆ Rn. Accordingly, we now
consider the homogeneous polynomial

q̃ := q(x1, x2, x3, 0 . . . , 0) ∈ R[x1, x2, x3]

of degree d which is hyperbolic in direction u and the real zero polynomial

r̃ := r(x2, x3, 0, . . . , 0) = q̃(1, x2, x3) ∈ R[x2, x3].

By Lemma 3.26(a) applied on r and r̃, we can rewrite (∗ ∗ ∗) by

(∗ ∗ ∗∗) Lr̃,d((w1 + w2x2 + w3x3)
2(b1 + b2x2 + b3x3)) ≥ 0.

By Lemma 6.15 we are done if we can show M∗r̃,d(b1, b2, b3) � 0. By Definition 6.18
where one takes I3 for the orthogonal matrix, this means that (b1, b2, b3) ∈ S(q̃, u).
By the already treated case n = 3, it suffices to show that (b1, b2, b3) ∈ C(q̃, u).
This is equivalent to b ∈ C(q, u) which is in turn equivalent to our hypothesis
a ∈ C(p, e). �

Remark 6.23. (a) Let p ∈ R[x] be hyperbolic in direction e. Theorem 6.22 means
that vT Mp,e(a)v ≥ 0 for all a ∈ C(p, e) and v ∈ Rn. For v = e, this means by
Proposition 6.20(b) just that each element of the hyperbolicity cone C(p, e) has
nonnegative trace (with respect to p in direction e) which is clear by Definition
6.4 since it has even all eigenvalues nonnegative.

(b) Let p ∈ R[x] be a polynomial of degree at most d and denote by

q := xd
0 p
(

x
x0

)
∈ R[x0, x]

its degree d homogenization. Inspecting the proof of Proposition 6.20 (and
using variables x0, . . . , xn instead of x1, . . . , xn, the following enlightening in-
terpretation of the polyhedron Pd(p) defined in Definition 4.1 becomes now
obvious: Its elements are those b ∈ Rn such that (1, b) ∈ Rn+1 has nonnega-
tive trace with respect to the hyperbolic polynomial q in direction of the first
unit vector (confer Proposition 6.7). With this in mind, Remark 4.2(d) can now
be read as an instance of the fact that an element has nonnegative trace if all
its eigenvalues are nonnegative (with respect to an hyperbolic polynomial and
an hyperbolicity direction). For the same reason, Item (a) of this remark can be
seen as a generalization of Remark 4.2(d).
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7. THE DETERMINANT OF THE GENERAL SYMMETRIC MATRIX

In this section, we fix d ∈N0, set n := d + d2−d
2 = d(d+1)

2 ,

Λ := {(i, j) ∈ {1, . . . , d}2 | i ≤ j},

choose a bijection $ : Λ → {1, . . . , n} and set xij := x$(i,j) for (i, j) ∈ Λ so that
R[x] = R[xij | 1 ≤ i ≤ j ≤ n].

Given any vector a of length n, we write in the following

[a] :=



a$(1,1) a$(1,2) . . . a$(1,d)
a$(1,2) a$(2,2) . . . a$(2,d)

...
...

...
...

...
...

a$(1,d) a$(2,d) . . . a$(d,d)


for the symmetric d× d matrix whose upper triangular part contains the entries of
the “long vector” a (always with respect to the order prespecified by $). Moreover,
if A = [a], then we write a = ~A, i.e., ~a is a “long vector” that stores the entries
in the upper triangular part of A. In the following we often identify Rn with
the real vector space of symmetric d × d matrices by means of the vector space
isomorphism a 7→ [a].

Definition 7.1. We call

X := [x] =



x11 x12 . . . x1d
x12 x22 . . . x2d

...
...

...
...

...
...

x1d x2d . . . xdd

 ∈ R[x]d×d

the general symmetric matrix of size d.

Proposition 7.2. The determinant det X of the general symmetric matrix X of size
d is a homogeneous polynomial of degree d that is hyperbolic with respect to the
identity matrix Id. We have

C(det X, Id) = S(det X, Id) = {A ∈ Rd×d | A � 0}.

Proof. It is clear that det X is homogeneous of degree d. For (i, j) ∈ Λ, denote
by Aij the unique symmetric matrix whose upper triangular part has zeros every-
where except for a one entry at position (i, j). Then

det X = det(x1 A1 + . . . + xn An)

and A1, . . . , An form a basis of the space of symmetric matrices which is perfect
by Remark 3.31(a). Proposition 6.21(c) now says that C(det X, Id) = S(det X, Id).
Moreover, it follows easily from Proposition 6.11 that

C(det X, Id) = {A ∈ Rd×d | A � 0}.

�
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7.1. Saunderson’s representation of the derived cone.

Theorem 7.3. Denote the standard unit vectors in Rn by u1, . . . , un and set p :=
det X ∈ R[x]. As in Definition 6.18, let U be an orthogonal matrix in Rn×n such
that U~Id = ‖~Id‖u1, consider q := p(UTx) and the real zero polynomial r :=
q(1, x2, . . . , xn) ∈ R[x2, . . . , xn]. Consider the matrices Bi := [UTui] ∈ Rd×d for
i ∈ {1, . . . , n}. Then the following hold:
(a)

M∗r,d(Ux) = d
√

d

tr(B1XB1) . . . tr(B1XBn)
...

...
tr(BnXB1) . . . tr(BnXBn)

 ∈ R[x]n×n

(b) Suppose d ≥ 1 so that n ≥ 1 and consider the pencil N that arises from
M∗r,d(Ux) ∈ R[x]n×n by deleting the first row and the first column. The matri-
ces B2, . . . , Bn form a basis of the vector space of symmetric trace zero matrices
in Rd×d so that N is by (a) essentially the pencil for which Saunderson [Sau,
Theorem 2] has shown that the linear matrix inequality N(x) � 0 defines the
“first derivative relaxation of the cone of psd matrices”, i.e.,

{[a] | a ∈ Rn, N(a) � 0} = C(DIn det X, In)

where DIn det X is the directional derivative of det X in direction ~In which is
hyperbolic in direction Id by Proposition 6.20(a).

Proof. First note that

(∗)
n

∑
i=1

(uT
i Ux)Bi =

n

∑
i=1

(uT
i Ux)[UTui] =

[
n

∑
i=1

(uT
i Ux)UTui

]

=

[
UT

n

∑
i=1

(uT
i Ux)ui

]
=
[
UTUx

]
= [x] = X.

Substituting here x by UTx, we get from this

(∗∗)
n

∑
i=1

xiBi = [UTx].

(a) We have p = det X = det([x1u1 + . . . + xnun]) = det([Inx]) where x is the
column vector of variables xi and thus

q = p(UTx) = det([UTx])
(∗∗)
= det(x1B1 + . . . + xnBn).

Consequently, r = det(B1 + x2B2 + . . . + xnBn). Because of B1 = [UTu1] =
Id
‖~Id‖

=

Id√
d

, we have (
√

d)dr = det(Id + x2
√

dB2 + . . . + xn
√

dBn). Now Corollary 3.18 to-

gether with
√

dB1 = Id implies that Lr,d(1) = d
√

d tr(B3
1), Lr,d(xi) = d

√
d tr(B2

1Bi),
Lr,d(xixj) = d

√
d tr(B1BiBj) and Lr,d(xixjxk) = d

√
d tr(BiBjBk) for all i, j, k ∈

{1, . . . , n}. By Definition 3.19(a), the entry in row i and column j of M∗r,d(Ux) is
thus

d
√

d
n

∑
k=1

(uT
k Ux) tr(BiBkBj)

(∗)
= d
√

d tr(BiXBj)

for all i, j ∈ {1, . . . , d}.
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(b) Since UT is invertible, the vectors ~B1, . . . ,~Bn−1 are linearly independent
in Rn. Since UT is orthogonal, they are moreover orthogonal to UT~u1 = ~Id with
respect to the standard scalar product on Rn. Summing up, B1, . . . , Bn−1 are n− 1
linearly independent symmetric matrices of trace zero and thus form a basis of
the vector space of symmetric trace zero matrices in Rd×d which has dimension
n− 1. �

8. THE GENERALIZED LAX CONJECTURE

The generalized Lax conjecture (GLC) has been stated by Helton and Vinnikov
[HV, Section 6.1], see also [Ren, Page 63].

Conjecture 8.1 (generalized Lax conjecture, GLC). Each rigidly convex set is a
spectrahedron.

The following has been proven in [HV, Lemma 2.1] with heavy machinery from
real algebraic geometry. We found an elementary approach which we present here.

Lemma 8.2. Let p, q ∈ R[x] be non-constant real zero polynomials such that C(p) =
C(q). Then p and q have a common non-constant factor in R[x].

Proof. For the duration of this proof, we call a line L through the origin in Rn

exceptional if one of the polynomials p and q is constant on L. Then actually both
are constant on L since if one of them, say p, is constant on L, then L ⊆ C(p) =
C(q) and so q, being a real zero polynomial, is also constant on L. If L is a non-
exceptional line then p and q thus both vanish somewhere on it and because of
C(p) = C(q) they must even have a common root on L.

Now write p = ∑d
i=0 pi and q = ∑e

j=0 qj with d := deg p ≥ 1 and e := deg q ≥ 1
where pi ∈ R[x] is homogeneous of degree i and qj ∈ R[x] is homogeneous of
degree j for all i and j. Consider now a kind of Sylvester matrix, namely

S :=



pd pd−1 . . . . . . . . . . p0
pd pd−1 . . . . . . . . . . p0

. . . . . .
pd pd−1 . . . . . . . p0

qe qe−1 . . . . . . . . . . q0
qe qe−1 . . . . . . . . . . q0

. . . . . .
qe qe−1 . . . . . . . q0


∈ R[x](d+e)×(d+e)

whose first e rows are consecutive shifts of (pd, . . . , p0) and whose last d rows are
consecutive shifts of (qe, . . . , q0) where the empty space is filled up with zeros.

We claim that S(a) is singular for all a ∈ Rn. This is clear for a = 0 or if a
spans an exceptional line since then the first column of S(a) is zero. To prove the
claim, it suffices to consider the case where a spans a non-exceptional line L. But
on such a line p and q have a root in common so that there exists λ ∈ R with
p(λa) = q(λa) = 0. Then ∑d

i=0 pi(a)λi+k = λk p(a) = 0 and q = ∑e
j=0 qj(a)λj+k =

λkq(a) = 0 for all k ∈N0 so that the transpose of the non-zero vector(
λd+e−1 λd+e−2 . . . λ2 λ 1

)
lies in the kernel of S(a). In particular, S(a) is again singular.
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By the claim just proven, we have det(S(a)) = 0 for all a ∈ Rn. This implies
the polynomial identity det S = 0. Hence S is singular as a matrix over the field
K(x) = K(x1, . . . , xn) of rational functions in the variables x1, . . . , xn. Over this
field, there is thus a non-trivial linear dependance of its rows. Clearing denomina-
tors, this means that there exist a non-zero vector

v :=
(

f1 . . . fe g1 . . . gd
)T ∈ R[x]d+e

such that vTS = 0. Denoting by x0 an additional variable, we multiply this from
the right with the vector

w :=
(
1 x0 x2

0 . . . xd+e−1
0

)T ∈ R[x0]
d+e

and obtain
e

∑
i=1

fixi−1
0︸ ︷︷ ︸

=: f∈R[x0,x]

p∗ +
d

∑
j=1

gjx
j−1
0︸ ︷︷ ︸

=:g∈R[x0,x]

q∗ = vTSw = 0

where p∗ and q∗ are the homogenizations of p and q, respectively, as introduced in
Definition 3.9. For every polynomial h ∈ R[x0, x] we denote by degx0

h its degree
with respect to x0, i.e., the degree of h when it is seen as a polynomial in x0 with
coefficients from K[x]. We have degx0

g ≤ d− 1 < d = degx0
p∗ so that p∗ cannot

divide g in R[x0, x]. Therefore, when we look at the prime factorization of

f p∗ = −gq∗

in the factorial ring R[x0, x], we find an irreducible factor r of p∗ that divides q∗ in
R[x0, x]. Then r(1, x) divides q = q∗(1, x) in R[x]. It remains to show that r(1, x)
cannot be constant. Indeed, the only way this could happen would be that x0
divides r which is impossible since r(0, x) divides p∗(0, x) = pd 6= 0. �

Lemma 8.3. Let A0, A1, . . . , An ∈ Rd×d be symmetric such that the origin is an
interior point of the spectrahedron

S := {a ∈ Rn | A0 + a1 A1 + . . . + an An � 0}.

Then there exists an invertible matrix Q ∈ Rd×d, e ∈ {0, . . . , d} and symmetric
matrices B1, . . . , Bn ∈ Re×e such that

QT A0Q =

(
Ie 0
0 0

)
and

QT AiQ =

(
Bi 0
0 0

)
for i ∈ {1, . . . , n}.

Consequently,
S = {a ∈ Rn | Ie + a1B1 + . . . + anBn � 0}.

Proof. Choose an orthogonal matrix U ∈ Rd×d such that UT A0U is diagonal. Then
choose a permutation matrix P ∈ Rd×d such that the diagonal entries of (the di-
agonal) matrix PTUT A0UP are λ1, . . . , λe followed by d − e zeros. Since 0 ∈ S,
we have A0 � 0 so that λ1, . . . , λe are nonnegative. Let D ∈ Rd×d be a diagonal
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matrix with diagonal entries
√

λ1, . . . ,
√

λe followed by d − e arbitrary non-zero
entries and set Q := UPD−1 ∈ Rd×d. Then Q is invertible and

QT A0Q =

(
Ie 0
0 0

)
.

For each i ∈ {1, . . . , n}, QT AiQ is symmetric and can therefore be written as

QT AiQ =

(
Bi Ci
CT

i Di

)
with Bi ∈ Re×e, Ci ∈ Re×(d−e) and Di ∈ R(d−e)×(d−e) such that Bi and Di are
symmetric. Since 0 is in the interior of S, there exists ε > 0 such that for all λ ∈
R with −ε < λ < ε and all i ∈ {1, . . . , n}, we have A0 + λAi � 0 and thus
QT A0Q + λQT AiQ � 0. It follows that Di � 0 and −Di � 0 and thus Di = 0
for all i ∈ {1, . . . , n}. Now it is an easy exercise to show that Ci = 0 for all i ∈
{1, . . . , n}. �

Proposition 8.4. Let p ∈ R[x] be a real zero polynomial. Then the following are
equivalent:
(a) For each irreducible factor f of p in R[x], the rigidly convex set C( f ) ⊆ Rn is

a spectrahedron.
(b) There exist q ∈ R[x], d ∈ N0 and symmetric matrices A1, . . . , An ∈ Rd×d such

that
pq = det(Id + x1 A1 + . . . + xn An)

and C(p) ⊆ C(q).
In this case, C(p) is a spectrahedron.

Proof. C(p) is of course the intersection over the C( f ) where f runs over its irre-
ducible factors. Using block diagonal matrices, one reduces therefore easily to the
case where p is irreducible.

To show (a) =⇒ (b), we suppose that (a) holds. By Lemma 8.3, we find d ∈ N0
and symmetric matrices A1, . . . , An ∈ Rd×d such that

C(p) = {a ∈ Rn | Id + a1 A1 + . . . + an An � 0}.

Setting r := det(Id + x1 A1 + . . . + xn An), we have C(r) = C(p) by Proposition
2.12. By the irreducibility of p and Lemma 8.2, this implies that p divides r in R[x].
Choose q ∈ R[x] such that pq = r. Since r is a real zero polynomial by Proposition
2.6, q is also a real zero polynomial. Moreover it is obvious that C(p) ∩ C(q) =
C(r). Together with C(r) = C(p), we obtain C(p) ⊆ C(q).

To prove (b) =⇒ (a), let q ∈ R[x], d ∈ N0 and hermitian matrices A1, . . . , An ∈
Cd×d be given such that pq = r := det(Id + x1 A1 + . . . + xn An) and C(p) ⊆ C(q).
Then C(p) = C(p) ∩ C(q) = C(r) is a spectrahedron by Proposition 2.6 �

Remark 8.5. If C ⊆ Rn is a cone, then −C := {−a | a ∈ C} is again a cone and
C ∩−C is a subspace of Rn which is called the lineality space of C.

The lemma can also easily be deduced from [BGLS, Fact 2.9] proved by Gårding
[Går, Theorem 3]. Here we give a very short proof based on the hermitian version
of the result of Helton and Vinnikov.
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Lemma 8.6. Let p ∈ R[x] be hyperbolic in direction of the first unit vector u of Rn.
Suppose that m ∈ {1, . . . , n} and C(p, u) ∩ −C(p, u) = {0} ×Rn−m ⊆ Rn. Then
p ∈ R[x1, . . . , xm].

Proof. We have to show p = p(x1, . . . , xm, 0, . . . , 0). It suffices to show p(x1, a, b) =
p(x1, a, 0) for all a ∈ Rm−1 and b ∈ Rn−m. Fix a ∈ Rm−1 and b ∈ Rn−m and
consider the polynomial q := p(x1, x2a, x3b) ∈ R[x1, x2, x3] of degree d which is
obviously hyperbolic in direction of the first unit vector of R3. Because of the
Helton-Vinnikov Corollary 6.9, we find hermitian matrices A2, A3 ∈ Cd×d such
that q = det(x1 Id + x2 A2 + x3 A3). Because of (0, 0, b) ∈ C(p, u) ∩ −C(p, u), we
have that all roots of the univariate polynomial det(A3 − tId) = q(−t, 0, 1) =
p(−t, 0, b) ∈ R[t] are nonnegative and nonpositive and therefore zero. So all eigen-
values of the hermitian matrix A3 are zero and therefore A3 = 0. Consequently,
q = det(x1 Id + x2 A2) ∈ R[x1, x2]. Hence p(x1, a, b) = q(x1, 1, 1) = q(x1, 1, 0) =
p(x1, a, 0) as desired. �

A stronger version of the following lemma is folklore and can be found for
example in [Web, Theorem 2.5.1]. For convenience of the reader, we present the
version that we need with the corresponding simplified proof.

Lemma 8.7. Let S be a closed unbounded convex set in Rn that contains the origin.
Then S contains a ray, i.e., there exists a ∈ Rn \ {0} such that {λa | λ ∈ R≥0} ⊆ S.

Proof. Choose a sequence (ai)i∈N in S \ {0} such that limi→∞ ‖ai‖ = ∞. Consider
the sequence (

ai
‖ai‖

)
i∈N

of points on the unit sphere in Rn. Since this sphere is compact, we may suppose
that it converges to some point a ∈ Rn with ‖a‖ = 1. We claim that

{λa | λ ∈ R≥0} ⊆ S.

To this purpose, we fix λ ∈ R≥0 and choose k ∈N such that

λ

‖ai‖
≤ 1 and thus

λ

‖ai‖
ai ∈ S

for all i ≥ k because S is convex and contains the origin. It follows that

λa = λ lim
i→∞

ai
‖ai‖

= lim
i→∞

λ

‖ai‖
ai ∈ S

since S is closed. �

Theorem 8.8 (equivalent formulations of GLC). The following are equivalent:
(a) Each rigidly convex set is a spectrahedron, i.e., Conjecture 8.1 (GLC) holds.
(b) For each real zero polynomial p ∈ R[x], there exist a polynomial q ∈ R[x],

some d ∈N0 and symmetric matrices A1, . . . , An ∈ Rd×d such that

pq = det(Id + x1 A1 + . . . + xn An)

and C(p) ⊆ C(q).
(c) Each hyperbolicity cone is spectrahedral.
(d) Each compact rigidly convex set is a spectrahedron.
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Proof. (a) ⇐⇒ (b) follows directly from Proposition 8.4, (a) =⇒ (d) is trivial. and
(c) =⇒ (a) follows immediately from Proposition 6.7.

It remains to show (d) =⇒ (c). Suppose (d) holds and let p ∈ R[x] be hyper-
bolic in direction e. WLOG we suppose that p has positive degree as otherwise its
hyperbolicity cone C(p, e) is all of Rn. By Remark 8.5, the lineality space

L := C(p, e) ∩−C(p, e) ⊆ Rn

of the hyperbolicity cone C(p, e) is a linear subspace of Rn. It consists of all ele-
ments of Rn all of whose eigenvalues (with respect to p in direction e) in the sense
of Definition 6.4(a) are zero. Since C(p, e) consists of those elements all of whose
eigenvalues are nonnegative, we see that

L = C(p, e) ∩ H = −C(p, e) ∩ H.

Thus L is of course contained in

H := {a ∈ Rn | trp,e(a) = 0} ⊆ Rn

by Definition 6.4(b) which is a hyperplane by Proposition 6.20(c) with

e /∈ H ⊇ L

due to the positive degree of p. In particular, dim L = n − m for some m ∈
{1, . . . , n}.

Claim 1. We can reduce to the case where
• e is the first unit vector of Rn,
• H = {0} ×Rn−1 ⊆ Rn and
• L = {0} ×Rn−m ⊆ Rn.

Justification. Choose an invertible matrix A ∈ Rn×n whose first column is e,
whose remaining columns span H and whose last n− m columns span L, i.e., A
maps

• the first unit vector u of Rn to e,
• the subspace H′ := {0} ×Rn−1 ⊆ Rn onto H and
• the subspace L′ := {0} ×Rn−m ⊆ Rn onto L.

Setting q := p(Ax) ∈ R[x], we have for each a ∈ A the univariate polynomial
identity q(a− tu) = p(Aa− te) ∈ R[t] which shows that p is hyperbolic in direc-
tion u with

C(p, e) = {Aa | a ∈ C(q, u)}
and trq,u(a) = trp,e(Aa) for each a ∈ A. It follows that H′ = {a ∈ Rn | trq,u(a) = 0}
and L′ = {A−1a | a ∈ L} = C(q, u) ∩−C(q, u). This proves Claim 1.

Claim 2. We can further reduce to the case where
• e is the first unit vector of Rn,
• H = {0} ×Rn−1 ⊆ Rn and
• L = {0} ⊆ Rn.

Justification. Suppose we are already in the situation described in Claim 1. By
Lemma 8.6, we then have that

p ∈ R[x1, . . . , xm].
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Viewed as a polynomial in the variables x1, . . . , xm, p is clearly again hyperbolic
with respect to the first unit vector u of Rm and we have obviously

C(p, e) = C(p, u)×Rn−m

as well as trp,e(a, 0) = trp,u(a) for all a ∈ Rm. It is therefore enough to show that
the hyperbolicity cone C(p, u) ⊆ Rm is spectrahedral. Finally, we have that

H′ := {0} ×Rm−1 = {a ∈ Rm | (a, 0) ∈ H} = {a ∈ Rm | trp,e(a, 0) = 0}
= {a ∈ Rm | trp,u(a) = 0}

and L′ := C(p, u) ∩−C(p, u) = {a ∈ Rm | (a, 0) ∈ L} = {0}. This proves Claim 2.
Claim 3. Suppose we are in the situation of Claim 2 and consider

q := p(1, x2, . . . , xn) ∈ R[x2, . . . , xn].

Then q is a real zero polynomial and its associated rigidly convex set

C(q) = {(a2, . . . , an) ∈ Rn−1 | (1, a2, . . . , an) ∈ C(p, e)} ⊆ Rn−1

is compact.
Justification. By Proposition 6.7(a), we only need to show that C(q) is compact.

Certainly, it is closed since, for example, it is an intersection of closed half-spaces
by Theorem 4.3. By Lemma 8.7, it is enough to show that C(q) does not contain
a ray. By Proposition 6.7(b) this is equivalent to showing that H ∩ C(p, e) = {0}
which is true by Claim 2 since L = H ∩ C(p, e). This proves Claim 3.

Claim 4. Suppose we are in the situation of Claim 2. Then

C(p, e) = {0} ∪
{

a ∈ Rn | a1 > 0,
(a2, . . . , an)

a1
∈ C(q)

}
.

Justification. The inclusion from right to left follows easily from Claim 3 and
the fact that C(p, e) is a cone by Theorem 6.13. For the other inclusion, let a ∈
C(p, e) \ {0}. By Claim 3, it suffices to show that a1 > 0. Writing a = a1e + b with
b ∈ H, we see that 0 ≤ trp,e(a) = a1(deg p) + 0. Since p has positive degree, it
follows that a1 ≥ 0. Moreover, if we had a1 = 0, it would follow that trp,e(a) = 0
and hence a ∈ C(p, e) ∩ H = L = {0} by Claim 2 which contradicts a 6= 0. This
proves Claim 4.

Now we can finally conclude the proof of (d) =⇒ (c). The rigidly convex set
C(q) ⊆ Rn−1 is compact by Claim 3 is thus a spectrahedron by hypothesis (d).
Accordingly, we can choose some e ∈ N0 and symmetric matrices A1, . . . , An ∈
Re×e such that

C(q) = {(a2, . . . , an) ∈ Rn−1 | A1 + a2 A2 + . . . + an An � 0}.
We claim that

C(p, e) = {a ∈ Rn | a1 ≥ 0, a1 A1 + a2 A2 + . . . + an An � 0}
so that the hyperbolicity cone C(p, e) can be defined by a linear matrix inequality
of size e + 1 (in block diagonal form with a block of size 1 and a block of size
e). The inclusion from left to right is immediately by the corresponding inclusion
from Claim 4. The other inclusion follows from the other inclusion in Claim 4 if we
can exclude that there exists (a2, . . . , an) ∈ Rn−1 \ {0}with a2 A2 + . . . + an An � 0.
But this follows from the boundedness of C(q) proved in Claim 3. �
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8.1. The real zero amalgamation conjectures. In this subsection, we consider three
tuples x = (x1, . . . , x`), y = (y1, . . . , ym) and z = (z1, . . . , zn) of `+ m + n distinct
variables for some `, m, n ∈ N0. The following question [SS, Problem 2.13] has
been motivated by the implications it would have to GLC by what follows in Sub-
section 8.2 below. Its study has been initiated by [SS] but only very partial results
have been obtained so far.

Problem 8.9 (Sawall and Schweighofer, real zero amalgamation problem, RZAP).
Suppose that p ∈ R[x, y] and q ∈ R[x, z] are real zero polynomials with

p(x, 0) = q(x, 0).

When does there exist a real zero polynomial r ∈ R[x, y, z] (called an amalgam)
such that

r(x, y, 0) = p and r(x, 0, z) = q ?

In the situation of RZAP, we call x1, . . . , x` the shared variables and r the amalga-
mation polynomial.

In [SS, Example 6.1], an example of two real zero polynomials is provided with
` = 6 shared variables and m = n = 1 individual variables that do not possess
an amalgam in the sense above. For ` = 2, a counterexample of the same nature
cannot exist [SS, Section 7]. In [SS, Section 7] even more motivation is given for the
following conjecture [SS, Conjecture 7.6]:

Conjecture 8.10 (Sawall and Schweighofer, Weak real zero amalgamation conjec-
ture, WRZAC). In the case of ` = 2 two joint variables, the real zero amalgamation
problem 8.9 is always solvable.

A stronger form of this conjecture is the following [SS, Conjecture 7.7].

Conjecture 8.11 (Sawall and Schweighofer, Strong real zero amalgamation conjec-
ture, SRZAC). Let ` = 2, i.e., x = (x1, x2), and d ∈ N0. Suppose p ∈ R[x, y] and
q ∈ R[x, z] are real zero polynomials of degree at most d such that p(x, 0) = q(x, 0).
Then there exists a real zero polynomial r ∈ R[x, y, z] of degree at most d such that

p = r(x, y, 0) and q = r(x, 0, z).

8.2. Wrapping rigidly convex sets into spectrahedra and tying them with a cord.

Lemma 8.12. Suppose that Conjecture 8.11 (SRZAC) holds. Let p ∈ R[x1, x2, y1, . . . , ym] =
R[x, y] be a real zero polynomial of degree d ≥ 2. Set

n :=
(

d(d + 1)
2

− 3
)
∈N0.

Then there exists a real zero polynomial q ∈ R[x, y, z1, . . . , zn] = R[x, y, z] of de-
gree d such that q(x, y, 0) = p,

C(p) ⊆ {(a, b) ∈ R2 ×Rm | (a, b, 0) ∈ S(q)} and

{a ∈ R2 | (a, 0) ∈ C(p)} = {a ∈ R2 | (a, 0, 0) ∈ S(q)}.

In particular, C(p) is contained in a spectrahedron that agrees with C(p) on the
plane spanned by the first two unit vectors.
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Proof. WLOG p(0) = 1. By the Helton-Vinnikov theorem 2.7, we find symmetric
A1, A2 ∈ Rd×d such that p(x, 0) = det(Id + x1 A1 + x2 A2).

We now claim that we can find real symmetric matrices B1, . . . , Bn ∈ Rd×d such
that they span together with Id, A1 and A2 a subspace of the space of real sym-
metric matrices of size d that is perfect in the sense of Definition 3.29. To this end,
we distinguish three different cases. In each of these cases, we will use one of the
subspaces that are perfect according to 3.31(a).

If A1 and A2 are scalar multiples of the identity matrix then we can for example
set Bi := 0 for i ∈ {1, . . . , n} and get the perfect subspace generated by Id.

If the span of Id, A1 and A2 is two-dimensional, then we can jointly diagonalize
A1 and A2 by conjugating them with a suitable orthogonal matrix and therefore
can assume them to be diagonal. Then the co-dimension of the span of Id, A1 and
A2 inside the space of real diagonal matrices is d − 2 = (d + 1) − 3 which is at
most n because of d ≥ 2. Hence we find diagonal matrices B1, . . . , Bn ∈ Rd×d such
that the span of Id, A1, A2, B1, . . . , Bn is the space of all diagonal matrices which is
again perfect.

The last case is where Id, A1 and A2 are linearly independent. Then we complete
them to a basis Id, A1, A2, B1, . . . , Bn of the perfect space of real symmetric matrices
of size d.

The claim is now proven and we choose B1, . . . , Bn ∈ Rd×d according to it. By
Conjecture 8.11 (SRZAC), p ∈ R[x, y] and

r := det(Id + x1 A1 + x2 A2 + z1B1 + . . . + znBn) ∈ R[x, z]

can be amalgamated into a real zero polynomial q ∈ R[x, y, z] of degree d such
that q(x, y, 0) = p and q(x, 0, z) = r. By Theorem 3.35 applied to q, we have
C(q) ⊆ S(q). Together with Lemma 3.26(b), this yields our first statement

C(p) = {(a, b) ∈ R2+m | (a, b, 0) ∈ C(q)} ⊆ {(a, b) ∈ R2+m | (a, b, 0) ∈ S(q)}.
We have C(r) = S(r) by Proposition 3.33(c). Together with Lemma 3.26, we get

{a ∈ R2 | (a, 0) ∈ C(p)} = {a ∈ R2 | (a, 0, 0) ∈ C(q)}
= {a ∈ R2 | (a, 0) ∈ C(r)} = {a ∈ R2 | (a, 0) ∈ S(r)}

⊇ {a ∈ R2 | (a, 0, 0) ∈ S(q)} ⊇ {a ∈ R2 | (a, 0) ∈ C(p)}
where the last inclusion follows from the already proven part of the lemma. �

Lemma 8.13. Suppose that Conjecture 8.11 (SRZAC) holds. Let p ∈ R[x] =
R[x1, . . . , x`] be a real zero polynomial of degree d ≥ 2. Set

m :=
(

d(d + 1)
2

− 3
)
∈N0.

Let U be a two-dimensional subspace of R`. Then there exists a real zero polyno-
mial q ∈ R[x1, . . . , x`, y1, . . . , ym] = R[x, y] of degree d such that q(x, 0) = p and
the spectrahedron S := {a ∈ R` | (a, 0) ∈ S(q)} ⊆ R` satisfies C(p) ⊆ S and
U ∩ C(p) = U ∩ S.

Proof. Choose an orthogonal matrix Q ∈ R`×` such that {Qx | x ∈ U} equals the
span of the first two unit vectors U′ in R`. Applying Lemma 8.12 to the real zero
polynomial p′ := p(Qx), we obtain a real zero polynomial q′ ∈ R[x, y] of degree
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d with q′(x, 0) = p′ such that the spectrahedron S′ := {a ∈ R` | (a, 0) ∈ S(q′)}
satisfies C(p′) ⊆ S′ and U′ ∩C(p′) = U′ ∩ S′. Consider now the orthogonal matrix

Q′ :=
(

Q 0
0 Im

)
∈ R(`+m)×(`+m)

and the real zero polynomial

q := q′
(

Q′T
(

x
y

))
= q′(QTx, y) ∈ R[x, y]

of degree d. Then q(x, 0) = q′(Q−1x, 0) = p′(Q−1x) = p. Moreover, we have
C(p) = {QTa | a ∈ C(p′)},

S(q) =
{

Q′T
(

a
b

)
| (a, b) ∈ S(q′)

}
= {(QTa, b) | (a, b) ∈ S(q′)}

and thus S := {a ∈ R` | (a, 0) ∈ S(q)} = {QTa | a ∈ S′} by Proposition 3.24.
Hence C(p′) ⊆ S′ and U′ ∩ C(p′) = U′ ∩ S′ easily translate into the desired condi-
tions C(p) ⊆ S and U ∩ C(p) = U ∩ S. �

The following gives a very weak form of the generalized Lax conjecture (GLC)
under the hypothesis of the strong real zero amalgamation conjecture (SRZAC).

Theorem 8.14. Suppose that Conjecture 8.11 (SRZAC) holds. Suppose k, ` ∈ N0.
Fix a real zero polynomial p ∈ R[x] = R[x1, . . . , x`] polynomial of degree d ≥ 2
and a union W of k many two-dimensional subspaces of R`. Then C(p) is con-
tained in a spectrahedron that agrees with C(p) on W and which is defined by a
linear matrix inequality of size

s := k
(
`+

d(d + 1)
2

− 2
)

.

Proof. One easily reduces to the case k = 1. Then the claim follows easily from
Lemma 8.13. �

If one supposes only the weak zero amalgamation conjecture (WRZAC) instead
of SRZAC, we will get the almost same result in Theorem 8.16 below: Only the
bound on the size of the linear matrix inequality will be slightly worse. To this
end, we need the analogue of Lemma 8.12 above.

Lemma 8.15. Suppose that Conjecture 8.10 (WRZAC) holds. Let p ∈ R[x1, x2, y1, . . . , ym] =
R[x, y] be a real zero polynomial of degree d ≥ 2. Set

n :=
(

d(d + 1)
2

− 2
)
∈N0.

Then there exists a real zero polynomial q ∈ R[x, y, z1, . . . , zn] = R[x, y, z] such
that q(x, y, 0) = p,

C(p) ⊆ {(a, b) ∈ R2+m | (a, b, 0) ∈ S∞(q)} and

{a ∈ R2 | (a, 0) ∈ C(p)} = {a ∈ R2 | (a, 0, 0) ∈ S∞(q)}.

In particular, C(p) is contained in a spectrahedron that agrees with C(p) on the
plane spanned by the first two unit vectors.
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Proof. WLOG p(0) = 1. By the Helton-Vinnikov theorem 2.7, we find symmetric
A1, A2 ∈ Rd×d such that p(x, 0) = det(Id + x1 A1 + x2 A2).

We now claim that we can find real symmetric matrices B1, . . . , Bn ∈ Rd×d such
that they span together with A1 and A2 a subspace of the space of real symmetric
matrices of size d that is perfect in the sense of Definition 3.29. To this end, we
distinguish three different cases.

If A1 = A2 = 0, then we simply set Bi := 0 for all i ∈ {1, . . . , n} since {0} ⊆
Rd×d is trivially perfect.

If the real span of A1 and A2 is one-dimensional, then we can jointly diagonalize
A1 and A2 by conjugating them with a suitable orthogonal matrix and therefore
can assume them to be diagonal. Then the co-dimension of the span of A1 and A2
inside the space of real diagonal matrices is d− 1 = (d + 1)− 2 which is at most
n because of d ≥ 2. Hence we find diagonal matrices B1, . . . , Bn ∈ Rd×d such that
the span of A1, A2, B1, . . . , Bn is the space of all diagonal matrices which is again
perfect.

The last case is where A1 and A2 are linearly independent. Then we complete
them to a basis A1, A2, B1, . . . , Bn of the perfect space of real symmetric matrices of
size d.

The claim is now proven and we choose B1, . . . , Bn ∈ Rd×d according to it. By
Conjecture 8.10 (WRZAC), we find for

r := det(Id + x1 A1 + x2 A2 + z1B1 + . . . + znBn) ∈ R[x, z]

a real zero polynomial q ∈ R[x, y, z] such that

q(x, y, 0) = p and trunc3 q(x, 0, z) = trunc3 r.

By Theorem 3.35 and Remark 3.20, we have C(q) ⊆ S(q) ⊆ S∞(q). Together with
Lemma 3.26(b), this yields our first statement

C(p) = {(a, b) ∈ R2+m | (a, b, 0) ∈ C(q)} ⊆ {(a, b) ∈ R2+m | (a, b, 0) ∈ S∞(q)}.
We have C(r) = S∞(r) = S∞(q(x, 0, z)) by Proposition 3.33(d) and Lemma 3.21.
Together with Lemma 3.26, we have the chain of inclusions

{a ∈ R2 | (a, 0) ∈ C(p)} = {a ∈ R2 | a ∈ C(p(x, 0))}
= {a ∈ R2 | a ∈ C(r(x, 0))} = {a ∈ R2 | (a, 0) ∈ C(r)}

= {a ∈ R2 | (a, 0) ∈ S∞(q(x, 0, z))} ⊇ {a ∈ R2 | (a, 0, 0) ∈ S∞(q)}
⊇ {a ∈ R2 | (a, 0) ∈ C(p)}

where the last inclusion follows from the already proven part of the lemma. �

Theorem 8.16. Suppose that Conjecture 8.10 (WRZAC) holds. Suppose k, ` ∈ N0.
Fix a real zero polynomial p ∈ R[x] = R[x1, . . . , x`] polynomial of degree d ≥ 2
and a union W of k many two-dimensional subspaces of R`. Then C(p) is con-
tained in a spectrahedron that agrees with C(p) on W and which is defined by a
linear matrix inequality of size

s := k
(
`+

d(d + 1)
2

− 1
)

.

Proof. Completely analogous to the proof of Theorem 8.14 where Lemma 8.12 is
exchanged by Lemma 8.15. �
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8.3. Tying with a ribbon instead of a cord in the case of cubic real zero polyno-
mials. In the last two subsections, we showed that we can wrap rigidly convex
sets into a spectrahedron and tie them with finitely many cords provided Con-
jecture 8.11 (SRZAC) or at least Conjecture 8.10 (WRZAC) holds true. For rigidly
convex sets defined by cubic real zero polynomials, we will be able to improve this.
Namely, we can even tie by a two-dimensional version of cords, say by ribbons.
This means that we can make the spectrahedron agree on finitely many three-
dimensional (instead of two-dimensional) subspaces with the rigidly convex set.
The technique for the proof is almost literally the same except that we use instead
of the Helton-Vinnikov Theorem 2.7 now the following complex version which is a
version of the Helton-Vinnikov Corollary 2.8 which allows for one more variable:

Theorem 8.17 (Buckley and Košir). If p ∈ R[x1, x2, x3] is a cubic real zero poly-
nomial with p(0) = 1, then there exist hermitian matrices A1, A2, A3 ∈ C3×3 such
that

p = det(I3 + x1 A1 + x2 A2 + x3 A3).

Proof. Under a certain smoothness assumption, this follows from [BK, Theorem
6.4]. With a perturbation and limit argument, this smoothness assumption can
be removed by standard techniques. This is explained in the proof of [Kum1,
Proposition 8]. �

The details will be provided in future versions of this article.
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