ERRATUM TO: INFEASIBILITY CERTIFICATES FOR LINEAR MATRIX INEQUALITIES

IGOR KLEP AND MARKUS SCHWEIGHOFER

ABSTRACT. We fix a minor technical problem in our Oberwolfach preprint [KS].

There is a flaw in the proof of [KS, Lemma 3.5.1]. The problem is at the end of the induction step where we say that $g \in (\ell_2, \ldots, \ell_t)$. One can only conclude that $g \in (\ell_2(\ell, X_2, \ldots, X_n), \ldots, \ell_t(\ell, X_2, \ldots, X_n))$. Indeed there is a trivial counterexample to [KS, Lemma 3.5.1]: $d = 1, f = X_2, \ell_1 = X_1, \ell_2 = X_1 + 1$.

However, this does not affect any of the (other) results of [KS]. To show this, we formulate a correct version of the lemma in question:

Lemma 3.5.1. Suppose $d \in \mathbb{N}$, $f \in \mathbb{R}[\underline{X}]_d$ and $\ell_1, \ldots, \ell_t \in \mathbb{R}[\underline{X}]_1$ are linear polynomials such that $f \in (\ell_1, \ldots, \ell_t)$. Then at least one of the following is true:

(a) there exist $p_1, \ldots, p_t \in \mathbb{R}[\underline{X}]_{d-1}$ such that $f = p_1 \ell_1 + \cdots + p_t \ell_t$;

(b) there are $\lambda_1, \ldots, \lambda_t \in \mathbb{R}$ such that $\lambda_1 \ell_1 + \cdots + \lambda_t \ell_t = 1$.

Proof. Suppose that (b) is not fulfilled. Then we may assume by Gaussian elimination and after renumbering the variables that $\ell_i = X_i - \ell'_i$ where $\ell'_i \in \mathbb{R}[X_{i+1}, \ldots, X_n]_1$. With this additional hypothesis, we prove (a) by induction on $t \in \mathbb{N}_0$ exactly like in [KS] (with $\ell := \ell'_1$).

Now it is enough to correct the proof of [KS, Theorem 3.5.2] as follows:

Corrected proof of Theorem 3.5.2: [...] Second, in Lemma 3.5.1 <u>applied to</u> $\ell_1, \ldots, \ell_{i-1}$ ($i \in \{1, \ldots, n+1\}$) the ℓ_i are assumed to be non-constant but can be allowed to equal zero. case (b) might happen. But if some $\ell_i \neq 0$ is constant, then we may set $\ell_{i+1} = \cdots = \ell_n = 0$ and $S'_{i+1} = \cdots = S'_n = S = 0$. [...]

References

[KS] I. Klep, M. Schweighofer: Infeasibility certificates for linear matrix inequalities, Oberwolfach Preprint 2011, No. 28

http://www.mfo.de/scientific-programme/publications/owp/2011/OWP2011_28.pdf

IGOR KLEP, THE UNIVERSITY OF AUCKLAND, DEPARTMENT OF MATHEMATICS, PRIVATE BAG 92019, AUCKLAND 1142, NEW ZEALAND

E-mail address: igor.klep@auckland.ac.nz

MARKUS SCHWEIGHOFER, UNIVERSITÄT KONSTANZ, FACHBEREICH MATHEMATIK UND STATISTIK, 78457 KONSTANZ, ALLEMAGNE

 $E\text{-}mail\ address:$ markus.schweighofer@uni-konstanz.de

Date: March 4, 2012.