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Abstract

Let A be a commutative R–algebra of finite transcendence degree d ∈
N. We investigate the relationship between the subring of (geometrically)
bounded elements

H(A) := {a ∈ A | ∃ν ∈ N : |a| ≤ ν on Sper A}

and the subring of arithmetically bounded elements

H ′(A) := {a ∈ A | ∃ν ∈ N : ν + a and ν − a are sums of squares in A}.

Obviously, H ′(A) ⊆ H(A). In 1991, Schmüdgen proved the remarkable
theorem that A = H(A) implies A = H ′(A) if A is finitely generated. In
1996, Becker and Powers considered the chain A ⊇ H(A) ⊇ H(H(A)) =:
H2(A) ⊇ . . . and showed Hd(A) = Hd+1(A). In 1998, Monnier related
both results and conjectured Hd(A) = H ′(A) which generalizes both of
them at the same time. We prove this conjecture and develop tools to
study H ′(A). One of the applications is the following: If a ∈ A is “small
at infinity” and a ≥ 0 on Sper A, then a + ε is a sum of squares in A for
every ε > 0.

1 Introduction

In this paper, all rings are tacitly assumed to be commutative and to have a
unit element. A subset of a ring is called a preordering if it contains all squares
and is closed under addition and multiplication. We call a preordering proper if
it does not contain −1. For instance, in any ring, the preordering generated by
elements t1, . . . , tm (i.e., the smallest preordering containing t1, . . . , tm) consists
of all elements of the form ∑

e∈{0,1}m

σet
e1
1 · · · tem

m

where every σe is a sum of squares. In 1991, Schmüdgen proved by functional
analytic methods the following Positivstellensatz (which can easily be derived
from several results which we will prove, for instance, from Theorem 5.1 by
setting g = 1):
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Theorem 1.1 (Schmüdgen) Let t1, . . . , tm ∈ R[X1, . . . , Xn] be polynomials.
Let T be the preordering generated by t1, . . . , tm in the polynomial ring and

S = {x ∈ Rn | t1(x) ≥ 0, . . . , tm(x) ≥ 0}.

If S is bounded, then for every polynomial f ∈ R[X1, . . . , Xn] we have

f > 0 on S =⇒ f ∈ T.

Note that clearly f ∈ T implies f ≥ 0 on S, but the converse does not hold,
see [Ste].

In 1998, Wörmann published an algebraic proof of Schmüdgen’s theorem
which revealed that its really new content deals rather with boundedness than
with positivity [BW]. To explain this, we have to introduce some terminology.

A preordered ring is a ring together with a fixed preordering. We will use
the same symbol T to denote the fixed preordering of any preordered ring. This
should not bring difficulties, like using + to denote the addition in any ring
does not. In case of doubt, we will write TA for the fixed preordering of the
preordered ring A.

For the rest of the introduction let A and B be preordered rings.

We say that B is a preordered subring of A if B is a subring of A endowed
with the preordering TA ∩B.

We write Sper A for the real spectrum of A, i.e., for the space of all orderings
of the ring underlying A which contain the fixed preordering T of A. We will
make extensive use of the real spectrum Sper A and the usual spectrum Spec A
where the latter depends only on the ring structure of A. On each of these
sets we will consider the usual topology (if nothing else is said) as well as the
constructible topology.

Definition 1.2 We call the preordered subrings

H(A) := {a ∈ A | ∃ν ∈ N : ν ± a ≥ 0 on Sper A} and
H ′(A) := {a ∈ A | ∃ν ∈ N : ν ± a ∈ T}

of A the ring of (geometrically) bounded elements and the ring of arithmetically
bounded elements, respectively.

To see that H ′(A) is indeed closed under multiplication, use the identity

3ν2 ± ab = (ν + a)(ν ± b) + ν(ν − a) + ν(ν ∓ b).

Obviously, H ′(A) ⊆ H(A) always holds.

Now consider the situation in Schmüdgen’s theorem 1.1 and let A be the
polynomial ring R[X1, . . . , Xn] equipped with the preordering T generated by
t1, . . . , tm. Then S embeds densely in Sper A and therefore

H(A) = {f ∈ R[X1, . . . , Xn] | f is bounded on S}.
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For that reason, the closed set S is bounded if and only if A = H(A). Hence it
is a consequence of Schmüdgen’s theorem that for an A of this particular form

(1.1) A = H(A) =⇒ A = H ′(A).

In the first step of his proof of Theorem 1.1, Wörmann showed this implica-
tion. Actually, his proof works for any finitely generated (in the following often
abbreviated by f.g.) R–algebra A equipped with an arbitrary (not necessarily
f.g.) preordering. In a second step, he applied the following old theorem which
is usually attributed to Kadison and Dubois while it was recently revealed that
it might more likely be due to Krivine or Stone. We include the proof given
in [PD] (Lemma 5.2.7) and refer to Section 5.6 in [PD] for the history of the
theorem.

Theorem 1.3 If Q ⊆ A and A = H ′(A), then for any a ∈ A

a > 0 on Sper A =⇒ a ∈ T.

Proof. By the abstract Positivstellensatz (see e.g. III, §9, Theorem 4 in [KS]),
we can choose t ∈ T with ta ∈ 1 + T . Since A = H ′(A), there are 1 ≤ ν ∈ N
and r ∈ N such that ν− t ∈ T and a + r ∈ T . Now r ∈ 1

ν N can be made smaller
and smaller until it is zero because

a + (r − 1
ν

) =
ν

ν2
((ν − t)(a + r) + (ta− 1) + rt)

is again in T provided r ≥ 0. �

Having in mind this theorem, the new insight given by Schmüdgen’s theorem
is that H ′(A) is as large as possible (namely A = H ′(A)) if A = H(A) and the
ring that underlies A is a f.g. R–algebra. Roughly speaking, in this work we will
show that H ′(A) is “as large as possible” (see below) dropping the restrictive
assumption that A = H(A).

We shall see that in some situations this helps to overcome the drawback
of Theorem 1.3, namely the strong assumption A = H ′(A): Suppose a > 0
on Sper A and we want to show that a ∈ T , but the theorem is not directly
applicable because A = H ′(A) is violated. Then we can still try to find a
preordered subring B of A such that B = H ′(B), a ∈ B and a > 0 even on
Sper B in order to apply the theorem. The larger we choose B with the property
B = H ′(B) the better the chances that a ∈ B and a > 0 on Sper B. But there
is a largest such B, namely—as the reader easily checks—H ′(A). Hence the
larger H ′(A) the more likely Theorem 1.3 can be used to show a ∈ T .

To state precisely what we mean by H ′(A) being “as large as possible”, we
define the k times iterated ring of bounded elements Hk(A) inductively by

H0(A) := A and Hk+1(A) := H(Hk(A)) for k ∈ N.

One easily sees that

(1.2) H ′(A) ⊆ Hk(A) for every k ∈ N.
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Unfortunately, H(A) 6= H2(A) in general which prevents H(A) = H ′(A), see
the remarks after the proof of Theorem 3.11. However, the chain

A ⊇ H(A) ⊇ H2(A) ⊇ H3(A) ⊇ . . .

of iterated rings of bounded elements stabilizes if (the ring underlying) A is a
f.g. R–algebra. In fact, even if A is an R–algebra of finite transcendence degree
d ∈ N (see Section 2 for this notion), then

(1.3) Hd(A) = Hd+1(A).

This was shown by Becker and Powers in 1996 [BP] for the case T =
∑

A2 :=
{a2

1 + · · · + a2
n | n ∈ N, a1, . . . , an ∈ A}. In Section 3, we will give a new and

comparatively short proof for the general case.

In Section 4, we will prove our main result: If A is an R–algebra of finite
transcendence degree d ∈ N, then

Hd(A) = H ′(A).

In view of (1.2), this means that H ′(A) is as large as one could have hoped for.
This result was conjectured in 1998 by Monnier [Mon] and generalizes both the
result of Schmüdgen and the result of Becker and Powers at the same time.

The proof is by induction on d. To make this induction work, we need,
roughly speaking, three ingredients: Firstly, by modifying Wörmann’s proof
of Schmüdgen’s theorem, we prove a statement about f.g. R–algebras A which
is slightly stronger than (1.1). Secondly, we approximate R–algebras of finite
transcendence degree suitably by f.g. R–algebras. This is necessary to handle
the problem that (iterated) rings of bounded elements are in general far from
being f.g. R–algebras even if A is so, see Remark 3.8. Finally, (1.3) enters the
proof at several places.

Having proven our main result, we demonstrate how it helps to apply The-
orem 1.3 in the way indicated above. Suppose A is a (preordered) R–algebra of
finite transcendence degree (which needs not satisfy A = H ′(A)), a ∈ A is what
we call “small at infinity”, i.e.

∀b ∈ A : ∃e ∈ N : aeb ∈ H(A),

and a ≥ 0 on Sper A. Using the chain

A ⊇ H(A) ⊇ H2(A) ⊇ · · · ⊇ Hd(A) = H ′(A),

we get hold of H ′(A) and can show a ∈ H ′(A) as well as a+ε > 0 on Sper H ′(A)
for each ε > 0. Applying Theorem 1.3 to H ′(A), we find a+ε ∈ T for any ε > 0.

In the literature, the ring of bounded elements is mostly called real holo-
morphy ring. This name which explains the notation H(A) is motivated by
the case where A is a field furnished with a proper preordering T , which is
mostly the set

∑
A2 of sums of squares, see the Notes on §9 in [Lam]. In this

case, Becker, Schülting and others showed that H(A) plays an important role

4



in quadratic form theory, study of sums of 2n–th powers and algebraic geome-
try, see for example [Be1], [Be2], [Sc1], [Sc2], and III, §12 in [KS]. Some more
recent works like [Ma1] partially extended this theory to the more general case
where 1 + T ⊆ A×. In this case, H(A) = H ′(A) (see §11, Korollar 1 in [KS])
and most of our results become trivial. Becker and Powers [BP] initiated the
study of the case 1+T * A×. They were followed by Monnier, Pingel, Marshall
and us who—motivated by Schmüdgen’s theorem—also tackled the relationship
between H(A) and H ′(A), see [Mon], [Pin] and [Ma2]. This theory differs much
from the case 1 + T ⊆ A× and we followed Becker’s suggestion to use another
term instead of “real holomorphy ring.”

Like our abstract above, a lot of articles only treat the case T =
∑

A2. Note
that in this case TH(A) =

∑
A2∩H(A) =

∑
H(A)2, so that one stays within this

setting when iterating rings of bounded elements. This has the advantage that
one can simply work in the category of rings with which most readers are more
familiar than with the category of preordered rings. It might be helpful to read
some parts of the paper as if we worked in the former category. Nevertheless,
we feel that it is more natural to use the latter one, not only because tricks like
“adjoining roots” (compare the proof of Théorème 4.7 in [Mon]) can be avoided.
For example, this allows for an interesting variant of our theory presented in
Subsection 6.2, see Remark 6.1.

Acknowledgements The author thanks A. Prestel and N. Schwartz for
drawing his attention to this interesting subject, E. Becker, S. and F.–V. Kuhl-
mann, M. Marshall for their warm hospitality during two one month stays in
Dortmund and Saskatoon where part of this work was done and M. Aschenbren-
ner for proofreading an earlier version of this paper.

2 Preliminaries

For any set M of sets, we denote by Mmin and Mmax the subsets of its minimal
and maximal elements, respectively.

We will need the notion of transcendence degree of a K–algebra A where K
is a field. In the context of f.g. algebras, we will prefer to work with the then
compatible Krull dimension which uses only the ring structure.

Definition 2.1 Let K be a field and A a K–algebra. In the following, we will
take suprema of subsets of N in the set {−1}∪N∪{∞} furnished with its natural
ordering.

(i) Elements a1, . . . , an of A are called algebraically independent if there is
no polynomial 0 6= p ∈ K[X1, . . . , Xn] such that p(a1, . . . , an) = 0 (in
particular, the empty family of elements is algebraically independent unless
A = 0).

(ii) The transcendence degree trdeg A of A is the supremum of all n ∈ N such
that there are n algebraically independent elements in A (thus trdeg A =
−1 ⇐⇒ A = 0).
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(iii) The Krull dimension dim A of A is the supremum of all n ∈ N such that
there is a chain p0 ⊂ · · · ⊂ pn of n + 1 prime ideals p0, . . . , pn ∈ Spec A (in
particular, dim A = −1 ⇐⇒ A = 0).

We denote the (ordinary) transcendence degree of a field extension L|K by
trdeg(L|K) ∈ N ∪ {∞}. If A is an integral domain, we write qf(A) for its
quotient field.

Lemma 2.2 Let K be a field and A a K–algebra. Taking all suprema in the
ordered set {−1} ∪ N ∪ {∞}, the following is true:

(i) trdeg A = sup{trdeg(qf(A/p)|K) | p ∈ Spec A}

(ii) trdeg A = sup{trdeg(qf(A/p)|K) | p ∈ (Spec A)min}

(iii) dim A ≤ trdeg A

(iv) A f.g. =⇒ dim A = trdeg A < ∞

(v) B ⊆ A =⇒ trdeg B ≤ trdeg A

(vi) If A is an integral extension of B, then trdeg B = trdeg A.

(vii) If a is an ideal of A, then trdeg A/a ≤ trdeg A.

(viii) If S ⊆ A is a multiplicative set, then trdeg S−1A ≤ trdeg A.

All these statements are proved in [Sim] except (ii). But the proof of (i) in
[Sim] works verbatim for (ii).

A preordering T of a ring A is called archimedean if for each a ∈ A there
exists ν ∈ N such that ν−a ∈ T . According to this definition, for any preordered
ring A, A = H ′(A) if and only if T is archimedean.

From now on A and B denote preordered rings.

We call ϕ : A → B an homomorphism (embedding, isomorphism) if ϕ is a
ring homomorphism (embedding, isomorphism) and ϕ(TA) ⊆ TB (ϕ(TA) = TB∩
ϕ(A)). If a is an ideal of A, then we furnish the ring A/a with the preordering
TA/a := {a + a | a ∈ TA}. If S ⊆ A is a multiplicative set, then we equip the
localization ring S−1A with the preordering TS−1A := { a

s2 | a ∈ TA, s ∈ S}.
For any a ∈ A, we write Aa for the localization S−1A of A with respect to the
multiplicative set S := {1, a, a2, . . . }. Thus the preordering coming along with
Aa is TAa = { t

a2e | t ∈ TA, e ∈ N}. Note that A0 = 0, i.e., A0 is the preordered
ring in which 0 = 1.

Suppose B is a set of preordered subrings of A which is directed, i.e., when-
ever B1, B2 ∈ B, there exists some B ∈ B with B1 ⊆ B and B2 ⊆ B. If A =

⋃
B,

we say that A is the directed union of all B ∈ B. We will always express this in
a sloppy way by writing

“A =
⋃
→

B, where B ranges over all elements of B.”
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Frequently, we will thereafter continue to speak about B assuming tacitly that
B is an arbitrary element of B.

By an algebra A, we will from now on always mean a preordered K–algebra
A where

• K is a subfield of R and

• K ⊆ H ′(A).

The latter condition ensures that H(A),H(H(A)), . . . and H ′(A) are again al-
gebras. It is fulfilled, for example, if every ordering of K is archimedean or
{a ∈ K | a ≥ 0} ⊆ T . For example, regardless of A, we can always choose the
field of rational, real algebraic or real numbers for K.

3 Iterated rings of bounded elements

In this section, we investigate the chain

A ⊇ H(A) ⊇ H2(A) ⊇ . . .

of iterated rings of bounded elements. We start with a simple observation.

Lemma 3.1 Hk(A) is integrally closed in A for each k ∈ N.

Proof. By induction, it suffices to treat the case k = 1. Suppose a ∈ A and
b0, . . . , bn−1 ∈ H(A) satisfy the equation

an + bn−1a
n−1 + · · ·+ b1a + b0 = 0.

We must show that a ∈ H(A). This follows from observing that for every
P ∈ Sper A

|a(P )| ≤ max{1, |b0(P )|+ · · ·+ |bn−1(P )|}.

Indeed, if P ∈ Sper A is such that |a(P )| ≥ 1 then

|a(P )|n ≤ |bn−1(P )| · |a(P )|n−1 + · · ·+ |b0(P )|
≤ (|b0(P )|+ · · ·+ |bn−1(P )|) · |a(P )|n−1.

Now divide both sides by |a(P )|n−1. �

Now we define some notions which will turn out to be very fruitful for the
investigation of iterated rings of bounded elements. The respective terminology
we suggest can be motivated, for instance, by Lemma 3.5, Proposition 3.6 and
Corollary 3.7.

Definition 3.2 We define a subset S∞(A) of A by

S∞(A) := {a ∈ A | ∀b ∈ A : ∃e ∈ N : aeb ∈ H(A)}

and call its elements small at infinity. Next we define a subspace Sper∞A of
the real spectrum of A by

Sper∞A := {P ∈ Sper A | P is not archimedean}.
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The ideal
I∞(A) :=

⋂
{P ∩ −P | P ∈ Sper∞A}

is the set of all a ∈ A vanishing on Sper∞A. We say that its elements vanish
at infinity.

Since the non–archimedean orderings of H(A) lie not in the image of the
canonical map Sper A → Sper H(A), any information we can obtain about them
is valuable. Part (vi) of the following lemma provides us with such information:
It says that every element of S∞(A) vanishes at these orderings of H(A).

Lemma 3.3 The following is true:

(i) H(A) = {a ∈ A | ∀P ∈ Sper A : ∃ν ∈ N : ν ± a(P ) ≥ 0}

(ii) H(A) = {a ∈ A | ∀P ∈ Sper∞A : ∃ν ∈ N : ν ± a(P ) ≥ 0}

(iii) H(A) = {a ∈ A | ∃ν ∈ N : ∃t ∈ T : t(ν − a2) ∈ 1 + T}

(iv) S∞(A) = {a ∈ H(A) | H(A)a = Aa}

(v) I∞(A) ⊆ S∞(A)

(vi) S∞(A) ⊆ I∞(H(A))

(vii) I∞(A) is an ideal of Hk(A) for each k ∈ N.

(viii) S∞(A) is an ideal of Hk(A) for each k ≥ 1.

Proof.

(i) We use that Sper A is compact with respect to the constructible topology:
Suppose a ∈ A and for each P ∈ Sper A there is some νP ∈ N such that
νP ± a(P ) ≥ 0. Then consider the open covering

Sper A =
⋃

P∈Sper A

{Q ∈ Sper A | νP ± a(Q) ≥ 0}

of Sper A furnished with the constructible topology and extract a finite
subcovering.

(ii) is a trivial consequence of (i).

(iii) The inclusion “⊇” is obvious. For “⊆” we use the (abstract) Positivstel-
lensatz (see e.g. III, §9, Theorem 4 in [KS]).

(iv) We first note that S∞(A) ⊆ H(A). Indeed, for each a ∈ S∞(A) there is
some e ∈ N with ae+1 = ae · a ∈ H(A) and thus a ∈ H(A) by Lemma
3.1. Now fix some a ∈ H(A). By the condition H(A)a = Aa, we mean
that the canonical homomorphism ϕ : H(A)a → Aa is an isomorphism
(of preordered rings). Since ϕ always is an embedding this amounts to ϕ
being surjective. Obviously, this is equivalent to a ∈ S∞(A).

(v) If a ∈ I∞(A), then for all b ∈ A we see that ab ∈ H(A) using (ii).
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(vi) Let a ∈ S∞(A) and Q ∈ Sper∞H(A). We have to show that a(Q) = 0.
Assume for a contradiction that a(Q) 6= 0. Then Q comes from some
ordering of H(A)a. But according to (iv), H(A)a = Aa and the orderings
of Aa correspond to the orderings P of A with a(P ) 6= 0. Thus there is
some P ∈ Sper A with Q = P ∩H(A). By definition of H(A), the ordering
P ∩H(A) clearly is archimedean. This contradicts the hypothesis that Q
is not archimedean.

(vii) Combining (v) and (vi), we get I∞(A) ⊆ I∞(H(A)). By iteration, we see

I∞(A) ⊆ I∞(H(A)) ⊆ I∞(H2(A)) ⊆ . . . ⊆ I∞(Hk(A)) ⊆ Hk(A)

for each k ∈ N. It suffices to show that I∞(A) is an ideal of A. But
this follows from the fact that by definition I∞(A) is the intersection of
supports of orderings of A thus of ideals of A.

(viii) Combining (vi) and (v), we get S∞(A) ⊆ S∞(H(A)). By iteration, we see

S∞(A) ⊆ S∞(H(A)) ⊆ S∞(H2(A)) ⊆ . . . ⊆ S∞(Hk(A)) ⊆ Hk(A)

for each k ∈ N. It is enough to show that S∞(A) is an ideal of H(A).
From the definition of S∞(A) it is obvious that H(A)S∞(A) ⊆ H(A) and
0 ∈ S∞(A). It remains to show that S∞(A) is additively closed. Suppose
a1, a2 ∈ S∞(A) and let b ∈ A. Choose e ∈ N such that ae

1b, a
e
2b ∈ H(A).

Then (a1 + a2)2eb = a2e
1 b + 2e(a2e−1

1 b)a2 + · · ·+ a2e
2 b ∈ H(A). �

The following remark won’t be needed in the sequel:

Remark 3.4 I∞(A) is a real radical ideal of A and a fortiori of Hk(A) for every
k ∈ N. This follows from the fact that I∞(A) is the intersection of supports of
orderings of A and thus of real prime ideals of A. Likewise, it is easy to show
that S∞(A) is a real radical ideal of H(A) and a fortiori of Hk(A) for every
k ≥ 1.

Lemma 3.5 If A = K[x1, . . . , xn] is a f.g. algebra, then the following state-
ments hold true:

(i) Sper∞A = {P ∈ Sper A | ∀ν ∈ N :
∑

i x2
i (P ) ≥ ν}

(ii) I∞(A) = {f ∈ A | ∃ν ∈ N : ∀P ∈ Sper A :∑
i x2

i (P ) ≥ ν =⇒ f(P ) = 0}

(iii) S∞(A) = {f ∈ A | ∃e ∈ N : fe
∑

i x2
i ∈ H(A)}

Proof. (i) is an easy exercise. The inclusion “⊇” of (ii) is clear by (i) and the
definition of I∞(A). To show the reverse inclusion, suppose f ∈ I∞(A). By (i),
this means that

Sper A = {P ∈ Sper A | f(P ) = 0} ∪
⋃
ν∈N

{P ∈ Sper A |
∑

i

x2
i (P ) < ν}.
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By compactness of Sper A with respect to the constructible topology, we can
extract from this covering of Sper A a finite subcovering. To prove (iii), suppose
f ∈ A and ∑

i

x2
i ∈ C := {g ∈ A | ∃e ∈ N : feg ∈ H(A)}.

Then it is easy to see that f ∈ H(A), use for example (i) above and (ii) of
Lemma 3.3. It follows that C is a subalgebra of A. From

∑
i x2

i ∈ C we easily
get x2

i ∈ C and then xi ∈ C. Thus C = A which means f ∈ S∞(A). �

The next proposition and its corollary provide handy characterizations of
elements small at infinity in geometric situations. We will not need them for
the theory itself but for some of its applications presented in Section 5.

Proposition 3.6 Suppose A is a f.g. algebra whose preordering T is also finitely
generated. Then

S∞(A) = {f ∈ A | ∀P ∈ Sper∞A : ∀k ∈ N : k|f(P )| < 1}.

Proof. The inclusion “⊆” is clear by the preceding lemma. For the reverse,
suppose f ∈ A is an element of the right hand side of the equation. We may
assume that A equals K[X1, . . . , Xn]/(g1, . . . , gl) equipped with the preordering
generated by the residues of finitely many polynomials t1, . . . , tm. Then we can
evaluate f at points of the closed semialgebraic set

S := {x ∈ Rn | g1(x) = 0, . . . , gl(x) = 0, t1(x) ≥ 0, . . . , tm(x) ≥ 0}

which embeds densely in Sper A. If S is bounded then Sper∞A = ∅ by (i) of the
lemma above whence f ∈ A = S∞(A). In the non–trivial case, the semialgebraic
set {‖x‖ | x ∈ S} ⊆ R is unbounded and therefore contains the interval [r0,∞[
for some 0 ≤ r0 ∈ R. Now for every r ∈ [r0,∞[ let xr ∈ S ⊆ Rn denote the
lexicographically largest point where the continuous function

{x ∈ S | ‖x‖ = r} → R : x 7→ |f(x)|

takes on its maximum. (Note that every non–empty compact subspace of Rn

contains a lexicographically largest point.) Set

P := {h ∈ A | ∃r1 ∈ [r0,∞[: ∀r ∈ [r1,∞[: h(xr) ≥ 0}.

Using the fact that for every h ∈ A the set {r ∈ [r0,∞[ | h(xr) ≥ 0} ⊆
R is semialgebraic, it is routine to verify that P ∈ Sper∞A. This implies
1
k ± f ∈ P for every 0 < k ∈ N by supposition. Considering the function
F : [r0,∞[→ R : r 7→ |f(xr)|, this translates into limr→∞ F (r) = 0. Moreover,
since F is semialgebraic, it is continuous except at finitely many points, see
e.g. the Monotonicity Theorem in [Dri]. By increasing r0, we may assume that
F is continuous. By a  Lojasiewicz inequality (an obvious variant of Corollaire
2.6.7 in [BCR]), we obtain e, c ∈ N such that F (r)e ≤ c 1

r2 for all r ∈ [r0,∞[.
Consequently, −c ≤ f(x)e

∑
i x2

i ≤ c for every x ∈ S with ‖x‖ ≥ r0. Finally,
the density of S in Sper A together with (iii) of Lemma 3.5 implies f ∈ S∞(A).

�
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Corollary 3.7 Let A be the polynomial ring K[X1, . . . , Xn] together with a
preordering T generated by polynomials t1, . . . , tm. Set

S := {x ∈ Rn | t1(x) ≥ 0, . . . , tm(x) ≥ 0}.

Then

S∞(A) = {f ∈ A | ∀ε > 0 : ∃r ∈ N : ∀x ∈ S : ‖x‖ ≥ r =⇒ |f(x)| < ε}.

Proof. The inclusion “⊆” is clear by the trivial part of (iii) in Lemma 3.5.
Conversely, suppose f is contained in the set on the right hand side. We use the
proposition above to show f ∈ S∞(A). No matter how big 0 < k ∈ N, we find
r ∈ N such that − 1

k < f < 1
k on the set {x ∈ S | ‖x‖ ≥ r}. Then − 1

k < f < 1
k

holds even on the closure of this set with respect to the constructible topology on
Sper A. This closure which is {P ∈ Sper A |

∑
i X2

i (P ) ≥ r2} contains Sper∞A
by (i) of Lemma 3.5. �

The next remark shows that often H(A) is not noetherian even when A has
very nice properties (cf. Proposition 2.3 in [BP]).

Remark 3.8 Suppose 1 ≤ k ∈ N and I∞(A) is f.g. in Hk(A). Then either
A = H(A) or I∞(A) contains only zero divisors of A. To see this, suppose
b1 ∈ I∞(A) is not such a zero divisor. Write I∞(A) = Hk(A)b1 + · · ·+Hk(A)bn

for some b2, . . . , bn ∈ Hk(A). Now let a ∈ A be arbitrary. We will show that
a ∈ Hk(A). Denote by b the row vector with the entries b1, . . . , bn. Since I∞(A)
is an ideal of A, all entries of the vector ab lie again in I∞(A). Hence we can
choose a quadratic n × n matrix M over Hk(A) such that ab = Mb. This can
equivalently be expressed as (aI−M)b = 0 where I denotes the identity matrix.
By Cramer’s rule, we get b1 det(aI − M) = 0 whence det(aI − M) = 0 since
b1 is no zero divisor. So a is integral over Hk(A) and therefore an element of
Hk(A) by Lemma 3.1.

Lemma 3.9 Hk(A)/I∞(A) = Hk(A/I∞(A)) for every k ∈ N

Proof. We proceed by induction on k. The case k = 0 is trivial. We do
the induction step from k to k + 1. For every P ∈ Sper∞Hk(A), we notice
I∞(A) ⊆ I∞(Hk(A)) ⊆ P ∩ −P . The homomorphism Hk(A) → Hk(A)/I∞(A)
therefore induces a homeomorphism

Sper∞Hk(A)/I∞(A) → Sper∞Hk(A)

and the following equalities hold:

Hk+1(A)/I∞(A) = H(Hk(A))/I∞(A)

= {a + I∞(A) | a ∈ Hk(A),∃ν ∈ N : ν ± a ≥ 0 on Sper∞Hk(A)}
= {b ∈ Hk(A)/I∞(A) | ∃ν ∈ N : ν ± b ≥ 0 on Sper∞Hk(A)/I∞(A)}
= H(Hk(A)/I∞(A))

= H(Hk(A/I∞(A))) (by induction hypothesis)

= Hk+1(A/I∞(A)) �
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Lemma 3.10 If ϕ : B → A is a homomorphism (of preordered rings), then
ϕ(H(B)) ⊆ H(A). In particular, if B is a preordered subring of A, then H(B) ⊆
H(A). Moreover,

A =
⋃
→

B =⇒ H(A) =
⋃
→

H(B)

(where the B of course are the same in both directed unions). This statement
remains valid with H replaced by H ′ everywhere.

Proof. The compatibility of H with directed unions follows from (iii) of Lemma
3.3. The rest is straightforward. �

The following theorem was discovered by Becker and Powers in 1996 for the
case TA =

∑
A2. Their proof uses concepts like regular points of algebraic sets

which do not carry over to semialgebraic sets. However, by the technique of
“adjoining roots”, the applications can often be made fit into their framework.
See for example the proofs of Théorème 4.7 and Théorème 5.12 in [Mon].

In 1998, two other works appeared, staying in the same setting than Becker
and Powers: Monnier obtains additional information about the real spectra
of A,H(A),H2(A), . . . , see Proposition 3.17 and Proposition 3.20 in [Mon].
Pingel sharpens under certain hypotheses the statement of the next theorem to
Hd−1(A) = Hd(A), see Satz 2.1.8 in [Pin].

Our proof is inspired by the proof of the theorem that in a field extension
E|F a chain of d + 1 valuation rings O0 ⊂ · · · ⊂ Od of E, all of which extend
the same valuation ring O of F , can only exist if trdeg(E|F ) ≥ d, see Theorem
A.6.7 in [PD].

Theorem 3.11 (Becker, Powers for T =
∑

A2) If A is an algebra of finite
transcendence degree d ∈ N, then Hd(A) = Hd+1(A).

Proof. We show by induction on d ∈ N that for every algebra A

Hd(A) ⊃ Hd+1(A) =⇒ trdeg A ≥ d + 1

(“⊃” of course means proper inclusion). If d = 0, then there is some a ∈
A \H(A) which is not algebraic over K by Lemma 3.1, so trdeg A ≥ 1. For the
induction step, now suppose d ≥ 1 and Hd(A) ⊃ Hd+1(A). Write A =

⋃
→B

where B ranges over all f.g. subalgebras of A. By iterated application of the
preceding lemma, Hd(A) =

⋃
→Hd(B) and thus Hd(B) ⊃ Hd+1(B) for some

f.g. subalgebra B of A. Without loss of generality, we may therefore reduce to
the case that A is f.g., say A = K[x1, . . . , xn]. By Lemma 3.9, we have

Hd−1(H(A)/I∞(H(A))) = Hd(A)/I∞(H(A)) ⊃
Hd+1(A)/I∞(H(A)) = Hd(H(A)/I∞(H(A)))

which implies trdeg H(A)/I∞(H(A)) ≥ d by the induction hypothesis. Ac-
cordingly, we choose a1, . . . , ad ∈ H(A) whose residues are algebraically in-
dependent in H(A)/I∞(H(A)). We are going to show that a1, . . . , ad,

∑
i x2

i

are algebraically independent in A. So suppose p0, . . . , pm ∈ K[Y1, . . . , Yd] are
polynomials such that

pm(a)

(∑
i

x2
i

)m

+ pm−1(a)

(∑
i

x2
i

)m−1

+ · · ·+ p0(a) = 0

12



where a := (a1, . . . , ad). It is enough to show that pm = 0. This is clear if
m = 0. So assume m > 0. Multiplying the above equation by (pm(a))m−1, we
see that pm(a)

∑
i x2

i is integral over H(A) and thus belongs to H(A) by Lemma
3.1. This implies pm(a) ∈ S∞(A) by (iii) of Lemma 3.5. By (vi) of Lemma 3.3,
S∞(A) ⊆ I∞(H(A)) which entails

pm(a1 + I∞(H(A)), . . . , ad + I∞(H(A))) = pm(a) + I∞(H(A)) = 0

in H(A)/I∞(H(A)). Then pm = 0 by the choice of a. �

Pingel showed that the above theorem is sharp. She gave a lot of examples
of f.g. algebras A with

trdeg A > trdeg H(A) > · · · > trdeg Hd−1(A) > trdeg Hd(A),

see Satz 2.3.7 in [Pin].
Recently Marshall found a very nice example of a f.g. algebra A satisfying

H2(A) 6= H(A) and trdeg H2(A) = trdeg A, see Example 8.2 in [Ma5].
Note that the example at the end of §4 in [BP] and all its variations in [Pin]

contain a subtle error: The last sentence in the proof of Claim 1 in [BP] is
not true. Claim 1 is indeed wrong since y(t−2)

x ∈ H(R) \ B[t]. To show that
y(t−2)

x /∈ B[t], one can use Gröbner bases. In fact, the R–algebra R in this
example defines a variety whose (complex) points are all regular and which is
therefore normal. Therefore Satz 2.1.8 in [Pin] tells us that H(H(R)) = H(R),
i.e., the example fails.

4 Generalizations of Schmüdgen’s theorem

In this section, H ′(A) enters the picture. In case Q ⊆ A, the following lemma
will be generalized by Theorem 5.3 below.

Lemma 4.1 Suppose 1
2 ∈ A. Then for all a ∈ A

a2 ∈ H ′(A) =⇒ a ∈ H ′(A).

Proof. For large ν ∈ N we have
(
ν − 1

4

)
− a2 ∈ T and hence

ν ± a =
(

ν − 1
4

)
− a2 +

(
a± 1

2

)2

∈ T. �

Lemma 4.2 If A ⊇ B ⊇ H ′(A), then H ′(A) = H ′(B). In particular,

H ′(A) = H ′(Hk(A)) for each k ∈ N.

Proof. By Lemma 3.10, we have H ′(A) ⊇ H ′(B). To show H ′(A) ⊆ H ′(B),
suppose a ∈ H ′(A), i.e., ν ± a ∈ T for some ν ∈ N. Then a ∈ H ′(A) ⊆ B.
Therefore ν ± a ∈ TA ∩B = TB whence a ∈ H ′(B). �
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Lemma 4.3 Let A = K[x1, . . . , xn] be a f.g. algebra and % ∈ N. Then for every
f ∈ A there is some ν ∈ N such that

ν − f ∈ (1 + T ) + (1 + T )

(
%−

∑
i

x2
i

)
=: Σ.

Proof. If f ∈ K, we get some ν ∈ N such that

ν ± f ∈

(
1 + T +

∑
i

x2
i

)
+

(
%−

∑
i

x2
i

)

from K ⊆ H ′(A). If f = ±xi, it is enough to choose ν ≥ 5
4 + % because of the

equation (
5
4

+ %

)
± xi = 1 +

(
xi ±

1
2

)2

+
∑
j 6=i

x2
j +

(
%−

∑
i

x2
i

)
.

Now it suffices to show that the set of all f ∈ A such that ν ± f ∈ Σ for some
ν ∈ N is closed under addition and multiplication. Assume f1, f2 ∈ A and
ν ± fi ∈ Σ. Then

2ν ± (f1 + f2) ∈ Σ + Σ ⊆ Σ

and (observing that ΣΣ ⊆ Σ)

ν2 ± f1f2 =
1
2

((ν ± f1)(ν + f2) + (ν ∓ f1)(ν − f2)) ∈ 1
2

(Σ + Σ) ⊆ Σ. �

The following lemma is the key ingredient of our work. If A = H(A), then
Sper∞A = ∅ whence I∞(A) = A. So in this case, the lemma is Schmüdgen’s
Positivstellensatz 1.1 minus Theorem 1.3. Our proof is much inspired by Wörmann’s
nice proof. One of the differences is that we (implicitly) use a Nullstellensatz
instead of a Positivstellensatz.

Crucial Lemma 4.4 If A is a f.g. algebra, then I∞(A) ⊆ H ′(A).

Proof. Write A = K[x1, . . . , xn]. Suppose f ∈ I∞(A). According to (ii) of
Lemma 3.5, we choose % ∈ N such that f(P ) = 0 for all P ∈ Sper A with
(
∑

i x2
i − %)(P ) ≥ 0. Of course,

U := TAf
+
∑

i x2
i − %

1
TAf

is a preordering of Af . If U were a proper preordering, i.e., −1 /∈ U , we could
extend U to an ordering of Af . This would give rise to an ordering P of A with
(
∑

i x2
i − %)(P ) ≥ 0 and f(P ) 6= 0 contradicting the choice of %.

Hence −1 ∈ U . Going back to A, we see that there exists 1 ≤ e ∈ N such
that

−f2e

∈ T +

(∑
i

x2
i − %

)
T,
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i.e., there is t ∈ T such that

t

(
%−

∑
i

x2
i

)
∈ f2e

+ T.

Define Σ like in Lemma 4.3. Then it follows that

tΣ ⊆ f2e

+ T.

Thus by Lemma 4.3, there exists for every g ∈ A some ν ∈ N such that t(ν−g) ∈
f2e

+ T . In particular, we find some ν ∈ N such that

t(ν − t) ∈ f2e

+ T.

Noting t(ν − t) = ν2

4 − (t− ν
2 )2, we get

ν2

4
∈ f2e

+ T.

This implies f2e ∈ H ′(A). After applying Lemma 4.1 several times, we see that
f ∈ H ′(A). �

As soon as we will have proved Corollary 4.17 it will be clear that in the
lemma above and its corollary below the condition on A to be f.g. can be weak-
ened to trdeg A < ∞.

Corollary 4.5 If A is a f.g. algebra, then H ′(A/I∞(A)) = H ′(A)/I∞(A).

Proof. The inclusion from the right to the left is trivial. To show the other
direction, suppose f + I∞(A) ∈ H ′(A/I∞(A)). Then there exists ν ∈ N and
g ∈ I∞(A) such that ν + f + g ∈ T . By the preceding theorem, there is some
µ ∈ N such that µ− g ∈ T . Then (µ + ν) + f ∈ T . The same can be done with
−f instead of f . Therefore f ∈ H ′(A) and f + I∞(A) ∈ H ′(A)/I∞(A). �

Definition 4.6 We call A almost archimedian if every P ∈ Sper A with P ∩
−P ∈ (Spec A)min is archimedean.

Definition 4.7 We call an algebra A finitely flavoured (f.f.) if A has only
finitely many minimal prime ideals p and for each such p the quotient field
of A/p is finitely generated over K, i.e., qf(A/p) = K(s1, . . . , sn) for some
s1, . . . , sn ∈ qf(A/p).

Note that every f.f. algebra A has finite transcendence degree by (ii) of
Lemma 2.2. The following is an easy exercise in ring theory (see e.g. [Bou], II,
Prop. 16).

Remark 4.8 If B ⊆ A, then for every q ∈ (Spec B)min there is p ∈ (Spec A)min

such that q = p ∩B.

Lemma 4.9 All finitely generated algebras are finitely flavoured. All subalge-
bras of finitely flavoured algebras are again finitely flavoured.
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Proof. The first statement is clear. Now consider a subalgebra B of a f.f. algebra
A. By the above remark, B has at most as many minimal prime ideals as A and
therefore only finitely many. It remains to show that for every q ∈ (Spec B)min

the field qf(B/q) is finitely generated over K. Choose, as above, a minimal
prime ideal p of A such that q = p ∩ B. Now qf(B/q) can be understood as a
subfield of qf(A/p) which is finitely generated over K. But intermediate fields of
f.g. field extensions are again f.g. over the ground field, see for instance Lemma
9.30 in [FJ]. �

Lemma 4.10 Suppose A is f.f. and almost archimedian. Then

A =
⋃
→

B, where B ranges over f.g., almost archimedian algebras.

Proof. For each p ∈ (Spec A)min, we can choose finitely many ai ∈ A, bi ∈ A \ p
(depending on p) such that qf(A/p) is generated as a field by the fractions
ai+p
bi+p . Now collect all of the these ai, bi belonging to some p ∈ (Spec A)min.
Since (Spec A)min is finite, this remains a finite set. Therefore A =

⋃
→B where

B ranges over all f.g. subalgebras of A containing all ai, bi associated to some
p ∈ (Spec A)min.

Now we fix such a B. It remains to show that B is almost archimedian. Fix
an arbitrary Q ∈ Sper B such that q := Q ∩ −Q ∈ (Spec B)min. We have to
show that Q is archimedean. There is p ∈ (Spec A)min such that q = p ∩ B
by Remark 4.8. Viewing B/q as a (preordered) subalgebra of A/p, we get
qf(A/p) = qf(B/q) (as preordered fields) for B contains all the ai, bi belonging
to p. Consequently, there is some P ∈ Sper A such that Q = P∩B and P∩−P =
p ∈ (Spec A)min. The ordering P and a fortiori Q must be archimedean because
A is almost archimedian. �

Whenever p1 ∩ · · · ∩ pn ⊆ p for prime ideals p1, . . . , pn, p of a commutative
ring then pi ⊆ p for some i ∈ {1, . . . , n}. The next lemma generalizes this
well–known fact.

Lemma 4.11 Suppose C ⊆ Spec A is closed with respect to the constructible
topology. If p ∈ Spec A and

⋂
C ⊆ p, then there exists some q ∈ C with q ⊆ p.

Proof. If such q does not exist, then

Spec A = ((Spec A) \ C) ∪
⋃

a∈A\p

V (a)

where V (a) denotes the set of prime ideals containing a. By compactness of
Spec A equipped with the constructible topology, we get a1, . . . , an ∈ A \ p such
that Spec A = ((Spec A) \C)∪ V (a1)∪ · · · ∪ V (an). Then a1 · · · an ∈ (

⋂
C) \ p.

�

Lemma 4.12 If A is a f.g. algebra which is almost archimedian, then

dim A/I∞(A) < dim A.
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Proof. Since A is f.g., Sper∞A is closed in Sper A (see (i) of Lemma 3.5) and
therefore compact with respect to the constructible topology on Sper A. The
mapping

supp : Sper A → Spec A : P 7→ P ∩ −P

is continuous with respect to the constructible topologies on both sides. Hence
C := supp(Sper∞A) ⊆ Spec A is compact and thus closed with respect to
the constructible topology on Spec A. Now assume for a contradiction that
I∞(A) ⊆ p for some p ∈ (Spec A)min. Since I∞(A) =

⋂
C and p is minimal,

it follows by Lemma 4.11 that in fact p ∈ C. This contradicts our assumption
that A is almost archimedian. �

Theorem 4.13 If A is an algebra of finite transcendence degree, then

A = H(A) =⇒ A = H ′(A).

Proof. We first restrict to the case where A is a f.f. algebra. We proceed by
induction on d := trdeg A. The case d = −1, i.e., A = 0, is trivial. Now suppose
d ≥ 0 and A = H(A). By Lemma 4.10, we can write

A =
⋃
→

B, where B ranges over f.g., almost archimedian algebras.

We want to apply the induction hypothesis to Hd(B/I∞(B)). This is indeed
possible: First, Hd(B/I∞(B)) is a subalgebra of the f.g. algebra B/I∞(B) and
therefore f.f. by Lemma 4.9. Second, we have

trdeg Hd(B/I∞(B)) ≤ trdeg B/I∞(B) = dim B/I∞(B)
< dim B = trdeg B ≤ trdeg A = d

where the strict inequality is provided by Lemma 4.12 because B is f.g. and
almost archimedian. Finally, Theorem 3.11 yields

Hd(B/I∞(B)) = Hd+1(B/I∞(B))

(if d 6= 0 even Hd−1(B/I∞(B)) = Hd(B/I∞(B))). Now applying the induction
hypothesis, we get

Hd(B/I∞(B)) = H ′(Hd(B/I∞(B))) = H ′(B/I∞(B))

where the latter equality is provided by Lemma 4.2. We get Hd(B/I∞(B)) =
Hd(B)/I∞(B) by Lemma 3.9 and (not forgetting that B is f.g.) H ′(B/I∞(B)) =
H ′(B)/I∞(B) by Corollary 4.5. Hence the above equation entails

Hd(B) = H ′(B)

as sets and therefore as algebras. Using Lemma 3.10, we get

A = Hd(A) = Hd(
⋃
→

B) =
⋃
→

Hd(B) =
⋃
→

H ′(B) = H ′(
⋃
→

B) = H ′(A)

which completes the induction step. Now the claim is proved for f.f. algebras,
in particular for f.g. algebras. Now let A be arbitrary with d = trdeg A < ∞.
Then

A =
⋃
→

B, where B ranges over all f.g. subalgebras of A.
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For each B, we have Hd(B) = Hd+1(B) by Theorem 3.11 and thus Hd(B) =
H ′(Hd(B)) = H ′(B) by what we have just proved. As above, it follows that
A = H ′(A), using Lemma 3.10. �

In [Ma2], Marshall shows that the above theorem fails badly when the as-
sumption on the transcendence degree is omitted:

Example 4.14 (Marshall) For n ∈ N, let An be R[X1, . . . , Xn] equipped with
the preordering generated by

X1, . . . , Xn, (1−X1)(1 + X2), (1−X2)(1 + X3), . . . , (1−Xn−1)(1 + Xn).

Then it is very easy to see that H(An+1) = An for every n ∈ N as rings. To
see that this equality holds as preordered rings is a bit harder (see Lemma 2
in [Ma2]). Now consider the preordered ring A :=

⋃
n∈N An. Then H ′(An) ⊆

Hn(An) = A0 = R whence H ′(An) = R for all n ∈ N. Now by Lemma 3.10,

H(A) = H(
⋃
n∈N

An) = H(
⋃
n∈N

An+1) =
⋃
n∈N

H(An+1) =
⋃
n∈N

An = A,

but H ′(A) = H ′(
⋃
n∈N

An) =
⋃
n∈N

H ′(An) =
⋃
n∈N

R = R.

Now we are able to prove several generalizations of Schmüdgen’s theorem.
The one we start with was conjectured by Monnier in [Mon].

Theorem 4.15 Let A be an algebra of finite transcendence degree such that
A = H(A). Then for each a ∈ A

a > 0 on Sper A =⇒ a ∈ T.

Proof. By Theorem 1.3, it suffices to show that A = H ′(A). But this is exactly
what the preceding theorem says. �

The next theorem generalizes not only Schmüdgen’s theorem but also the
theorem of Becker and Powers 3.11. It was conjectured in [Mon] for T =

∑
A2.

Main Theorem 4.16 Let A be an algebra such that trdeg A = d ∈ N. Then

Hd(A) = H ′(A).

Proof. By Theorem 3.11, Hd(A) = Hd+1(A). Thus Hd(A) = H ′(Hd(A)) =
H ′(A) by Theorem 4.13 and Lemma 4.2. C.Q.F.D.

Now we enrich this statement by what we have proved already in (v) and
(vi) of Lemma 3.3.

Corollary 4.17 Suppose trdeg A = d ∈ N. Then

A ⊇ H(A) ⊇ H2(A) ⊇ · · · ⊇ Hd(A) =

Hd+1(A) = H ′(A) = S∞(Hd(A)) = I∞(Hd(A)) ⊇ . . .

· · · ⊇ S∞(H(A)) ⊇ I∞(H(A)) ⊇ S∞(A) ⊇ I∞(A).
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Consider a f.g. or any other algebra A of finite transcendence degree. If
A 6= H(A), we cannot apply Theorem 1.3 directly to A in order to show that
some element a ∈ A lies in the preordering T . However, if we are lucky, we can
show that a ∈ H ′(A) by the preceding theorem, and Theorem 1.3 can always
be applied to H ′(A) because H ′(A) = H ′(H ′(A)) by Lemma 4.2. But then we
have to check that even a > 0 on Sper H ′(A) instead of only a > 0 on Sper A.
According to circumstances, we can use the following theorem to get hold of
Sper H ′(A). The proof of Theorem 4.19 and Example 5.4 below demonstrate
this method.

Theorem 4.18 Suppose A is an algebra such that trdeg A < ∞. Then

S∞(A) = {a ∈ A | H ′(A)a = Aa}.

Proof. If A = 0, there is nothing to show. So let A 6= 0 and d := trdeg A ∈ N. If
a ∈ A is such that H ′(A)a = Aa, then of course H(A)a = Aa whence a ∈ S∞(A)
by (iv) of Lemma 3.3. Conversely, let a ∈ S∞(A). Then a ∈ S∞(Hk(A)) for
each k ∈ N. Applying (iv) of Lemma 3.3 to this fact for every k ∈ {0, . . . , d−1},
we obtain

Aa = H(A)a = H2(A)a = · · · = Hd(A)a.

Now Hd(A) = H ′(A) implies H ′(A)a = Aa. �

Theorem 4.19 Suppose A is an algebra such that trdeg A < ∞. Then for
every a ∈ S∞(A) such that a ≥ 0 on Sper A and for every 0 6= ε ∈ T ∩K we
have a + ε ∈ T .

Proof. By Corollary 4.17, a ∈ S∞(A) ⊆ H ′(A). Thus a
1 ∈ H ′(A)a. By hypoth-

esis,
a

1
> 0 on Sper Aa.

The preceding theorem says Aa = H ′(A)a. So we get

a

1
> 0 on Sper H ′(A)a

and thus
a ≥ 0 on Sper H ′(A).

Adding 0 6= ε ∈ T ∩K makes this inequality strict:

a + ε > 0 on Sper H ′(A)

Now we apply Theorem 1.3 to H ′(A). �

5 Applications

As a first application we generalize the main result in Marshall’s paper [Ma4].
Marshall required g ∈ 1 + T whereas we only need g ≥ 1 on S. Thus we could
add a lot to the instances of the so called moment problem solved by Kuhlmann
and Marshall, see Corollary 4.5 in [KM]. Moreover, we exchange Marshall’s
“absolute growth condition” by a relative one and provide information about
the exponent e.
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Theorem 5.1 Let A be the polynomial ring K[X1, . . . , Xn] equipped with the
preordering generated by the polynomials t1, . . . , tm. Set

S := {x ∈ Rn | t1(x) ≥ 0, . . . , tm(x) ≥ 0}.

Suppose f, g ∈ A and g ≥ 1 on S. Suppose e ∈ N is such that ge “grows more
rapidly” than f on S, more exactly one of the following equivalent conditions is
satisfied:

(?) ∀k ∈ N : ∃r ∈ N : ∀x ∈ S : (‖x‖ ≥ r =⇒ k|f(x)| < g(x)e)

(??) ∀P ∈ Sper∞A : ∀k ∈ N : k|f(P )| < g(P )e

(? ? ?)
f

ge
∈ S∞(Ag)

Then the following conditions are equivalent:

(i) f ≥ 0 on S

(ii) For all 0 < ε ∈ K there is some k ∈ N such that gk(f + εge) ∈ T .

Proof. From the density of S in Sper A, we get g ≥ 1 on Sper A. In partic-
ular, g 6= 0 on Sper A which implies that Sper A and Sper Ag are canonically
homeomorphic. Moreover, 1

g ∈ H(Ag) and therefore Sper∞A and Sper∞Ag

are canonically homeomorphic (use (i) of Lemma 3.5). Now we get the equiv-
alence of (??) and (? ? ?) by applying Proposition 3.6 to Ag. The implication
(? ? ?) =⇒ (?) is trivial, and (?) =⇒ (??) can be proved analogously to
Corollary 3.7. It is trivial that (ii) implies (i). Now suppose that (? ? ?) and (i)
hold. Then Theorem 4.19 guarantees for arbitrary 0 < ε ∈ K

f

ge
+ ε ∈ T.

A look at the definition of the preordering of Ag yields (ii). �

Remark 5.2 Sometimes condition (??) in the theorem above is easier to verify
than (?). For example, it is easy to see that (??) always holds for e = 1 and
g = 1 + f2

∑
i X2

i (a case which is not covered by [Ma4]) by distinguishing the
cases that f(P ) is infinitesimaly close to zero, infinitesimaly close to a positive
real number or infinitely large.

Next we give an example showing that the theory developed here might also
be useful for the study of preordered rings which are not necessarily of finite
transcendence degree over some field K. The following theorem can be found
in Section 6.3 of [Bru] where a constructive proof is given.

Theorem 5.3 (Brumfiel) If Q ⊆ A, then H ′(A) is integrally closed in A.

Proof. Write A =
⋃
→B where B ranges over all f.g. Q–subalgebras of A. Let

a ∈ A, b0, . . . , bn−1 ∈ H ′(A) be such that

an + bn−1a
n−1 + · · ·+ b1a + b0 = 0.
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Since H ′(A) =
⋃
→H ′(B), we can choose a f.g. Q–subalgebra B of A such that

b0, . . . , bn−1 ∈ H ′(B) and a ∈ B.

Setting d := dim B, it follows by Lemma 3.1 that H ′(B) = Hd(B) is integrally
closed in B. Therefore a ∈ H ′(B) ⊆ H ′(A). �

The proof of Theorem 5.1 illustrated how easy it is to create concrete sit-
uations where Theorem 4.19 applies. If Theorem 4.19 cannot be applied, it is
sometimes possible to argue in a customized way. This is illustrated in the next
example.

Example 5.4 Let A be the polynomial ring Q[X, Y ] equipped with the pre-
ordering T generated by t1 := 1 + (X + 1)(1 + Y 2), t2 := 1 + (−X + 1)(1 + Y 2)
and t3 := 1 + (X2 − 1)Y 2. We observe that X + 3 ≥ 0 on the set

S := {(x, y) ∈ R2 | t1(x, y) ≥ 0, t2(x, y) ≥ 0, t3(x, y) ≥ 0}

=
{

(x, y) ∈ R2 | |x| ≤ 1 +
1

1 + y2
,

(
|x| < 1 =⇒ y2 ≤ 1

1− x2

)}
.

This raises the question whether even X + 3 ∈ T . By Corollary 3.7, it is easy to
see that X2− 1 ∈ S∞(A) (draw a picture of S). By Corollary 4.17, this implies
X2 − 1 ∈ H ′(A) whence X ∈ H ′(A) by the preceding theorem. Furthermore,
AX2−1 = H ′(A)X2−1 by Theorem 4.18. So for all Q ∈ Sper H ′(A) which are
not in the image of Sper A → Sper H ′(A), we have X(Q) ∈ {−1, 1}. Together
with X + 3 > 0 on S this shows X + 3 > 0 on Sper H ′(A). By Theorem 1.3, we
get indeed X + 3 ∈ T .

6 Possible modifications of the theory

In this section, we shortly describe possible variants of our theory. We don’t go
into details and refer the interested reader to [Scw].

6.1 An alternative notion of vanishing at infinity

We could replace I∞(A) by

I ′∞(A) :=
⋂
{P ∩ −P | P ∈ (Sper∞A)max}

in all the results stated so far without affecting their validity, except for (ii) of
Lemma 3.5. This is interesting because I ′∞(A) is the conductor of A over H(A),
i.e., the largest ideal of A which is contained in H(A). If T is f.g. in the f.g.
algebra A, then also (ii) of Lemma 3.5 remains true in its modified form. To
see this, one has to prove that I∞(A) = I ′∞(A) in this case. This can be done,
for instance, by using a  Lojasiewicz inequality (in a way similar to the proof of
Proposition 3.6, but the other way around).

But actually much more is true if A and T are finitely generated: In Sper A,
the closure of the set of non–archimedean closed points is Sper∞A with respect
to both the usual and the constructible topology. The latter fact can be proved
using the ultrafilter theorem and techniques from semialgebraic geometry.
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6.2 Quadratic modules and semiorderings

The other possible modification is that we exchange preorderings and orderings
by corresponding objects which are no more necessarily closed under multipli-
cation but still closed under multiplication with squares. These objects were
extensively used by Jacobi and Prestel to get “distinguished representations” of
positive polynomials, see [JP], [PD] and [Ma3].

In lieu of preorderings we use quadratic modules which are subsets T of a
ring A satisfying 0, 1 ∈ T , T + T ⊆ T and A2T ⊆ T . Every proper quadratic
module (i.e., not containing −1) can be extended to a semiordering P on A, i.e.,
a quadratic module P of A satisfying in addition P ∪ −P = A and P ∩ −P ∈
Spec A.

Now let A denote a ring equipped with a quadratic module T .

The definition of H ′(A) and the notion of archimedeaness extend canonically
to this more general situation. We make the additional hypothesis 1

2 ∈ A to
show that H ′(A) is still a ring: Since H ′(A) clearly is a group with respect to
addition and ab = ((a+b

2 )2 − (a−b
2 )2) for all a, b ∈ A, it is enough to show that

a ∈ H ′(A) implies a2 ∈ H ′(A) for all a ∈ A. This can easily be derived from
the fact that 1

2 ± a ∈ T implies

1
4
− a2 =

(
1
2

+ a

)2(1
2
− a

)
+
(

1
2
− a

)2(1
2

+ a

)
∈ T.

We write SemiSper A for the space of all semiorderings of the ring underlying
A which contain the fixed quadratic module T of A. Now we define

SemiH(A) := {a ∈ A | ∃ν ∈ N : ν ± a ≥ 0 on SemiSper A},
SemiS∞(A) := {a ∈ A | ∀b ∈ A : ∃e ∈ N : aeb ∈ SemiH(A)},

SemiSper∞A := {P ∈ SemiSper A | P is not archimedean} and

SemiI∞(A) :=
⋂
{P ∩ −P | P ∈ SemiSper∞(A)}.

To see that H(A) is a ring, note that H(A) = H ′(B) where B arises from A by
replacing the quadratic module TA by TB :=

⋂
{P | P ∈ SemiSper A}.

We will now outline how most of the theory carries over with all notions
replaced by their equivalents just defined. Only the proofs of the more geomet-
ric theorems break down because SemiSper A reflects not merely geometrical
properties of A. Note that we deal here not with a generalization but with a
variant of the theory: Though we aim to describe more general objects than
before, the language we use to do this is now more obscure.

The most difficult point is to see that Theorem 1.3 remains valid in the new
context. The tricky proof was achieved by Jacobi in 1999, see [Jac], Lemma
5.3.7 in [PD] or Theorem 5.1.4 in [Ma3]. As an exception to what we just said,
Jacobi’s theorem is really a generalization of Theorem 1.3. In fact, here it is not
necessary to replace Sper A by the bigger space SemiSper A. Theorem 1.3 can
verbatim be stated like we did (where Sper A is the space of orderings containing
the quadratic module T ). This is due to the favourable fact that

(Sper H ′(A))max = (SemiSper H ′(A))max,
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see Proposition 5.3.5 in [PD].
The proof of Lemma 3.1 now gets harder: From (i) in Lemma 3.3 it follows

that
H(A) = {a ∈ A | ∀P ∈ SemiSper A : a(P ) ∈ H ′(FP )}

where FP := qf(BP /(P ∩ −P )) and BP arises from A by replacing TA by
TBP

:= P . Now use the following facts: For every P ∈ SemiSper A, FP is a
semiordered field. Therefore H ′(FP ) is a valuation ring of FP and a fortiori
integrally closed in FP , see Proposition 5.3.2 in [PD].

Next we have to replace (iii) of Lemma 3.3 by the following analogue supplied
by the “weak Positivstellensatz” Theorem 5.1.10 in [PD]:

SemiH(A) = {a ∈ A | ∃ν ∈ N : ∃σ ∈
∑

A2 : σ(ν − a2) ∈ 1 + T}

Remark 6.1 If T =
∑

A2, then (iii) of Lemma 3.3 and its analogue de-
scribe the same set. Thus, in this case, H(A) = SemiH(A). Furthermore,
since TH(A) = T ∩ H(A) =

∑
H(A)2, we see by the same argument that

H2(A) = SemiH2(A) and inductively Hk(A) = SemiHk(A) for k ∈ N. Thus the
described variant of our theory gives hardly new insight in the case T =

∑
A2.

To show (i) in Lemma 3.5, suppose P is a semiordering of A such that
ν −

∑
i x2

i ∈ P . We have to show that P is archimedean, in other words, B =
H ′(B) where B denotes the algebra arising from A by replacing the preordering
TA by TB := P . For every i, x2

i ∈ H ′(B) is immediate from ν −
∑

i x2
i ∈ P .

Hence xi ∈ H ′(B) by Lemma 4.1. Therefore B = H ′(B).
To be able to prove the Crucial Lemma 4.4, we make the additional hypoth-

esis that (T ∩K)T ⊆ T which is fulfilled for example if K is the field of rational,
real algebraic or real numbers. Since (T ∩ K)(T ∩ K) ⊆ T , the preordering
generated by T ∩K in the ring A is

U :=

{
k∑

i=1

aif
2
i | k ∈ N, f1, . . . , fk ∈ A, a1, . . . , ak ∈ T ∩K

}
.

Lemma 4.3 obviously even holds with T replaced by U and we have UT ⊆ T
since (T ∩ K)T ⊆ T . We use this to show tΣ ⊆ f2e

+ T in the proof of the
Crucial Lemma.

All the results in our paper carry over to the different setting described
above with the following exceptions: Theorem 1.1, Proposition 3.6, Corollary
3.7, Theorem 5.1, Example 5.4 and Subsection 6.1. Finally, we note that Ja-
cobi’s sharpening of Theorem 1.3 makes it unnecessary to replace Sper A by
SemiSper A in Theorem 4.19:

Theorem 6.2 Suppose A is an R–algebra equipped with a quadratic module
T such that trdeg A < ∞. Then for every a ∈ SemiS∞(A) such that a ≥
0 on Sper A and for every 0 < ε ∈ R we have a + ε ∈ T .

The proof is along the lines of Theorem 4.19. As a corollary, we obtain a
new proof of Corollary 4.3 in [Ma5]. For simplicity, we restrict ourselves to a
special case:
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Corollary 6.3 (Marshall) Let A be R[X1, . . . , Xn] equipped with the quadratic
module

M :=
∑

A2 + t1
∑

A2 + · · ·+ tm
∑

A2

generated by t1, . . . , tm ∈ A. Set

S := {x ∈ Rn | t1(x) ≥ 0, . . . , tm(x) ≥ 0}. and σ := 1 +
∑

i

X2
i .

Then for every f ∈ A the following conditions are equivalent:

(i) f ≥ 0 on S

(ii) ∃l ∈ N : ∀e ≥ l : ∀0 < ε ∈ R : ∃k ∈ N : σk(f + εσe) ∈ M.

Proof. Clearly, (ii) implies (i). We now aim to show that 1
σ ∈ SemiS∞(Aσ)

using part (iii) of Lemma 3.5 (in its modified form). Since the R–algebra Aσ is
generated by X1

1 , . . . , Xn

1 and 1
σ , it suffices to show that

1
σ

(∑
i

X2
i

1
+

1
σ2

)
∈ SemiH(Aσ).

In fact, we will show that

0 ≤ 1
σ

(∑
i

X2
i

1
+

1
σ2

)
≤ 1 on SemiSper Aσ.

Since 1
σ = σ

σ2 ∈
∑

A2, it is enough to show that 0 ≤ σ2
∑

i X2
i + 1 ≤ σ3 on

SemiSper A. This is trivial.
Now suppose (i) holds for f ∈ A. Then even f ≥ 0 on Sper A. Since

1
σ ∈ SemiS∞(Aσ), we can find an l ≥ 1 such that f

σl−1 ∈ SemiH(Aσ) whence
f
σl ∈ SemiS∞(Aσ). Then for every e ≥ l, we have a fortiori f

σe ∈ SemiS∞(Aσ).
Then for every 0 < ε ∈ R, f

σe + ε ∈ T by the previous theorem. Delocalizing
now yields the result. �
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