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ABSTRACT. Consider a finite system of non-strict real polynomial inequalities and
suppose its solution set S ⊆ Rn is convex, has nonempty interior and is compact.
Suppose that the system satisfies the Archimedean condition, which is slightly
stronger than the compactness of S. Suppose that each defining polynomial satis-
fies a second order strict quasiconcavity condition where it vanishes on S (which
is very natural because of the convexity of S) or its Hessian has a certain matrix
sums of squares certificate for negative-semidefiniteness on S (fulfilled trivially by
linear polynomials). Then we show that the system possesses an exact Lasserre
relaxation.

In their seminal work of 2009, Helton and Nie showed under the same condi-
tions that S is the projection of a spectrahedron, i.e., it has a semidefinite repre-
sentation. The semidefinite representation used by Helton and Nie arises from
glueing together Lasserre relaxations of many small pieces obtained in a non-
constructive way. By refining and varying their approach, we show that we can
simply take a Lasserre relaxation of the original system itself. Such a result was
provided by Helton and Nie with much more machinery only under very technical
conditions and after changing the description of S.

1. INTRODUCTION

Throughout the article, N and N0 denote the set of positive and nonnegative
integers, respectively. We fix n ∈ N0 and denote by X := (X1, . . . , Xn) a tu-
ple of n variables. We denote by R[X] := R[X1, . . . , Xn] the polynomial ring
in these variables over R. For α ∈ Nn

0 , we denote |α| := α1 + . . . + αn and
Xα := Xα1

1 · · ·X
αn
n . For p = ∑α aαXα ∈ R[X] with all aα ∈ R, the degree of p

is defined as deg p := max{|α| | aα 6= 0} if p 6= 0 and deg p := −∞ if p = 0. For
each d ∈ R, we consider the real vector space

R[X]d := {p ∈ R[X] | deg p ≤ d}

of all polynomials of degree at most d. We admit here real numbers d for technical
reasons but note that R[X]d = R[X]bdc for all d ∈ R and R[X]d = {0} for all d < 0.
Occasionally, we will need the real polynomial ring in one variable as an auxiliary
tool, and we will denote it by R[T]. We will denote the n× n identity matrix by In.
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For a tuple g := (g1, . . . , gm) ∈ R[X]m of m polynomials, the set

S(g) := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
is called a basic closed semialgebraic set [PD, Def. 2.1.1]. Boolean combinations of
such sets are called semialgebraic sets [PD, Def. 2.1.4]. The finiteness theorem from
real algebraic geometry says that every closed semialgebraic set is a finite union of
basic closed ones [PD, Thm. 2.4.1]. In general, it is hard to answer questions about
the geometry S(g) from its description g. This is of course due to the nonlinear
monomials Xα with |α| ≥ 2 that might appear in g. An extremely naive idea
would be to replace each such nonlinear monomial Xα in g by a new variable
Yα. This would lead to a system of m linear inequalities whose solution set is a
(closed convex) polyhedron in a higher-dimensional space. The projection of this
polyhedron to the X-space Rn contains S(g) but will very often just be the whole
of Rn and thus be of no help.

This idea becomes however less naive if we add a bunch of redundant inequalities
before the linearization. For example, we could add certain inequalities of the
form p2(x) ≥ 0 or (p2gi)(x) ≥ 0 with p ∈ R[X]. If we choose finitely many such
inequalities in a clever way and then linearize as above, we will get a polyhedron
in a higher-dimensional space whose projection to X-space Rn might enclose S(g)
more tightly. Unless S(g) happens to be a polyhedron, this projection can however
still not equal S(g) since projections of polyhedra are again polyhedra (see [Scr,
Subsection 12.2] for a textbook reference).

The idea of Lasserre was therefore to add the whole (infinite) family of all redun-
dant inequalities of the form p2(x) ≥ 0 or (p2gi)(x) ≥ 0 with p ∈ R[X] before the
linearization [L1, L2]. To get something that is useful in practice (for example, one
would like to avoid using infinitely many of the new variables Yα), he restricted
the degree of the polynomials of the added redundant inequalities.

Therefore fix a degree bound d ∈ N0 and set g0 := 1 ∈ R ⊆ R[X]. For each
i ∈ {0, . . . , m} with gi 6= 0, fix a (column) vector vi whose entries are the different
monomials of degree at most

ri :=
d− deg gi

2
(1)

and set `i := dim R[X]ri . Note that in the case gi /∈ R[X]d, ri is negative, and
consequently `i = 0 and vi = () ∈ R[X]0 = {0} is the empty vector. This case is
usually avoided in practice and in the literature by assuming d large enough but
we think it is more convenient to admit it. In the pathological case gi = 0, we set
ri := −∞, `i := 0 and let vi again be the empty vector. Then

R[X]ri = {a
Tvi | a ∈ R`i}

and

{p2gi | p ∈ R[X]ri} = {(aTvi)
2gi | a ∈ R`i} = {aT(givivT

i )a | a ∈ R`i}.
The key observation is that instead of linearizing each p2gi with p ∈ R[X]ri indi-
vidually, we can just linearize the symmetric matrix polynomial givivT

i ∈ R[X]`i×`i .
In this way, we get for each i ∈ {0, . . . , m} a linear symmetric matrix polynomial
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Mi ∈ R[X, (Yα)2≤|α|≤d]
`i×`i
1 . Instead of an infinite family of linear inequalities, we

thus get finitely many linear matrix inequalities [BEFB] (whose size depends on d)
saying that

M0(x, y) � 0, . . . , Mm(x, y) � 0 (x ∈ Rn, y ∈ RI)

where I := {α ∈ Nn
0 | 2 ≤ |α| ≤ d} and “� 0” means positive semidefiniteness.

By defining M ∈ R[X, (Yα)2≤|α|≤d]
`×`
1 with ` := `0 + · · ·+ `m as the block diagonal

matrix with blocks M0, . . . , Mn, we could even combine this into a single linear
matrix inequality

M(x, y) � 0 (x ∈ Rn, y ∈ RI).
Its solution set is a spectrahedron [Vin] (in particular a semialgebraic closed con-
vex subset of Rn) that projects down to the convex set

(∗) Sd(g) := {x ∈ Rn | ∃y ∈ RI : M(x, y) � 0}.

The description (∗) of Sd(g) is called the degree d Lasserre relaxation of g (or of
the system of polynomial inequalities given by g). By abuse of language, we call
sometimes Sd(g) itself the degree d Lasserre relaxation of g. By construction, it is
clear that each Sd(g) is convex and

S(g) ⊆ . . . ⊆ Sd+2(g) ⊆ Sd+1(g) ⊆ Sd(g).

If S(g) happens to be convex, there is a certain hope that Sk(g) equals S(g) for all k
large enough. In this case, we say that g (or the system of polynomial inequalities
given by g) has an exact Lasserre relaxation.

In this article, we provide a new sufficient criterium for g to have an exact Lasserre
relaxation. To the best of our knowledge this is the strongest result currently avail-
able for convex S(g).

If S(g) is not convex, one can still ask whether Sk(g) equals eventually the convex
hull of S(g). This seems to require very different techniques and will be studied in
our forthcoming work [KS], see also Example 4.10 below.

Here we will also not address the important question asking from what k on S(g)
equals Sk(g) in case g has an exact Lasserre relaxation. In principle, a correspond-
ing complexity analysis of our proof would probably be possible but would, at
least for general g, be extremely tedious, and in the end yield a bound that is only
of theoretical interest.

The Lasserre relaxation (∗) is a special case of the more general semidefinite repre-
sentation of a subset S ⊆ Rn

(∗∗) S = {x ∈ Rn | ∃y ∈ Rh : H(x, y) � 0}

where H ∈ R[X, Y1, . . . , Yh]
`×`
1 is a symmetric linear matrix polynomial for some

h, ` ∈ N0. Sets S having such a representation (∗∗) are called semidefinitely rep-
resentable. Other commonly used terms are projections of spectrahedra, spectrahedral
shadows, spectrahedrops, lifted LMI sets and SDP-representable sets. If the number h of
additional variables is not too large, one can optimize efficiently linear functions
on such sets by the use of semidefinite programming, an important generalization
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of linear programming [NN]. Semidefinitely representable sets are obviously con-
vex and they are semialgebraic by Tarski’s real quantifier elimination [PD, Thm.
2.1.6]. The class of semidefinitely representable sets is closed under many opera-
tions like for example taking the interior [Net]. It was asked by Nemirovski in his
plenary address at the 2006 International Congress of Mathematicians in Madrid
whether each convex semialgebraic set is semidefinitely representable [Nem, Sub-
section 4.3.1]. Helton and Nie conjectured the answer to be positive [HN2, Section
6]. In two seminal works, Scheiderer proved this conjecture for n = 2 [S1, Theorem
6.8] and very recently disproved it for each n ≥ 14 [S2, Remark 4.21].

In [NPS, Theorem 3.5], it has been shown that g cannot have an exact Lasserre
relaxation if S(g) ⊆ Rn is convex, has nonempty interior and has at least one non-
exposed face. Other obstructions to exactness have been given by Gouveia and
Netzer [GN], see Theorem 4.9 below.

On the positive side, the breakthrough was the seminal work of Helton and Nie
[HN2] from 2009 preceded by their earlier work [HN1], which curiously appeared
later. We will the summarize the strategy behind their approach, which builds
on ideas of Lasserre [L2], and indicate where this paper introduces advantageous
modifications:

Let g := (g1, . . . , gm) ∈ R[X]m and suppose S(g) is convex and has nonempty in-
terior. We will introduce in Definition 2.10 below the d-truncated quadratic module
Md(g) associated to g. It consist of the sums of polynomials p2gi with deg(p2gi) ≤
d (or equivalently deg(p) ≤ ri, see Equation (1) above). As explained above, these
were the polynomials that we add before the linearization when we build the de-
gree d Lasserre relaxation. The following fact is good to know although we will
need from it only the trivial “if” part in order to prove our Main Theorem 4.8: We
have S(g) = Sd(g) if and only if all f ∈ R[X]1 (i.e., all linear polynomials) that are
nonnegative on S(g) lie in Md(g), see Proposition 2.13 below.

Denoting by M(g) =
⋃

d∈N Md(g) the quadratic module generated by g intro-
duced in Definition 2.10 below, one deduces from this (due to the compactness of
S) a trivial necessary condition for g having an exact Lasserre relaxation: For each
f ∈ R[X]1, there is an N ∈N such that f + N ∈ M(g). If g satisfies this condition,
one says that M(g) is Archimedean, see Proposition 2.7(d) below. This condition
is unfortunately stronger than compactness of S(g). In practice, this is however
not too important, since a small change of the description g of S(g) always makes
M(g) Archimedean if S(g) is compact, see Remark 2.9 below.

Therefore suppose for the rest of the introduction that M(g) is Archimedean.

We saw that it suffices to look at those f ∈ R[X]1 nonnegative on S(g) whose
real zero set is a supporting hyperplane of the convex set S(g). By Putinar’s Posi-
tivstellensatz from 1993 (see [Put, Lemma 4.1], [PD, Thm. 5.3.8], [Mar, Cor. 5.6.1],
[Lau]), we know that each f ∈ R[X] positive on S(g) lies in M(g). However, this is
not really what we need here. The advantage we have is that we need to consider
only f ∈ R[X]1, i.e., only linear polynomials. The problem we have to fight is
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however that we have f only nonnegative on S(g) and, most importantly, we need
a uniform degree bound d for which all such f are in one and the same Md(g).
Such degree bounds are known for polynomials positive on S(g) but depend on a
measure of how close f comes to have a zero on S(g) [NS’, Theorem 6].

Lasserre [L2] made a first key observation to deal with this problem: He consid-
ered without loss of generality only such f ∈ R[X]1 nonnegative on S(g) that
vanish in at least one point u ∈ S(g) (and whose real zero set therefore defines a
supporting hyperplane at the point u of the convex set S(g) unless f = 0). Under
a very restrictive condition, namely that the Hessians of the defining polynomi-
als gi have a certain matrix sums-of-squares (sos for short) representation (and in
particular, are globally concave, which is still very restrictive), he showed that
he can produce from this finitely many matrix sos representations by the use of
Karush–Kuhn–Tucker (KKT) multipliers (the Lagrange multiplier technique for
inequalities instead of equations [FH, Section 2.2]).

In the aforementioned articles [HN1, HN2], Helton and Nie pushed the idea of
Lasserre much further and made it fruitful in many situations. There are several
important ideas in their work. For those Hessians of the gi for which the matrix
sos certificate that Lasserre assumed (and which is trivial for those gi that happen
to be linear) does not exist, they show that in many situations, one can with a lot
of new ideas still pursue the basic strategy of Lasserre. These ideas include:

• One might exchange in a very subtle way the gi at certain places by suitable
hi having stronger concavity properties.

• Instead of looking for matrix sos representations of the Hessians them-
selves, they look for matrix representations of certain matrix polynomials
arising from double integrals of the Hessians and depending on a param-
eter u that runs over part of the boundary of S(g). The matrix polynomial
belonging to this parameter u serves to produce the bounded degree poly-
nomial sos certificates for those linear polynomials f defining a supporting
hyperplane containing the point u.
• Instead of assuming the sos certificates as Lasserre did, Helton and Nie

had the idea to prove the existence using a matrix version of Putinar’s Pos-
itivstellensatz that was already available [SH, Thm. 2]. Because of the
dependence of the tangent point u of the supporting hyperplane, they had
to prove a version of Putinar’s theorem for matrix polynomials with de-
gree bounds similar to the one existing already for polynomials that was
mentioned above (see [HN1, Thm. 29] and Theorem 2.11 below).

We modify the approach of Helton and Nie at several places, but the most im-
portant change is a new analysis of the properties of the modified polynomials
hi which are at the same time chosen slightly more carefully (see Lemma 4.5 be-
low). This new analysis shows that the double integral mentioned above (actually
already a related single integral) is negative definite even if the term under the in-
tegral is not negative semidefinite on the whole domain of integration, see Lemma
4.6 below. Helton and Nie seem to be compelled to work with negative semi-
definite terms under the integral whereas the new method enables us to be more
liberal about this issue.
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In this way, we will be able to show our Main Theorem 4.8: If each gi satisfies
a certain second order strict quasiconcavity condition (see Definition 3.1 below)
where it vanishes on S(g) (which is very natural because of the convexity of S, see
Proposition 3.4(b) below) or its Hessian has a matrix sos certificate for negative-
semidefiniteness on S (see Definition 2.10 below), then g has an exact Lasserre
relaxation.

Helton and Nie showed under the same conditions only that S(g) is semidefi-
nitely representable [HN2, Thm. 3.3]. They obtained the semidefinite representa-
tion by glueing together Lasserre relaxations of many small pieces obtained in a
non-constructive way [HN2, Prop. 4.3] (see also [NS]). With a very tedious proof
(using smoothening techniques similar to those from [Gho]) they show in addi-
tion under very technical assumptions not easy to state [HN2, Section 5] that there
exists s ∈ N0 and h ∈ R[X]s such that S(g) = S(h) and h has an exact Lasserre
relaxation [HN2, Theorem 5.1]. In his diploma thesis, Sinn thoroughly analyzed
and improved this proof and showed under the same technical assumptions that
one can take h := (g1, . . . , gm, g1g2, g1g3, . . . , gm−1gm) [Sin, Theorem 3.3.2].

2. REMINDER ON SUMS OF SQUARES

In this section, we collect all the tools from the interplay between positive polyno-
mials and sums of squares that we need from the area of real algebraic geometry.

Definition 2.1. We call p ∈ R[X] a sums-of-squares (sos) polynomial if there exist
` ∈N0 and polynomials p1, . . . , p` ∈ R[X] such that

p = p2
1 + . . . + p2

` .

We say that a polynomial p ∈ R[X] is nonnegative (or positive) on a set S ⊆ Rn if
p(x) ≥ 0 (or p(x) > 0) for all x ∈ S. In this case, we write “p ≥ 0 on S” (or “p > 0
on S”).

It is obvious that each sos polynomial is nonnegative on R. In Lemma 4.5 below,
we will need the well-known fact that each polynomial in one variable nonnegative
on R is sos.

Proposition 2.2. Let f ∈ R[T] with f ≥ 0 on R. Then f is sos.

Proof. Using the fundamental theorem of algebra, one shows easily that there are
p, q ∈ R[T] such that f = (p− iq)(p + iq) = p2 + q2 where i :=

√
−1 ∈ C is the

imaginary unit. �

A matrix A ∈ Rk×k is called positive semidefinite (psd) (or positive definite (pd)) if it
is symmetric and xT Ax ≥ 0 (or xT Ax > 0) for all x ∈ Rk \ {0}. Equivalently, A
is symmetric and the eigenvalues of A (which are all real) are all nonnegative (or
positive). In this case, we write A � 0 (or A � 0). By A � B, A � B, A � 0 etc.,
we mean A− B � 0, A− B � 0, −A � 0 and so on.

The appropriate generalization of Definition 2.1 to matrix polynomials is the fol-
lowing.
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Definition 2.3. We call P ∈ R[X]k×k a sums-of-squares (sos) matrix polynomial if
there exist ` ∈N0 and P1, . . . , Pm ∈ R[X]k×k such that

P = PT
1 P1 + . . . + PT

` P`.

The following is an easy exercise that is good to know when dealing with sos
matrix polynomials.

Proposition 2.4. For P ∈ R[X]k×k, the following are equivalent:
(a) P is an sos matrix.
(b) There is an ` ∈N0 and a matrix polynomial Q ∈ R[X]`×k such that P = QTQ.
(c) There are ` ∈N0 and v1, . . . , v` ∈ R[X]k such that P = v1vT

1 + . . . + v`vT
` .

We say that a matrix polynomial P ∈ R[X]k×k is psd (or pd) on a set S ⊆ Rn if
P(x) � 0 (or P(x) � 0) for all x ∈ S. In this case, we write “P � 0 on S” (or “P � 0
on S”).

Definition 2.5. A subset M of R[X] is called a quadratic module of R[X] if
• 1 ∈ M,
• p + q ∈ M for all p, q ∈ M and
• p2q ∈ M for all p ∈ R[X] and q ∈ M.

For a tuple g := (g1, . . . , gm) ∈ R[X]m, the smallest quadratic module containing
g1, . . . , gm is obviously

M(g) :=

{
m

∑
i=0

sigi | s0, . . . , sm ∈ R[X] are sos

}
where we set g0 := 1. We call it the quadratic module generated by g.

Definition 2.6. A quadratic module M of R[X] is called Archimedean if for all p ∈
M there is some N ∈N such that N + p ∈ M.

The following is well-known (see for example [PD, Lemma 5.1.13] and [Mar, Cor.
5.2.4]) but for convenience of the reader we include a compact easy proof.

Proposition 2.7. Let M be a quadratic module of R[X]. Then the following are
equivalent:
(a) M is Archimedean.
(b) There is some N ∈N such that N − (X2

1 + . . . + X2
n) ∈ M.

(c) There are m ∈ N and g ∈ (R[X]1 ∩ M)m such that the polyhedron S(g) is
non-empty and compact.

(d) For each f ∈ R[X]1, there is some N ∈N such that N + f ∈ M.

Proof. Consider the vector subspace

B := {p ∈ R[X] | ∃N ∈N : N ± p ∈ M} ⊇ R

of R[X]. If p ∈ R[X] with p2 ∈ B, then we can choose N ∈ N such that (N − 1)−
p2 ∈ M and thus

N ± p = (N − 1)− p2 +

(
1
2
± p

)2
+

3
4
∈ M
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and thus p ∈ B. Conversely, if p ∈ B, then one can choose N ∈ N such that
2N − 1± p ∈ M and thus

N2(2N − 1)− p2 =
1
2

(
(N − p)2(2N − 1 + p) + (N + p)2(2N − 1− p)

)
∈ M,

showing that p2 ∈ B since anyway N2(2N − 1) + p2 ∈ M. Thus, we have

(∗) p2 ∈ B ⇐⇒ p ∈ B

for all p ∈ R[X]. This implies that B is a subring of R[X]. Indeed, for p, q ∈ R[X]
with p, q ∈ B we have

pq =
1
2
(

∈B︷ ︸︸ ︷
(p + q︸ ︷︷ ︸
∈B

)2− p2︸︷︷︸
∈B

− q2︸︷︷︸
∈B

) ∈ B.

This shows that R[X]1 ⊆ B ⇐⇒ R[X] = B, which is the equivalence (d)⇐⇒ (a).
Condition (b) is easily seen to be equivalent to X2

1 , . . . , X2
n ∈ B, which in turn is by

(∗) equivalent to X1, . . . , Xn ∈ B. Again by using that B is a subring of R[X], this
shows the equivalence (a) ⇐⇒ (b). It remains to show (c) ⇐⇒ (d). If (d) holds,
then one trivially finds g like in (c), e.g., with S(g) being a hypercube. Conversely,
suppose that we have g like in (c) and let f ∈ R[X]1. Then there is N ∈ N such
that N + f ≥ 0 on the polytope S(g). By the affine form of Farkas’ lemma [Scr,
Cor. 7.1h, p. 93], we have that N + f is a nonnegative linear combination of the
1, g1, . . . , gm and thus lies in M. �

We mention the following important theorem although we will need it only for
Example 4.10 below.

Theorem 2.8 (Schmüdgen). Let M be a quadratic module of R[X]. The following
are equivalent:

(a) There are m ∈N and g = (g1, . . . , gm) ∈ R[X]m such that S(g) is compact and
∏i∈I gi ∈ M for all I ⊆ {1, . . . , m}.

(b) There is some g ∈ M with compact S(g).
(c) M is Archimedean.

Proof. (a) =⇒ (c) is the deep part of Schmüdgen’s Positivstellensatz [Scm, Cor. 3],
namely his characterization of Archimedean preorders (see [PD, Thm. 5.1.17] and
[Mar, Thm. 6.1.1]). The implications (c) =⇒ (b) =⇒ (a) are trivial. �

Remark 2.9. For n ≥ 2, there are examples of g = (g1, . . . , gm) ∈ R[X]m with
compact (even empty) S(g) such that M(g) is not Archimedean (see [Mar, Ex.
7.3.1] or [PD, Ex. 6.3.1]). However if S(g) is compact, then Proposition 2.7 and
Theorem 2.8 provide several ways of changing the description g of S(g) such that
M(g) becomes Archimedean. For example, if one knows a big ball containing
S(g), it suffices to add its defining quadratic polynomial to g by Proposition 2.7(b).
That is why for many practical purposes, the Archimedean property of M(g) is not
much stronger than the compactness of S(g).
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We use the symbols ∇ and Hess to denote the gradient and the Hessian of a real-
valued function of n variables, respectively. For a polynomial g ∈ R[X], we under-
stand its gradient∇g as a column vector from R[X]n, i.e., as a vector of polynomi-
als. Similarly, its Hessian Hess g is a symmetric matrix polynomial of size n, i.e., a
symmetric matrix from R[X]n×n.

Definition 2.10. Let g := (g1, . . . , gm) ∈ R[X]m and set again g0 := 1. For i ∈
{0, . . . , m}, set ri := d−deg gi

2 if gi 6= 0 and ri := −∞ if gi = 0. Then we define the
d-truncated quadratic module Md(g) associated to g by

Md(g) :=

{
m

∑
i=0

∑
j

p2
ijgi | pij ∈ R[X]ri

}
⊆ M(g) ∩R[X]d.

More generally, we define the d-truncated k× k matricial quadratic module associated
to g by

Mk×k
d (g) :=

{
m

∑
i=0

∑
j

PT
ij Pijgi | Pij ∈ R[X]k×k

ri

}
⊆ R[X]k×k

d .

We say that f ∈ R[X] is g-sos-concave if

−Hess f ∈ Mn×n(g) :=
⋃

d∈N0

Mn×n
d (g).

If m = 0, this means that the negated Hessian of f is an sos matrix polynomial and
we say that f is sos-concave.

Any f ∈ R[X]1 is sos-concave since Hess f = 0. The Hessian of a g-sos-concave
polynomial is negative semidefinite on S(g).

The following is Putinar’s Positivstellensatz [Put, Lemma 4.1] for matrix polyno-
mials with degree bounds. It has been first proven by Helton and Nie [HN1, Thm.
29] following the technical approach of Nie and the second author [NS’] for the
case of polynomials. This technical approach yields explicit degree bounds. The
first author found a short topological proof for the mere existence of such bounds
[Kri, Thm. 3.2] that is based on knowing already the result without the degree
bounds that stems from [SH, Thm. 2].

Theorem 2.11 (Helton and Nie). Fix C, d, k, m, n ∈N and fix any norm on the vec-
tor space R[X]k×k

d . Let g := (g1, . . . , gm) ∈ R[X]m such that M(g) is Archimedean.

Then there exists d ∈ N0 such that every symmetric H ∈ R[X]k×k
d satisfying

‖H‖ ≤ C and H � 1
C on S(g) satisfies H ∈ Mk×k

d (g).

The following is a slight generalization of [HN1, Lemma 7] that will be needed in
the proof of Theorem 4.7.

Lemma 2.12. Let d ∈ N0, g := (g1, . . . , gm) ∈ R[X]m and u ∈ Rn. If P ∈ Mk×k
d (g),

then the matrix polynomial H ∈ R[X]k×k defined by

H(x) =
∫ 1

0

∫ t

0
P(u + s(x− u)) ds dt

for x ∈ Rn lies again in Mk×k
d (g).
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Proof. The proof [HN1, Lemma 7] can be easily adapted. Another more conceptual
proof is the following: Mk×k

d (g) is a convex cone in a finite-dimensional vector
space. Then

H =
∫ 1

0

∫ t

0
P(u + s(X− u)) ds dt

is an existing Bochner integral of a vector valued function with values in this con-
vex cone and thus lies again in this convex cone [RW] (regardless of whether the
cone is closed or not). �

The “if” direction of the following proposition is trivial since a closed convex set in
a finite-dimensional vector space is the intersection over all half spaces containing
it. We will use it to prove our Main Theorem 4.8. The “only if” direction will be
needed only in Example 4.10 below.

Proposition 2.13 (Netzer, Plaumann and Schweighofer). Suppose d ∈ N0, g :=
(g1, . . . , gm) ∈ R[X]md , S(g) is compact and convex and has nonempty interior.
Then Sd(g) = S(g) if and only if every f ∈ R[X]1 with f ≥ 0 on S(g) lies in
Md(g).

Proof. This is a special case of [NPS, Proposition 3.1]. �

3. REMINDER ON STRICT QUASICONCAVITY

We denote the real zero set of g by

Z(g) := {x ∈ Rn | g(x) = 0}.
We adopt the following notion from [HN1, p. 25], which is a local second order
quasiconcavity condition.

Definition 3.1. Let g ∈ R[X]. We say that g is strictly quasiconcave at x ∈ Rn if for
all v ∈ Rn \ {0} with (∇g(x))Tv = 0, we have that vT(Hess g(x))v < 0. We say
that g is strictly quasiconcave on A ⊆ Rn if g is strictly quasiconcave at each point of
A.

Remark 3.2. Let g ∈ R[X] and x ∈ Rn such that ∇g(x) = 0.
(a) g is strictly quasiconcave at x if and only if Hess g(x) ≺ 0.
(b) If g is strictly quasiconcave at x and g(x) = 0, then there is a neighborhood U

of x such that U ∩ S(g) = {x}.

If g ∈ R[X] satisfies g(x) = 0 and ∇g(x) 6= 0, then Z(g) is locally around x a
smooth hypersurface. Differential geometers will recognize that strict quasicon-
cavity of g at x then means that the second fundamental form of this hypersurface
at x is positive definite when one chooses the “outward normal” (pointing away
from S(g)). Thus this means that S(g) is locally convex in a strong second order
sense. For a detailed discussion we refer to [HN1, HN2] and the references therein.
As Helton and Nie in [HN1, Subsection 3.1], we want however to help those read-
ers who are not familiar with the basics of differential geometry by discussing
strict quasiconcavity in an elementary manner. The reason why we include this is
that Helton and Nie presuppose already that the reader is familiar with the geo-
metric notion of tangent hyperplanes and knows that the gradient is a normal
vector for it [HN2, p. 786]. Conversely we fit this into their arguments, see Part (a)
of the following lemma and Proposition 3.4(b) below.
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Formally, we will use the following lemma and the next proposition only in Ex-
ample 4.10 below and even there it can be avoided by some calculations. Some
readers might therefore decide to skip them.

Lemma 3.3. Let n ∈ N, g ∈ R[X] and x ∈ Rn such that g(x) = 0 and ∇g(x) 6= 0.
Suppose v1, . . . , vn form a basis of Rn, U is an open neighborhood of 0 in Rn−1,
ϕ : U → R is smooth and satisfies ϕ(0) = 0 as well as

(∗) g(x + ξ1v1 + . . . + ξn−1vn−1 + ϕ(ξ)vn) = 0

for all ξ = (ξ1, . . . , ξn−1) ∈ U. Then the following hold:

(a) (∇g(x))Tv1 = . . . = (∇g(x))Tvn−1 = 0 ⇐⇒ ∇ϕ(0) = 0
(b) If ∇ϕ(0) = 0 and (∇g(x))Tvn > 0, then

g is strictly quasiconcave at x ⇐⇒ Hess ϕ(0) � 0.

Proof. Taking the derivative of (∗) with respect to ξi, we get

(∗∗) (∇g(x + ξ1v1 + . . . + ξn−1vn−1 + ϕ(ξ)vn))
T
(

vi +
∂ϕ(ξ)

∂ξi
vn

)
= 0

for all i ∈ {1, . . . , n− 1}. Setting here ξ to 0, we get

(∇g(x))T
(

vi +
∂ϕ(ξ)

∂ξi

∣∣∣∣ξ=0vn

)
= 0

for each i ∈ {1, . . . , n − 1}. From this, (a) follows easily (for “ =⇒ ” use that
(∇g(x))Tvn 6= 0 since v1, . . . , vn is a basis). Taking the derivative of (∗∗) with
respect to ξ j, we get(

vj +
∂ϕ(ξ)

∂ξ j
vn

)T

(Hess g(x+ ξ1v1 + . . .+ ξn−1vn−1 + ϕ(ξ)vn))

(
vi +

∂ϕ(ξ)

∂ξi
vn

)

+ (∇g(x + ξ1v1 + . . . + ξn−1vn−1 + ϕ(ξ)vn))
T

(
∂2 ϕ(ξ)

∂ξi∂ξ j
vn

)
= 0

for all i, j ∈ {1, . . . , n − 1}. To prove (b), suppose now that ∇ϕ(0) = 0 and
(∇g(x))Tvn > 0. Then the preceding equation implies

Hess ϕ(0) = − 1
(∇g(x))Tvn

(vT
i (Hess g(x))vj)i,j∈{1,...,n−1}.

Since v1, . . . , vn−1 now form a basis of the orthogonal complement of ∇g(x) by
(a), the matrix (vT

i (Hess g(x))vj)i,j∈{1,...,n−1} is negative definite if and only if g is
strictly quasiconcave at x (see Definition 3.1). �

The following proposition is important for understanding the notion of quasicon-
cavity. It is trivial that quasiconcavity of a polynomial g at x depends only on the
function V → R, x 7→ g(x) where V is an arbitrarily small neighborhood of x. But
if g(x) = 0 and ∇g(x) 6= 0, then it actually depends only on the function

V → {−1, 0, 1}, x 7→ sgn(g(x))

as the equivalence of Conditions (a) and (b) of the following proposition show.
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Proposition 3.4. Let n ∈N, g ∈ R[X] and x ∈ Rn such that

g(x) = 0 and ∇g(x) 6= 0.

Suppose that V is a neighborhood of x. Then the following are equivalent:

(a) g is strictly quasiconcave at x.
(b) There is a basis v1, . . . , vn of Rn, an open neighborhood U of 0 in Rn−1 and a

smooth function ϕ : U → R such that ϕ(0) = 0, ∇ϕ(0) = 0, Hess ϕ(0) � 0,

(∗) x + ξ1v1 + . . . + ξn−1vn−1 + ϕ(ξ)vn ∈ Z(g) ∩V

for all ξ ∈ U and
(∗∗) x + λvn ∈ S(g) ∩V

for all small enough λ ∈ R>0.
(c) Condition (b) holds with “basis” replaced by “orthogonal basis”.

For any basis v1, . . . , vn of Rn like in (b), one has

(∗ ∗ ∗) (∇g(x))Tv1 = . . . = (∇g(x))Tvn−1 = 0 and (∇g(x))Tvn > 0.

Proof. Using Lemma 3.3(a), it is easy to show that any v1, . . . , vn like in (b) satisfy
(∗ ∗ ∗) using that (∇g(x))Tvn = 0 would contradict the hypothesis ∇g(x) 6= 0
since v1, . . . , vn is a basis. Now Part (b) of the same lemma shows that (b) implies
(a). Since it is trivial that (c) implies (b), it only remains to show that (a) implies
(c).

To this end, let (a) be satisfied. In order to show (c), choose an orthogonal basis
v1, . . . , vn of Rn satisfying (∗ ∗ ∗). The implicit function theorem yields an open
neighborhood U of the origin in Rn−1 such that for each ξ = (ξ1, . . . , ξn−1) ∈ U
there is a unique ϕ(ξ) ∈ R satisfying (∗), in particular ϕ(0) = 0. Moreover,
one can choose U such that the resulting function ϕ : U → R is smooth. From
(∇g(x))Tvn > 0, we get (∗∗). From Part (a) of Lemma 3.3, we get ∇ϕ(0) = 0.
From Part (b) of the same lemma and from (a), we obtain Hess ϕ(0) � 0. �

Another more algebraic way of understanding strict quasiconcavity is given by
the following easy exercise [HN1, Lemma 11(a)].

Lemma 3.5. Let S ⊆ Rn be a compact set and consider a polynomial g ∈ R[X] that
is strictly quasiconcave on S. Then one can find λ > 0 such that

λ∇g(∇g)T −Hess g

is positive definite on S.

We will need the following lemma only in the case where f is linear. In that case,
one can use for its proof a slightly weaker version of the Karush-Kuhn-Tucker
theorem [Pla, Theorem 5.1].

Lemma 3.6. Suppose g := (g1, . . . , gm) ∈ R[X]m, S(g) is convex and has nonempty
interior. Suppose u ∈ S(g) and let I := {i ∈ {1, . . . , m} | gi(u) = 0}. Suppose
f ∈ R[X] and U is a neighborhood of u such that u is a minimizer of f on S(g)∩U
and Hess gi � 0 on S(g) ∩ U for all i ∈ I. Then there exist a family (λi)i∈I of
nonnegative Lagrange multipliers λi ∈ R≥0 such that ∇ f (u) = ∑i∈I λi∇gi(u).
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Proof. By the Karush-Kuhn-Tucker theorem [FH, Theorem 2.2.5], it suffices to show
that the gi (i ∈ I) satisfy the Mangasarian-Fromowitz constraint qualification, i.e.,
there is some v ∈ Rn such that (∇gi(u))Tv > 0 for all i ∈ I [FH, Chapter 2.2.5].
By discarding those gi that are the zero polynomial, we may assume gi 6= 0 for
all i ∈ I. Since S(g) has nonempty interior, there is then some x ∈ S(g) such that
gi(x) > 0 for all i ∈ I. Set v := x − u and consider for fixed i ∈ I the function
h : R → R, t 7→ gi(u + tv). We have 0 = h(0) and h(1) = gi(x) > 0. Therefore
there is t ∈ [0, 1] such that h′(t) > 0. Because of h′′(t) = vT(Hess gi(u + tv))v ≤ 0
for all t ∈ [0, 1], this implies (∇gi(u))Tv = h′(0) > 0 as desired. �

4. THE MAIN RESULT

In this section, we will prove our main result about the exactness of the Lasserre
relaxation. The first step is to get an alternate description of the compact basic
closed semialgebraic set S(g) with nonempty interior. Both descriptions, the orig-
inal one g and the alternate one will be used in the proof of Theorem 4.7. The
new description will arise by replacing polynomials gi that are strictly quasicon-
cave on S(g) ∩ Z(gi) by polynomials of the form hi := gih(gi) with a univariate
polynomial h ∈ R[T] such that h ≥ 1 on R. It will be of outmost importance
that hi ∈ M(g) which follows from the fact that h − 1 and therefore h is an sos-
polynomial by Lemma 2.2 above. Roughly speaking, the basic idea is that hi(x)
will be, up to positive factor, approximately 1− e−cgi(x) for a big constant c when
x lies in S(g) or x lies sufficiently close to S(g). The effect of this is that hi will be
a polynomial (unfortunately of large degree) that is very close to being a positive
constant on the “safe part” of S(g) consisting of the points in S(g) that are in “safe
distance” to the boundary of S(g). On the “safe part” of S(g) one can hope (and
it will turn out from our actual choice of h) that the Hessian of the hi does not
vary too quickly. This will be crucial in the proof of Lemma 4.6 (the interval J3
appearing there corresponds to this “safe part”).

In the proof of Lemma 4.5 below, the auxiliary polynomial h will be chosen as
h := fc,d ∈ Q[T] for a big real constant c and a large nonnegative even integer
d where fc,d is defined in Notation 4.1 below. In [HN1, Lemma 13], Helton and
Nie use exactly the same polynomial fc,d except that they do not care about the
parity of the degree d. Lemma 4.4 below is an important observation that was
probably not known to Helton and Nie. If Helton and Nie had exploited this, they
could have sharpened some of their results in [HN1]. However, they would not
have come close to our main result Theorem 4.8 which ultimately relies on our
new refined and subtle analysis in the proofs of Lemma 4.6 and Theorem 4.7 that
focuses on integrals of the Hessian of the hi instead of the Hessians themselves.

Notation 4.1. For c > 0 and d ∈N0, we denote by

ec,d :=
d

∑
k=0

ck

k!
Tk ∈ Q[T]

the d-th Taylor polynomial of the function

R→ R, t 7→ exp(ct)
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at the origin and we set

fc,d :=
1− ec,d+1(−T)

cT
=

d

∑
k=0

ck

(k + 1)!
(−T)k ∈ Q[T].

For any p ∈ R[T], we denote by p′ its (formal) derivative (with respect to T) and
by p′′ = (p′)′ its second derivative.

Proposition 4.2. For c > 0, we have

e′c,d = cec,d−1 for d ∈N,(a)

f ′c,d =
ec,d(−T)− fc,d

T
for d ∈N0 and(b)

f ′′c,d =
−e′c,d(−T)− 2 f ′c,d

T
for d ∈N.(c)

Proof. Use the chain rule, the product rule and the quotient rule for derivation. �

The following lemma has been given an easy short proof by Speyer [Spe], which
we reproduce here for convenience of the reader.

Lemma 4.3 (Speyer). For c ∈ R>0 and d ∈N0, we have:
(a) If d is even, then ec,d(t) > 0 for all t ∈ R.
(b) If d is odd, then ec,d is strictly increasing on R.

Proof. We fix c ∈ R>0 and proceed by induction on d. The case d = 0 is trivial since
ec,0 = 1 > 0. Suppose the lemma is already proven for d− 1 instead of d where d ∈
N is fixed. First consider the case where d is even. Then by induction hypothesis
the odd degree polynomial ec,d−1 must have exactly one real root t0. By Lemma
4.2(a) the even degree polynomial ec,d takes therefore its (unique) minimum in t0.
To prove the statement, it suffices to observe that

ec,d(t0) =
(ct0)

d

d!
+ ec,d−1(t0) =

(ct0)
d

d!
+ 0 > 0.

In the case where d is odd, the statement follows immediately from the induction
hypothesis and Lemma 4.2(a). �

Lemma 4.4. Let c ∈ R>0 and suppose d ∈ N0 is even. Then fc,d(t) > 0 for all
t ∈ R.

Proof. The leading coefficient of fc,d is cd(−1)d

(d+1)! > 0. Therefore it suffices to show
that fc,d has no real roots. One easily checks that fc,d has no root at the origin.
Assume we have a root t ∈ R different from the origin. Then ec,d+1(−t) = 1.
Observing that ec,d+1(0) = 1, it follows from Lemma 4.3(b) that t = 0, a contradic-
tion. �

The following lemma is an improved version of [HN1, Lemma 13]. Most impor-
tantly, we manage to get that h− 1 (defined in this lemma) is an sos polynomial
(and in particular h is positive on R) instead of just positivity of h on the inter-
val [0, R]. This will come out of Lemmata 4.4 and 2.2 together with the approach
we take in the proof that uses simply Taylor approximations of the exponential
function instead of the nonconstructive approximation theory used in [HN1]. The
second crucial improvement is the new property (c). A surprising improvement
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coming out of Lemma 4.3 is that we get in Condition (a) positivity on R instead of
just the positivity on [0, R] that Helton and Nie get. At the moment however, we
do not have any application for this. Finally, an insignificant improvement again
not used by us is the validity of Condition (b) on the interval [−R, R] instead of
the interval [0, R] used by Helton and Nie.

Lemma 4.5. Let H, δ, ε, R ∈ R such that H > 0 and 0 < δ < ε < R. Then there
exists a univariate polynomial h ∈ R[T] such that

h− 1 is an sos polynomial

satisfying the following conditions:

h(t) + th′(t) > 0 for all t ∈ R(a)

2h′(t) + th′′(t) < −H(h(t) + th′(t)) for all t ∈ [−R, R](b)

H max
{

h(t) + th′(t) | t ∈ [ε, R]
}
< min

{
h(t) + th′(t) | t ∈ [−R, δ]

}
(c)

Proof. By a scaling argument, we can relax the condition that h − 1 is sos to the
condition that h − γ is sos for some γ ∈ R>0. By the Lemmata 4.4 and 2.2, it
suffices to find c ∈ R>0 and d ∈ N0 even such that (a)–(c) are satisfied for h :=
fc,d ∈ Q[T]. Noting that

fc,d + T f ′c,d = ec,d(−T) and 2 f ′c,d + T f ′′c,d = −e′c,d(−T) = −cec,d−1(−T)

by Proposition 4.2, this means that we are trying to find c ∈ R>0 and d ∈N0 even
with

ec,d(−t) > 0 for all t ∈ R(a’)

−cec,d−1(−t) < −Hec,d(−t) for all t ∈ [−R, R](b’)

H max
{

ec,d(−t) | t ∈ [ε, R]
}
< min

{
ec,d(−t) | t ∈ [−R, δ]

}
.(c’)

Condition (a’) is always satisfied by Lemma 4.3(a) if d is even. Since the functions
induced by the polynomials ec,d on the interval [−R, R] converge uniformly to the
function [−R, R] → R, t 7→ exp(ct) as d ∈ N tends to infinity, it suffices to find
c > 0 satisfying

−c exp(−ct) < −H exp(−ct) for all t ∈ [−R, R](b”)

H max {exp(−ct) | t ∈ [ε, R]} < min {exp(−ct) | t ∈ [−R, δ]} .(c”)

These conditions can be rewritten as

−c < −H(b”)

H exp(−cε) < exp(−cδ).(c”)

Thus it suffices to choose c > max
{

H, log H
ε−δ

}
and d ∈ N0 even and sufficiently

large. �

The previous result is now used to prove the following key lemma. This key
lemma is our “luxury version” of [HN1, Proposition 10] in the work of Helton
and Nie. It will be used in this article only with C := S(g) (when S(g) is compact)
but for potential future applications we formulate it in greater generality. It has
several advantages over [HN1, Proposition 10]. The most important one is that
we only require the gi to be strictly quasiconcave on a set that will be very slim in
general whereas Helton and Nie assume them to be strictly quasiconcave on the
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whole of S(g). Another important advantage is that the new polynomials hi lie in
M(g). The only price that we have to pay is that not the Hessian itself but only
an integrated version of it satisfies the negative definiteness condition. This will
however be enough for the proof of Theorem 4.7 and the Main Theorem 4.8.

Lemma 4.6. Let g := (g1, . . . , gm) ∈ R[X]m and let C be a compact subset of
S(g) such that gi is strictly quasi-concave on C ∩ Z(gi) for each i ∈ {1, . . . , m}.
Then there exists a polynomial h ∈ R[T] with h− 1 an sos polynomial such that
hi := gih(gi) satisfies ∫ 1

0
(Hess hi)(u + s(x− u)) ds ≺ 0

for all i ∈ {1, . . . , m}, u ∈ Z(gi) and x ∈ Rn with {u + s(x− u) | 0 ≤ s ≤ 1} ⊆ C.

Proof. By Lemma 3.5 and the compactness of C ∩ Z(gi), we find λ > 0 such that

Fi := λ(∇gi)(∇gi)
T −Hess gi

satisfies
Fi(x) � 0

for all i ∈ {1, . . . , m} and all x ∈ C ∩ Z(gi). The polynomial h will come out of
Lemma 4.5 applied to certain values of R, H, ε and δ, which we will now adjust.
First of all, we choose R > 0 such that

gi(x) ≤ R

for all i ∈ {1, . . . , m} and x ∈ C. To get ε, we observe that the compact set C is
contained in the union of the chain consisting of the open sets

m⋂
i=1

({x ∈ Rn | gi(x) > ε} ∪ {x ∈ Rn | Fi(x) � 0}) (0 < ε < R)

and therefore is contained in those of these sets that belong to a sufficiently small
ε, i.e., there is ε with 0 < ε < R such that

∀x ∈ C : ∀i ∈ {1, . . . , m} : (gi(x) ≤ ε =⇒ Fi(x) � 0) .

By compactness, there exists ξ > 0 such that

∀x ∈ C : ∀i ∈ {1, . . . , m} : (gi(x) ≤ ε =⇒ Fi(x) � ξ In) .(2)

We choose δ with 0 < δ < ε arbitrary and d > 0 such that

‖x− y‖ ≤ d

for all x, y ∈ C. The compact subset C× C of R2n is contained in the union of the
chain consisting of the open sets

{(x, y) ∈ Rn ×Rn | ‖x− y‖ > σ} ∪
m⋂

i=1

({(x, y) ∈ Rn ×Rn | gi(x) 6= 0} ∪ {(x, y) ∈ Rn ×Rn | gi(y) < δ})

(0 < σ ≤ d),

and therefore is contained in those of these sets that belong to a sufficiently small
σ, i.e., there is σ with 0 < σ ≤ d such that

∀x, y ∈ C : (‖x− y‖ ≤ σ =⇒ ∀i ∈ {1, . . . , m} : (gi(x) = 0 =⇒ gi(y) < δ)).(3)
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Because C is compact, we can choose τ > 0 such that

‖Fi(x)‖ ≤ τ

for all x ∈ C and i ∈ {1, . . . , m}. Finally, set

H := max
{

dτ

σξ
, λ

}
.

Choose h ∈ R[T] such that h− 1 is an sos polynomial in R[T] according to Lemma
4.5 and the chosen values of H, R, ε and δ. Fix i ∈ {1, . . . , m} and set hi := gih(gi).
Using the product and chain rule, we calculate

∇hi = gih′(gi)∇gi + h(gi)∇gi = (h(gi) + gih′(gi))∇gi

and therefore

Hess hi = (h(gi) + gih′(gi))Hess gi +∇gi∇(h(gi) + gih′(gi))
T .

Using
∇(h(gi) + gih′(gi)) = (2h′(gi) + gih′′(gi))∇gi,

it follows that

Hess hi = (h(gi) + gih′(gi))Hess gi + (2h′(gi) + gih′′(gi))(∇gi)(∇gi)
T .

One now recognizes that conditions (a) and (b) from Lemma 4.5 guarantee that

Hess hi(x) �
(
(h(gi) + gih′(gi))

(
Hess gi − H(∇gi)(∇gi)

T
))

(x)

�
(
−(h(gi) + gih′(gi))Fi

)
(x)

for all x ∈ C since H ≥ λ. Now let u ∈ Z(gi) and x ∈ Rn with

{u + s(x− u) | 0 ≤ s ≤ 1} ⊆ C.

It suffices to show∫ 1

0

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds � 0.

To this end, we split up the unit interval [0, 1] into three disjoint parts

J1 := {s ∈ [0, 1] | gi(u + s(x− u)) < δ},
J2 := {s ∈ [0, 1] | δ ≤ gi(u + s(x− u)) ≤ ε} and

J3 := {s ∈ [0, 1] | gi(u + s(x− u)) > ε}.

In particular, each Jk is a union of intervals such that [0, 1] = J1 ∪̇ J2 ∪̇ J3. We now
analyze the integral in question on each of these parts separately: The integral over
J1 will contribute a guaranteed amount of positive definiteness, the integral over J2
an unknown amount of positive semidefiniteness and the integral over J3 will be
very small in norm so that it cannot destroy the positive definiteness accumulated
over J1. For further use, we set

M := max{h(s) + h′(s)s | s ∈ [ε, R]}.

Analysis on J1. The subinterval [0, σ
d ] of [0, 1] (note that σ

d ≤ 1) is contained in J1
since ‖u− (u + s(x− u))‖ = s‖x− u‖ ≤ σ

d d = σ for s ∈ [0, σ
d ] and therefore

gi(u + s(x− u)) < δ
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for all s ∈ [0, σ
d ] by the choice of σ (see Property (3) above). By choice of ξ, we have

that
Fi(u + s(x− u)) � ξ In

for all s ∈ J1 (in fact also for s ∈ J2). By Parts (a) and (c) of Lemma 4.5, we have
(h(gi) + gih′(gi))(u + s(x− u)) > HM for all s ∈ J1. Hence we get with Property
(2) above that∫

J1

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds � σ

d
HMξ In �

σ

d
dτ

σξ
Mξ In = τM In .

Analysis on J2. We have of course

Fi(u + s(x− u)) � 0

for all s ∈ J2 (in fact also for s ∈ J1) and, by Part (a) of Lemma 4.5,

(h(gi) + gih′(gi))(u + s(x− u)) ≥ 0

for all s ∈ [0, 1]. Hence∫
J2

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds � 0.

Analysis on J3. We have of course Fi(u + s(x − u)) � −‖Fi(u + s(x − u))‖ In �
−τ In for all s ∈ [0, 1] and therefore∫

J3

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds � −Mτ In

Total analysis. Finally, we get∫ 1

0

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds

�
∫

J1

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds

+
∫

J3

(
(h(gi) + gih′(gi))Fi

)
(u + s(x− u)) ds

� τM In−Mτ In = 0

�

Theorem 4.7. Let g := (g1, . . . , gm) ∈ R[X]m such that S(g) is convex with nonempty
interior and M(g) is Archimedean. Suppose that each gi is strictly quasiconcave
on S(g) ∩ Z(gi) or g-sos-concave. Then there is d ∈N0 such that for all f ∈ R[X]1
with f ≥ 0 on S(g) we have f ∈ Md(g).

Proof. Choose I and J such that {1, . . . , m} = I ∪̇ J, gi is strictly quasiconcave on
S(g) ∩ Z(gi) for i ∈ I and gj is g-sos-concave for j ∈ J. Applying Lemma 4.6 with
(gi)i∈I instead of g and the compact subset C := S(g) of S((gi)i∈I), we get for each
i ∈ I a polynomial

hi ∈ M(g)

satisfying S(hi) = S(gi), Z(hi) = Z(gi) and∫ 1

0
(Hess hi)(u + s(x− u)) ds ≺ 0
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for all u ∈ S(g) ∩ Z(gi) and x ∈ S(g). Setting here x = u, we obtain in particular

Hess hi ≺ 0 on S(g) ∩ Z(gi)(4)

for each i ∈ I. Set
hj := gj

for all j ∈ J. Then
S(g) = S(h).

Choose d1 ∈N0 such that
hi ∈ Md1(g)

for all i ∈ I ∪ J. Define for all i ∈ I ∪ J and u ∈ Rn a symmetric matrix polynomial
Hi,u ∈ R[X]n×n by

Hi,u(x) = −
∫ 1

0

∫ t

0
(Hess hi)(u + s(x− u)) ds dt

for all x ∈ Rn. Applying compactness of S(g) ∩ Z(gi), S(g) and the unit sphere in
Rn together with continuity, we find δ > 0 such that

−
∫ 1

0
(Hess hi)(u + s(x− u)) ds � 2δ In

for all i ∈ I, u ∈ S(g) ∩ Z(gi) and x ∈ S(g). For each t ∈ [0, 1], we apply this to
u + t(x− u) ∈ S(g) instead of x to get

−
∫ t

0
(Hess hi)(u + s(x− u)) ds = −t

∫ 1

0
(Hess hi)(u + st(x− u)) ds � 2tδ In

for all i ∈ I, u ∈ S(g) ∩ Z(gi) and x ∈ S(g). Thus

Hi,u(x) �
∫ 1

0
2tδ In dt = δ In

for all i ∈ I, u ∈ S(g) ∩ Z(gi) and x ∈ S(g). Again using the compactness of
S(g) ∩ Z(gi) and continuity, we find some E > 0 such that

‖Hi,u‖ ≤ E

for all i ∈ I and u ∈ S(g) ∩ Z(gi). Theorem 2.11 yields d2 ∈N such that

Hi,u ∈ Mn×n
d2

(g)

for all i ∈ I and u ∈ S(g) ∩ Z(gi). Lemma 2.12 yields d3 ∈N such that

Hj,u ∈ Mn×n
d3

(g)

for all j ∈ J and u ∈ Rn. For later use, set

d4 := max{d2, d3}+ 2 and d := max{d1, d4}.
Now let f ∈ R[X]1 with f ≥ 0 on S(g). Since S(g) is nonempty and compact, we
can define c as the minimum of f on S(g). Exchanging f by f − c, we can suppose
without loss of generality that c = 0. Then there is some u ∈ S(g) with

f (u) = 0.

Consider
K := {i ∈ I ∪ J | gi(u) = 0} = {i ∈ I ∪ J | hi(u) = 0}.
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Because of Hess hi(u) ≺ 0 (see Property (4)) and continuity, we get a neighborhood
U of u such that

Hess hi ≺ 0 on U
for all i ∈ I ∩ K. Since each hj = gj with j ∈ J is g-sos-concave, we have on the
other hand

Hess hj � 0 on S(g)

for all j ∈ J. Combining both, we have in particular that

Hess hk � 0 on S(g) ∩U

for all k ∈ K. Applying Lemma 3.6, we get a family (λk)k∈K of nonnegative La-
grange multipliers such that∇ f = ∑k∈K λk∇hk(u) (recall that f is linear) and thus(

f − ∑
k∈K

λkhk

)
(u) = 0 and ∇

(
f − ∑

k∈K
λkhk

)
(u) = 0.

Fix now x ∈ Rn. For the map

h : R→ R, s 7→
(

f − ∑
k∈K

λkhk

)
(u + s(x− u)),

we have h(0) = 0, h′(0) = 0 and

h′′(s) = − ∑
k∈K

λk(x− u)T((Hess hk)(u + s(x− u)))(x− u)

for s ∈ R. Hence(
f − ∑

k∈K
λkhk

)
(x) = h(1)

h(0)=0
=

∫ 1

0
h′(t) dt

h′(0)=0
=

∫ 1

0

∫ t

0
h′′(s) ds dt

= ∑
k∈K

λk(x− u)T Hk,u(x− u).

Since x ∈ Rn was arbitrary, we thus have

f − ∑
k∈K

λkhk = ∑
k∈K

λk(X− u)T Hk,u(X− u) ∈ Md4(g)

and thus f ∈ Md(g). �

Note that it is essential in the previous theorem to require f to be linear. It is even
not enough to require f to be globally convex of small bounded degree [KL].

Main Theorem 4.8. Let g := (g1, . . . , gm) ∈ R[X]m such that S(g) is convex with
nonempty interior and M(g) is Archimedean. Suppose that each gi is strictly qua-
siconcave on S(g) ∩ Z(gi) or g-sos-concave. Then g has an exact Lasserre relax-
ation.

Proof. Directly from 4.7 by the trivial direction of Proposition 2.13. �

In the situation of this theorem, now drop the convexity assumption and conse-
quently ask whether the convex hull of S(g) (instead of S(g) itself) equals Sd(g)
for large d. Helton and Nie proved that in this situation the convex hull of S(g)
is semidefinitely representable [HN2, Theorem 4.4]. The question arises if it even
equals Sd(g) for large d. This will be proven in our forthcoming paper [KS] if
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all gi are strictly quasiconcave on S(g) ∩ Z(gi). However, Example 4.10 below
shows that in this case, one cannot allow that some of the gi are linear (or even
sos-concave) instead. To prove this, we need the following important criterion
from [GN, Proposition 4.1].

Theorem 4.9 (Gouveia and Netzer). Suppose g := (g1, . . . , gm) ∈ R[X]m, L ⊆ Rn

is a straight line in Rn, S(g) ∩ L has nonempty interior in L and u ∈ S(g) is an

element of the boundary of conv(S(g)) ∩ L in L. Suppose that for each i with
gi(u) = 0,∇gi(u) is orthogonal to L. Then Sd(g) strictly contains the closure of the
convex hull of S(g) for all d.

Example 4.10. Let n := 2, write X, Y for X1, X2 and consider g := (g1, g2) with

g1 := −(1− X2 −Y2)(4− (X− 4)2 −Y2) and g2 := 1−Y.

We see that S(g1) is the disjoint union of two closed disks of different radii. The
affine half plane S(g2) cuts out a piece from the bigger disk and its boundary line
L :=

(
0
1
)
+ R

(
1
0
)

is tangent to the smaller disk. Since S(g1) is compact, M(g) is
Archimedean by Theorem 2.8(b). By Proposition 3.4(b), g1 is strictly quasiconcave
on S(g) ∩ Z(g1). The line L is tangent to the smaller disk in the point

(
0
1
)

and
passes through the interior of the larger disk. By the criterion 4.9 of Gouveia and
Netzer applied with u :=

(
0
1
)
, Sd(g) strictly contains the convex hull of S(g) for

all d. By inspection of the proof of Gouveia and Netzer, we see more precisely that
each Sd(g) contains a left neighbourhood of u inside L.
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