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Abstract. An operator C on a Hilbert space H dilates to an operator T on a Hilbert space

K if there is an isometry V : H → K such that C = V ∗TV . A main result of this paper is, for

a positive integer d, the simultaneous dilation, up to a sharp factor ϑ(d), expressed as a ratio

of Γ functions for d even, of all d× d symmetric matrices of operator norm at most one to a

collection of commuting self-adjoint contraction operators on a Hilbert space.

Dilating to commuting operators has consequences for the theory of linear matrix inequali-

ties (LMIs). Given a tuple A = (A1, . . . , Ag) of ν×ν symmetric matrices, L(x) := I−
∑
Ajxj

is a monic linear pencil of size ν. The solution set SL of the corresponding linear matrix in-

equality, consisting of those x ∈ Rg for which L(x) � 0, is a spectrahedron. The set DL of tuples

X = (X1, . . . , Xg) of symmetric matrices (of the same size) for which L(X) := I −
∑
Aj ⊗Xj

is positive semidefinite, is a free spectrahedron. It is shown that any tuple X of d×d symmetric

matrices in a bounded free spectrahedron DL dilates, up to a scale factor depending only on

d, to a tuple T of commuting self-adjoint operators with joint spectrum in the correspond-

ing spectrahedron SL. From another viewpoint, the scale factor measures the extent that a

positive map can fail to be completely positive.

Given another monic linear pencil L̃, the inclusion DL ⊆ DL̃ obviously implies the inclusion

SL ⊆ SL̃ and thus can be thought of as its free relaxation. Determining if one free spectra-

hedron contains another can be done by solving an explicit LMI and is thus computationally

tractable. The scale factor for commutative dilation of DL gives a precise measure of the worst

case error inherent in the free relaxation, over all monic linear pencils L̃ of size d.

The set C(g) of g-tuples of symmetric matrices of norm at most one is an example of a free

spectrahedron known as the free cube and its associated spectrahedron is the cube [−1, 1]g.

The free relaxation of the the NP-hard inclusion problem [−1, 1]g ⊆ SL was introduced by

Ben-Tal and Nemirovski. They obtained the lower bound ϑ(d), expressed as the solution of an

optimization problem over diagonal matrices of trace norm 1, for the divergence between the

original and relaxed problem. The result here on simultaneous dilations of contractions proves

this bound is sharp. Determining an analytic formula for ϑ(d) produces, as a by-product, new

probabilistic results for the binomial and beta distributions.
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1. Introduction

Free analysis [KVV14] and the theory of free functions and free sets traces its roots back

to the work of Taylor [Tay72, Tay73]. Free functions generalize the notion of polynomials in

g-tuples of freely noncommuting variables and free sets are appropriately structured subsets

of the union, over d, of g-tuples of d × d matrices. The current interest in the subject arises

in large part due to its applications in free probability [Voi04, Voi10], systems engineering

and connections to optimization [Bal11, BGR90, BGFB94, dOHMP09, SIG96] and operator

algebras and systems [Arv69, Arv72, Pau02, BLM04, Pis03, Dav12, DK15]. The main branch

of convex optimization to emerge in the last 20 years, semidefinite programming [Nem06], is

based on linear pencils, linear matrix inequalities (LMIs) and spectrahedra [BGFB94, WSV00].

The book [BPR13] gives an overview of the substantial theory of LMIs and spectrahedra and

the connection to real algebraic geometry. A linear pencil L is a simple special case of a free

function and is of special interest because the free spectrahedron DL = {X : L(X) � 0} is

evidently convex and conversely an algebraically defined free convex set is a free spectrahedron

[EW97, HM12]. In this article the relation between inclusions of spectrahedra and inclusions

of the corresponding free spectrahedra is explored using operator theoretic ideas. The analysis

leads to new dilation theoretic results and to new probabilistic results and conjectures which can

be read independently of the rest of this article by skipping now to Section 1.8. It also furnishes

a complete solution to the matrix cube problem of Ben-Tal and Nemirovski [B-TN02], which

contains, as a special case, the π
2 -Theorem of Nesterov [Nes97] and which in turn is related to

the symmetric Grothendieck Inequality.

A central topic of this paper is dilation, up to a scale factor, of a tuple X of d × d

symmetric matrices in a free spectrahedron DL to tuples T of commuting self-adjoint operators

with joint spectrum in the corresponding spectrahedron SL. We shall prove that these scaled

commutative dilations exist and the scale factor describes the error in the free relaxation

DL ⊆ DL̃ of the spectrahedral inclusion problem SL ⊆ SL̃. The precise results are stated

in Section 1.3. As a cultural note these scale factors can be interpreted as the amount of

modification required to make a positive map completely positive; see Section 1.4.

In this paper we completely analyze the free cubes, C(g), the free spectrahedra consisting

of g-tuples of symmetric matrices of norm at most one; the corresponding spectrahedron is the

cube [−1, 1]g. We show that, for each d, there exists a collection Cd of commuting self-adjoint

contraction operators on a Hilbert space, such that, up to the scale factor ϑ(d), any d × d
symmetric contraction matrix dilates to T in Cd; see Section 1.1. Moreover, we give a formula

for the optimal scale factor ϑ(d); see Section 1.2. As a consequence, we recover the error

bound given by Ben-Tal and Nemirovski for the computationally tractable free relaxation of

the NP-hard cube inclusion problem. Further, we show that this bound is best possible, see

Section 1.5.

Proof of sharpness of the error bound ϑ(d) and giving a formula for ϑ(d) requires con-

catenating all of the areas we have discussed and it requires all but a few sections of this

paper. For example, finding a formula for ϑ(d) required new results for the binomial and beta
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distributions and necessitated a generalization of Simmons’ Theorem [Sim1894] (cf. [PR07]) to

Beta distributions. Our results and conjectures in probability-statistics appear in Section 1.8.

The rest of the introduction gives detailed statements of the results just described and a

guide to their proofs.

1.1. Simultaneous dilations. Denote by N := {1, 2, 3, . . . } the set of positive integers and

by R the set of real numbers. For n ∈ N, denote by Sn the set of symmetric n × n matrices

with entries from R. A matrix X ∈ Sn dilates to an operator T on a Hilbert space H if

there is an isometry V : Rn → H such that X = V ∗TV . Alternately, one says that X is a

compression of T . A tuple X ∈ Sgn dilates to a tuple T = (T1, . . . , Tg) of bounded operators

on a Hilbert space H if there is an isometry V : Rn → H such that X = V ∗TV (in the sense

that Xj = V ∗TjV ). In other words, T has the form

Ti =

(
Xi ∗i
∗i ∗i

)
where the ∗i are bounded operators between appropriate Hilbert spaces.

One of the oldest dilation theorems is due to Naimark [Nai43]. In its simplest form it

dilates a tuple of (symmetric) positive semidefinite matrices (of the same size) which sum to

the identity to a tuple of commuting (symmetric) projections which sum to the identity. It has

modern applications in the theory of frames from signal processing. In this direction, perhaps

the most general version of the Naimark Dilation Theorem dilates a (possibly nonselfadjoint)

operator valued measure to a (commuting) projection valued measure on a Banach space. The

most general and complete reference for this result and its antecedents is [HLLL14a] with

[HLLL14b] being an exposition of the theory. See also [LS13]. A highly celebrated dilation

result in operator theory is the power dilation theorem of Sz.-Nagy [SzN53] which, given a

contraction X, constructs a unitary U such that Xn dilates to Un for natural numbers n.

That von Neumann’s inequality is an immediate consequence gives some measure of the power

of this result. The two variable generalization of the Sz.-Nagy dilation theorem, the power

dilation of a commuting pair of contractions to a commuting pair of unitaries, is known as

the commutant lifting theorem (there are counterexamples to commutant lifting for more than

two contractions) and is due to Ando, Foias-Sz.-Nagy, Sarason. It has major applications to

linear systems engineering; see [Bal11, FFGK98, BGR90] as samples of the large literature.

The (latest revision of the) classic book [SzNFBK10, Chapter 1.12] contains further remarks

on the history of dilations. Power dilations up to a scale factor K are often called K-spectral

dilations and these are a highly active are of research. An excellent survey article is [BB13].

The connections between dilations and completely positive maps were exposed most fa-

mously in the work of Arveson [Arv69, Arv72]. Presently, dilations and completely positive

maps appear in many contexts. For examples, they are fundamental objects in the theory of

operator algebras, systems and spaces [Pau02] as well as in quantum computing and quantum

information theory [NC11]. In the articles [HKM12, HKM13], the theory of completely posi-

tive maps was used to systematically study free relaxations of spectrahedral inclusion problems
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which arise in semidefinite programming [Nem06, WSV00] and systems engineering [B-TN02]

for instance. In this article, dilation theory is used to measure the degree to which a positive

map can fail to be completely positive, equivalently the error inherent in free relaxations of

spectrahedral inclusion.

The dilation constant ϑ(d) for dilating d × d contractions to commuting contractions

operators is given by the following optimization problem [B-TN02] which is potentially of

independent interest.

(1.1)
1

ϑ(d)
:= min

a∈Rd
|a1|+···+|ad|=d

∫
Sd−1

∣∣∣∣∣
d∑
i=1

aiξ
2
i

∣∣∣∣∣ dξ = min
B∈Sd

tr |B|=d

∫
Sd−1

|ξ∗Bξ| dξ

where the unit sphere Sd−1 ⊆ Rd (having dimension d − 1) is equipped with the uniform

probability measure (i.e., the unique rotation invariant measure of total mass 1). That ϑ(d) can

be expressed using incomplete beta functions will be seen in Section 1.2. Evidently ϑ(d) ≥ 1.

A self-adjoint operator Y on H is a contraction if I ± Y � 0 or equivalently ‖Y ‖ ≤ 1.

Theorem 1.1 (Simultaneous Dilation). Let d ∈ N. There is a Hilbert space H, a family Cd
of commuting self-adjoint contractions on H, and an isometry V : Rd → H such that for each

symmetric d× d contraction matrix X there exists a T ∈ Cd such that

1

ϑ(d)
X = V ∗TV.

Moreover, ϑ(d) is the smallest such constant in the sense that if ϑ′ ∈ R satisfies 1 ≤ ϑ′ <
ϑ(d), then there is g ∈ N and a g-tuple of d× d symmetric contractions X such that

1

ϑ′
X does

not dilate to a g-tuple of commuting self-adjoint contractions on a Hilbert space.

Proof. The first part of Theorem 1.1 is stated and proved as Theorem 5.9. The optimality of

ϑ(d) is proved as part of Theorem 5.10. The Hilbert space H, isometry V and collection Cd
are all explicitly constructed. See equations (3.2), (3.3) and (3.4).

1.2. Solution of the minimization problem (1.1). In this section matrices B which pro-

duce the optimum in Equation (1.1) are described and a formula for ϑ(d) is given in terms of

Beta functions. Recall, the incomplete beta function is, for real arguments α, β > 0, and an

additional argument p ∈ [0, 1], defined by

Bp(α, β) =

∫ p

0
xα−1(1− x)β−1dx.

The Euler beta function is B(α, β) = B1(α, β) and the regularized (incomplete) beta function is

Ip(α, β) =
Bp(α, β)

B(α, β)
∈ [0, 1].

The minimizing matrices B to (1.1) will have only two different eigenvalues. For nonneg-

ative numbers a, b and s, t ∈ N, let J(s, t; a, b) = aIs⊕ (−b)It denote the d× d diagonal matrix

J(s, t; a, b) with first s diagonal entries a and last t diagonal entries −b.



COMMUTING DILATIONS AND LINEAR MATRIX INEQUALITIES 5

The description of the solution to (1.1) depends on the parity of d.

Theorem 1.2. If d is an even positive integer, then

(1.2)
1

ϑ(d)
=

∫
Sd−1

∣∣∣∣ξ∗J (d2 , d2 ; 1, 1

)
ξ

∣∣∣∣ dξ = 2I 1
2

(
d

4
,
d

4
+ 1

)
− 1 =

Γ
(

1
2 + d

4

)
√
π Γ
(
1 + d

4

)
where Γ denotes the Euler gamma function. In particular, the minimum in (1.1) occurs at a

B = J(s, t; a, b) with s = t = d
2 and a = b = 1.

In the case that d is odd, there exist a, b ≥ 0 such that

1

ϑ(d)
=

∫
Sd−1

∣∣∣ξ∗J (d+ 1

2
,
d− 1

2
; a, b

)
ξ
∣∣∣ dξ(1.3)

= 2I a
a+b

(
d− 1

4
,
d+ 1

4
+ 1

)
− 1 = 2I b

a+b

(
d+ 1

4
,
d− 1

4
+ 1

)
− 1,(1.4)

and ad+1
2 + bd−1

2 = d. This last equation together with (1.4) uniquely determines a, b. Further-

more, the minimum in (1.1) occurs at a B = J(s, t; a, b) with s = d+1
2 and t = d−1

2 .

1.2.1. Proof of Theorem 1.2. The proof is involved but we now describe some of the ideas. A

key observation is that the minimum defining ϑ(d) in (1.1) can be taken over matrices of the

form J(s, t; a, b), instead of over all symmetric matrices B with tr(|B|) = d; see Proposition

4.2. In addition, s + t = d and we may take as + bt = d = tr |J(s, t, a, b)|. The key identity

connecting Beta functions to J is∫
Sd−1

∣∣ξ∗J(s, t; a, b)ξ
∣∣ dξ =

∫
Sd−1

∣∣∣∣∣∣a
s∑
j=1

ξ2
j − b

d∑
j=s+1

ξ2
j

∣∣∣∣∣∣ dξ
=

2

d

(
asI a

a+b

(
t

2
,
s

2
+ 1

)
+ btI b

a+b

(
s

2
,
t

2
+ 1

))
− 1,

(1.5)

which is verified in Section 6.

The optimality conditions for the optimization problem (1.1) (with J(s, t; a, b) replacing

B ∈ Sd) are presented in Section 9, and the proof of Theorem 1.2 concludes in Section 12.

Bounds on the integral (1.4) representing ϑ(d) when d is odd can be found below in

Theorem 13.1.

1.2.2. Coin flipping and Simmons’ Theorem. Theorem 1.2 is closely related to coin flipping.

For example, when d is divisible by 4, the right hand side of (1.2) just becomes the probability

of getting exactly d
4 heads when tossing a fair coin d

2 times, i.e.,(d
2
d
4

)(
1

2

) d
2

.

Furthermore, a core ingredient in analyzing the extrema of (1.5) or (1.1) as needed for ϑ(d) is

the following inequality.
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Theorem 1.3. For d ∈ N and s, t ∈ N with s+ t = d, if s ≥ d

2
, then

(1.6) I s
d

(
s

2
+ 1,

t

2

)
≥ 1− I s

d

(
s

2
,
t

2
+ 1

)
.

Proof. See Section 10.

If s, d in Theorem 1.3 are both even, equivalently s
2 and t

2 are natural numbers, then (1.6)

reduces to the following: toss a coin whose probability for head is s
d ≥

1
2 , d times. Then the

probability of getting fewer than s heads is no more than the probability of getting more than

s heads. This result is known in classical probability as Simmon’s Theorem [Sim1894].

Further probabilistic connections are described in Section 1.8.

1.3. Linear matrix inequalities (LMIs), spectrahedra and general dilations. In this

section we discuss simultaneous dilation of tuples of symmetric matrices satisfying linear matrix

inequalities to commuting self-adjoint operators.

For A,B ∈ Sn, write A � B (or B � A) to express that B−A is positive semidefinite (i.e.,

has only nonnegative eigenvalues). Given a g-tuple A = (A1, . . . , Ag) ∈ Sgν , the expression

(1.7) LA(x) = Iν −
g∑
j=1

Ajxj

is a (monic) linear pencil and LA(x) � 0 is a linear matrix inequality (LMI). Its solution

set SLA = {x ∈ Rg : LA(x) � 0} is a spectrahedron (or an LMI domain) containing 0 in

its interior [BPR13, BGFB94]. Conversely, each spectrahedron with non-empty interior can

be written in this form after a translation [HV07]. Every polyhedron is a spectrahedron. For

example, that the cube [−1, 1]g in Rg is an example of a spectrahedron, is seen as follows. Let

Ej denote the g× g diagonal matrix with a 1 in the (j, j) entry and zeros elsewhere and define

C ∈ Sg2g by setting

(1.8) Cj :=

(
1 0

0 −1

)
⊗ Ej =

(
Ej 0

0 −Ej

)
for j ∈ {1, . . . , g}. The resulting spectrahedron SLC is the cube [−1, 1]g.

For n ∈ N and tuples X ∈ Sgn, let

LA(X) = Iνn −
g∑
j=1

Aj ⊗Xj , and

DLA(n) =
{
X ∈ Sgn : LA(X) � 0

}
,

where ⊗ is the Kronecker tensor product. The sequence DLA = (DLA(n))n is a free spec-

trahedron. In particular, DLA(1) = SLA and DLC (n) is the collection of g-tuples of n × n
symmetric contraction matrices. We call C(g) := DLC the free cube (in g-variables). Free

spectrahedra are closely connected with operator systems for which [FP12, KPTT13, Arv08]

are a few recent references.
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1.3.1. Dilations to commuting operators. The general dilation problem is as follows: given a

linear pencil L and a tuple X ∈ DL, does X dilate to a commuting tuple T of self-adjoint

operators with joint spectrum in SL?

Suppose L is a monic linear pencil in g-variables and the corresponding spectrahedron SL

is bounded. Because there exist constants c and C such that

cC(g) ⊆ DL ⊆ C C(g),

from Theorem 1.1 it follows that for each n ∈ N, and X ∈ DL(n) there exists a t ∈ R>0, a

Hilbert space H, a commuting tuple T of self-adjoint operators on H with joint spectrum in

SL and an isometry V : Rn → H such that

X = V ∗
1

t
TV.

The largest t such that for each X ∈ DL(n) the tuple tX dilates to a commuting tuple of self-

adjoint operators with joint spectrum in SL is the commutability index of L, denoted by

τ(L)(n). (If SL is not bounded, then there need not be an upper bound on t.) The constants

c, C and Theorem 1.6 below produce bounds on t depending only upon the monic pencil L and

n.

1.3.2. Spectrahedral inclusion problem. Given two monic linear pencils L, L̃ and corresponding

spectrahedra, determine if the inclusion SL ⊆ SL̃ holds. The article [HKM13] considered the

free variable relaxation of this inclusion problem, dubbed the free spectrahedral inclusion

problem: when does the containment DL ⊆ DL̃ hold? In [HKM13, HKM12] it is shown,

via an algorithm and using complete positivity, that any such free inclusion problem can be

converted to an SDP feasibility problem (whose complexity status is unknown but is believed

to be efficient to solve in theory and practice; cf. [WSV00, Ch. 8.4.4]). (See also Section 1.4

below.)

1.3.3. Accuracy of the free relaxation. Now that we have seen free spectrahedral inclusion

problems are in principle solvable, what do they say about the original inclusion problem?

Inclusion of free sets DL ⊆ DL̃ implies trivially the inclusion of the corresponding classical

spectrahedra SL ⊆ SL̃. Conversely, in the case that SL̃ is bounded there exists c, C > 0 such

that

cC(g) ⊆ DL̃ ⊆ CC
(g),

and hence there exists an r ∈ R>0 such that

SL ⊆ SL̃ implies rDL ⊆ DL̃.

We call such an r an DL-DL̃-inclusion constant. Theorem 1.6 and the constants c, C produce

a lower bound on r. Let r(L, L̃) denote the largest such r (if SL̃ is not assumed bounded, then

a largest r need not exist) and let

r(L)(d) := min
{
r(L, L̃) : L̃ is of size d and SL ⊆ SL̃

}
.

We call the sequence r(L) := (r(L)(d))d the DL-inclusion scale.
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The connection between spectrahedral inclusions and general dilations arises as follows:

Theorem 1.4. Suppose L is a monic linear pencil and SL is bounded.

(1) The commutability index for L equals its inclusion scale, τ(L) = r(L). That is τ(L)(d) is

the largest constant such that

τ(L)(d) DL ⊆ DL̃

for each d and monic linear pencil L̃ of size d satisfying SL ⊆ SL̃.

(2) If DL is balanced (i.e., for each X ∈ DL we have −X ∈ DL), then for each n ∈ N,

τ(L)(n) ≥ 1

n
.

Proof. The proof appears in Section 8.

1.4. Interpretation in terms of completely positive maps. The intimate connection

between dilations and completely positive maps was first exposited by Stinespring [Sti55] to

give abstract necessary and sufficient conditions for the existence of dilations. The theme

was explored further by Arveson, see e.g. [Arv69, Arv72]; we refer the reader to [Pau02] for a

beautiful exposition. We next explain how our dilation theoretic results pertain to (completely)

positive maps.

The equality between the commutability index and the inclusion scale (Theorem 1.4)

can be interpreted via positive and completely positive maps. Loosely speaking, each unital

positive map can be scaled to a unital completely positive map in a uniform way.

Suppose A ∈ Sgν is such that the associated spectrahedron SLA is bounded. If Ã ∈ Sgη is

another g-tuple, consider the unital linear map

Φ : span{I, A1, . . . , Ag} → span{I, Ã1, . . . , Ãg}

Aj 7→ Ãj .
(1.9)

(It is easy to see that Φ is well-defined by the boundedness of SLA .) For c ∈ R we define the

following scaled distortion of Φ:

Φc : span{I, A1, . . . , Ag} → span{I, Ã1, . . . , Ãg}
I 7→ I

Aj 7→ cÃj .

Corollary 1.5. With the setup as above, c := τ(LA)(η) is the largest scaling factor with the

following property: if Ã ∈ Sgη and if Φ is positive, then Φc completely positive.

Proof. A map Φ as in (1.9) is k-positive iff DLA(k) ⊆ DLÃ(k) by [HKM13, Theorem 3.5]. Now

apply Theorem 1.4.
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1.5. Matrix cube problem. Given A ∈ Sgd, the matrix cube problem of Ben-Tal and Ne-

mirovski [B-TN02] is to determine, whether SLC = [−1, 1]g ⊆ SLA . While their primary

interest in this problem came from robust analysis (semidefinite programming with interval

uncertainty and quadratic Lyapunov stability analysis and synthesis), this problem is in fact

far-reaching. For instance, [B-TN02] shows that determining the maximum of a positive definite

quadratic form over the unit cube is a special case of the matrix cube problem (cf. Nesterov’s
π
2 -Theorem [Nes97], or the Goemans-Williamson [GoWl95] SDP relaxation of the Max-Cut

problem). Furthermore, it implies the symmetric Grothendieck inequality. A very recent oc-

currence of the matrix cube problem is described in [BGKP16], see their Equation (1.3). There

a problem in statistics is shown equivalent to whether a LMI, whose coefficients are Hadamard

products of a given matrix, contains a cube.

Of course, one could test the inclusion SLC ⊆ SLA by checking if all vertices of the cube

SLC are contained in SLA . However, the number of vertices grows exponentially with the

dimension g. Indeed the matrix cube problem is NP-hard [B-TN02, Nem06]; see also [KTT13].

A principal result in [B-TN02] is the identification of a computable error bound for a natural

relaxation of the matrix cube problem. In [HKM13] we observed this relaxation is in fact

equivalent to the free relaxation C(g) ⊆ DLA .

With the notations introduced above, we can now present the theorem of Ben-Tal and

Nemirovski bounding the error of the free relaxation.

Theorem 1.6 ([B-TN02]). Given g, ν ∈ N and B ∈ Sgν , if [−1, 1]g ⊆ SLB , then

(a) C(g) ⊆ ϑ(ν) DLB ;

(b) if d ∈ N is an upper bound for the ranks of the Bj, then C(g) ⊆ ϑ(d) DLB .

Proof. Part (a) of Theorem 1.6 is shown, in Theorem 5.10, to be a consequence of our Dilation

Theorem 1.1. A further argument, carried out in Section 7, establishes part (b).

In this article we show that the bound ϑ(d) in Theorem 1.6(a) (and hence in (b)) is sharp.

Theorem 1.7. Suppose d ∈ N and ϑ′ ∈ R. If 1 ≤ ϑ′ < ϑ(d), then there is g ∈ N and A ∈ Sgd
such that [−1, 1]g ⊆ SLA, but C(g)(d) 6⊆ ϑ′ DLA(d).

Proof. See Section 5.4.

Remark 1.8. Theorem 1.4 applied to the free cube(s) implies, for a given g, that τ(C(g))

equals r(C(g)) and, for fixed d, the sequences (τ(C(g))(d))g and (r(C(g))(d))g termwise decrease

with g to a common limit, which, in view of Theorems 1.6 and 1.7, turns out to be ϑ(d).

In particular, for any g and any g-tuple C of symmetric contractive matrices there exists a

g-tuple of commuting self-adjoint contractions T on Hilbert space such that 1
ϑ(d)C dilates to

T , a statement considerably weaker than the conclusion of Theorem 1.1. �

1.6. Matrix balls. Paulsen [Pau02] studied the family of operator space structures associ-

ated to a normed vector space. Among these, he identified canonical maximal and minimal

structures and measured the divergence between them with a parameter he denoted by α(V )
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[Pau02]. In the case that V is infinite dimensional, α(V ) =∞ and if V has dimension g, then√
g

2 ≤ α(V ) ≤ g. Let `g1 denote the vector space Cg with the `1 norm. Its unit ball is the cube

[−1, 1]g and in this case
√

g
2 ≤ α(`g1) ≤

√
g − 1.

We pause here to point out differences between his work and the results in this paper,

leaving it to the interested reader to consult [Pau02] for precise definitions. Loosely, the max-

imal and minimal operator space structures involve quantifying over matrices, not necessarily

symmetric, of all sizes d. By contrast, in this article the matrices are symmetric, the coeffi-

cient are real, we study operator systems (as opposed to spaces) determined by linear matrix

inequalities and, most significantly, to this point the size d is fixed. In particular, for the

matrix cube, the symmetric matrix version of `g1 with the minimal operator space structure,

the parameter ϑ(d) obtained by fixing d and quantifying over g remains finite.

Let `g2 denote the Cg with the `2 (Euclidean) norm and let Bg denote the (Euclidean) unit

ball in Rg. In Section 14, we consider the free relaxation of the problem of including Bg into a

spectrahedron with g, but not d, fixed. Thus we study the symmetric variable analog of α(`g2).

Among our findings is that the worst case inclusion scale is exactly g. By contrast, α(`g2) is

only known to be bounded above by g

2
1
4

[Pis03] and below by roughly g+1
2 [Pau02].

1.7. Adapting the Theory to Free Nonsymmetric Variables. In this brief subsection

we explain how our dilation theoretic results extend to nonsymmetric variables. That is,

we present the Simultaneous Dilation Theorem (Corollary 1.9) dilating arbitrary contractive

complex matrices to commuting normal contractions up to a scaling factor.

Corollary 1.9 (Simultaneous Dilation). Let d ∈ N. There is a Hilbert space H, a family Nd

of commuting normal contractions on H, and an isometry V : Cd → H such that for each

complex d× d contraction matrix X there exists a T ∈ Nd such that

1√
2 ϑ(2d)

X = V ∗TV.

Proof. Given any d× d complex contraction X, the matrices

S =
1

2
(X +X∗), K =

1

2i
(X −X∗)

are self-adjoint contractions with S + iK = X. Consider the R-algebra ∗-homomorphism

ι : Md(C)→M2d(R)

(aij)
d
i,j=1 7→

(
(Re aij)

d
i,j=1 (Im aij)

d
i,j=1

−(Im aij)
d
i,j=1 (Re aij)

d
i,j=1

)
A straightforward calculation shows

Y =
1

2

(
Id
iId

)∗
ι(Y )

(
Id
iId

)
for any Y ∈Md(C).
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Let C2d, H and V be as in Theorem 1.1. Then ι(S), ι(K) dilate up to a factor 1
ϑ(2d) to

elements Ŝ, K̂ of C2d. Thus

1

ϑ(2d)
(ι(S) + i ι(K)) = V ∗(Ŝ + iK̂)V,

whence
1

ϑ(2d)
X = W ∗(Ŝ + iK̂)W,

where W is the isometry

W =
1√
2
V

(
Id
iId

)
.

Hence letting N2d = 1√
2
(C2d + iC2d) we have

1√
2ϑ(2d)

X = V ∗NV

for

N =
1√
2

(Ŝ + i K̂) ∈ Cd.

It is clear that elements of N2d are pairwise commuting normal contractions.

1.8. Probabilistic theorems and interpretations. This section assumes only basic knowl-

edge about the Binomial and Beta distributions and does not depend upon the rest of this

introduction. The proof of Theorem 1.2 produced, as byproducts, several theorems on the

Binomial and Beta distribution which are discussed here and in more detail in Section 15.

We thank Ian Abramson for describing a Bayesian perspective.

1.8.1. Binomial distributions. With d fixed, perform d independent flips of a biased coin whose

probability of coming up heads is p. Let S denote the random variable representing the number

of heads which occur, and let Pp(S = s) denote the probability of getting exactly s heads.

On the same probability space is the random variable T which represents the number of tails

which occur. Of course T = d − S and the probability of getting exactly t tails is denoted

Pp(T = t). The distribution of S,

Bin(d, p; s) :=

(
d

s

)
ps(1− p)t,

at s is Binomial with parameters p and d. Our main interest will be behavior of functions of

the form Pp(s)(S ≥ s) for a function p(s) close to s
d .

The Cumulative Distribution Function (CDF) of a Beta Distributed random variable

B with shape parameters s, t is the function of x denoted P b(s,t)(B ≤ x) = Ix(s, t). Its mean

is s
s+t and its probability density function (PDF) is

%s,t(x) =
1

B(s, t)
xs−1(1− x)t−1.
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When s, t are integers, The CDF for the Binomial Distribution with s+ t = d can be recovered

via

(1.10) Pp(S ≥ s) = Ip(s, t + 1) = P b(s,t+1)(B ≤ p).

For the complementary CDF using 1− Pp(S ≥ s) = 1− P b(s,t+1)(B ≤ p) gives

(1.11) Pp(S ≤ s− 1) = Pp(S < s) = P b(s,t+1)(B ≥ p).

1.8.2. Equipoints and medians. Our results depend on the nature and estimates of medians,

means or equipoints (defined below) all being measures of central tendency. Recall for any

random variable a median is defined to be an s in the sample space satisfying P (S ≤ s) ≥ 1
2

and P (S ≥ s) ≥ 1
2 . For a Binomial distributed random variable P s

d
the median is the mean is

the mode is s when s, d are integers.

Given a binomially distributed random variable S, we call es,t ∈ [0, 1] an equipoint of s,

provided

(1.12) Pes,t(S ≥ s) = Pes,t(S ≤ s).

Here s, t ∈ N, and d = s+t. Since Pes,t(S ≥ s)+Pes,t(S ≤ s) ≥ 1, Equation (1.12) implies s is a

median for S. A median is in N for Binomial and in R for Beta distributed random variables.

In practice equipoints and means are close. For example, when the PDF is Bin(10, s
10) the

mean is s
10 one can compute es,t for s = 1, . . . 10:

s 1 2 3 4 5 6 7 8 9 10

es,10−s 0.111223 0.208955 0.306089 0.403069 0.5 0.596931 0.693911 0.791045 0.888777 1

In contrast, the Beta Distribution is continuous, so for s, t ∈ R≥0 with d = s + t > 0 we

define es,t by

(1.13) P b(s+1,t)(B ≤ es,t) = P b(s,t+1)(B ≥ es,t),

and we call es,t the equipoint of the Beta(s, t) distribution. Equivalently,

P b(s,t+1)(B ≤ es,t) + P b(s+1,t)(B ≤ es,t) = 1.

In terms of the regularized beta function, es,t is determined by

(1.14) Ies,t (s, t+ 1) + Ies,t (s+ 1, t) = 1.

When s, t are integers, the probabilities in (1.12) and (1.13) coincide, so the two definitions

give the same es,t. Verifying this statement is an exercise in the notations. The connection

between equipoints and the theory of the matrix cube emerges in Section 10.

Example 1.10. Here is a concrete probabilistic interpretation of the equipoint es,t. Joe flips

a biased coin with probability p of coming up heads, but does not know p. After s− 1 heads

and t− 1 tails, the probability that p is less than r is Ir(s, t) by Bayes’ Theorem1.

The equipoint es,t pertains to the next toss of the coin. If it is a head (resp. tail), then

b(s + 1, t) (resp. b(s, t + 1)) becomes the new distribution for estimating p. From (1.13), the

1https://en.wikipedia.org/wiki/Checking_whether_a_coin_is_fair

https://en.wikipedia.org/wiki/Checking_whether_a_coin_is_fair
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equipoint is defined so that with the next toss the probability after a head that p is at most es,t
equals the probability after a tail that p is at least es,t. �

The next two subsections contain more information on equipoints and how they compare

to means and medians.

1.8.3. Equipoints compared to medians. Here is a basic property of equipoints versus medians

and means. Let 1
2N denote the set of all positive half-integers, i.e., all s = s

2 with s ∈ N.

Theorem 1.11. For d ∈ 1
2N and s, t ∈ 1

2N with s + t = d, if d
2 ≤ s < d, then

P s
d
(S < s) ≤ P s

d
(S > s) provided s, t, d ∈ N;(1.15)

P b(s,t+1)
(
B ≥ s

d

)
≤ P b(s+1,t)

(
B ≤ s

d

)
.(1.16)

Both (1.15) and (1.16) are equivalent to

(1.17) es,t ≤
s

d
.

We also have the lower bound

(1.18)
s + 1

s + t + 2
≤ es,t,

for real numbers s ≥ t ≥ 1.

Remark 1.12. The inequality (1.16) for integer s, t is Simmons’ Theorem, cf. [PR07]. The

lower bound is new. For half-integer s, t both our upper and lower bounds are new. �

Proof. The inequality (1.16) implies (1.15) by (1.10) and (1.11). However, (1.16) and es,t ≤ s
d

is the content of Theorem 10.1. The lower bound (1.18) is Proposition 11.2.

Computer experiments lead us to believe (1.17) is true for real numbers:

Conjecture 1.13. For s, t ∈ R>0 with s ≥ t, inequality (1.16) holds. Equivalently, es,t ≤
s

s + t
.

As a side-product of our quest for bounds on the equipoint we obtain new upper bounds

on the median mα,β of the Beta Distribution Beta(α, β).

Corollary 1.14. Suppose s, t ∈ R. If 1 ≤ s ≤ t and s + t ≥ 3, then

µs,t :=
s

s + t
≤ ms,t ≤ µs,t +

s− t

(s + t)2
.

Proof. The lower bound is known, see [GM77, PYY89]. The upper bound is proved in Corollary

11.7.
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1.8.4. Monotonicity of the CDF. A property of the functions

(1.19) Φ(s) := P b(s,d−s+1)(B ≤ es,d−s) and Φ̂(s) := P b(s,d−s+1)
(
B ≤ s

d

)
,

where B is a Beta distributed random variable, is one step monotonicity.

Theorem 1.15. Fix 0 < d ∈ R.

(1) Φ̂(s) ≤ Φ̂(s + 1) for s ∈ R with d
2 ≤ s < d− 1;

(2) Φ(s) ≤ Φ(s + 1) for s, d ∈ 1
2N with d

2 ≤ s < d− 1.

Proof. See Section 15.2.

Computer experiments lead us to believe monotonicity of Φ holds for real numbers s, t.

Conjecture 1.16. Φ(s) < Φ(s̃) for s, s̃, d ∈ R with 0 < d
2 ≤ s < s̃ < d.

The functions Φ and Φ̂ are based on the CDF. Analogous results hold for the PDF and

these appear in Section 15.2.1.

The monotonicity result of Theorem 1.15 allows us to identify the minimizers of Φ. Indeed

the following theorem restates Theorem 1.2 in probabilistic terms.

Theorem 1.17. For d ∈ 1
2N and d

2 ≤ s < d− 1, the function Φ of s ∈ 1
2N takes its minimum

at

(1) s = t =
d

2
if d ∈ N;

(2) s = d +
1

2
and t = d− 1

2 if d ∈ 1
2Nr N.

1.9. Reader’s guide. The rest of this article is organized as follows. Results relating dilations

to free spectrahedral inclusions needed for the proofs of the results for the matrix cube are

collected in Section 2. Further general results on free spectrahedral inclusions and dilations

appear in Section 8. The results of Section 4 simplify the identification of the optimum ϑ(d) as

defined by Equation (1.1). They also identify, implicitly, constrained versions of this optimum.

The results of the previous sections are combined in Section 5 to prove Theorem 1.1 and

Theorem 1.7, as well as the weaker version of Theorem 1.6 which asks that the matrices B

have size d, and not just rank at most d. In Section 6, the constrained optima from Section 4 are

identified, still implicitly, in terms of the regularized incomplete beta function, a result needed

to complete the proof of Theorem 1.6 in Section 7 as well as in the remaining sections of the

paper. Theorem 1.2 is reformulated in terms of the beta function in advance of the following

three sections which together establish Theorem 1.2. A half-integer generalization of Simmons’

Theorem, inspired by the strategy in [PR07] using two step monotonicity, is the topic of Section

10. A new lower bound for the median of the Beta distribution and bounds for the equipoint

appear in Section 11 and the bounds for the equipoint are used in Section 12 to complete

the proof of Theorem 1.2. Estimates for ϑ(d) in the case that d is odd appear in Section 13.

Section 14 considers the problem of including the unit ball in Rg into a spectrahedron, and
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uses dilation theory to prove the worst case error inherent in its free relaxation, namely g.

Finally, further probabilistic results and their proofs are exposited in Section 15.

The reader interested only in probabilistic results can proceed to Sections 10, 11 and

15. The reader interested only in the matrix cube problem can skip Section 8; whereas the

reader interested only in dilation results (absent formulas for ϑ(d)) can focus on the sections

up through and including Section 8.

The original version of this manuscript2 treated the case where the rank (size) d of the LMI

defining pencil of the containing spectrahedron is fixed, but the number of variables g is not.

Subsequently, we and Davidson, Dor-On, Shalit and Solel independently consider inclusion

problems for balls (where g is fixed, but d is not). Our results in this direction appear in

Section 14. We highly recommend the posting [DDSS17] for its many interesting results,

including a far reaching generalization of the symmetry based inclusion result of Proposition

14.1 and a fascinating connection with the theory of frames. In addition [DDSS17] extends

many spectrahedral inclusion results to the setting of (infinite dimensional) operators. (See also

[Zal17] which considers the operator setting, but with an emphasis on the unbounded domains.)

They also show if a tuple X of matrices dilates to a commuting tuple N of normal operators,

thenX dilates to a commuting tuple of normal matrices T satisfying the inclusion σ(T ) ⊆ σ(N).

In particular, using the (infinite dimensional) optimum bound ϑ(d) identified in this article, it

follows that given a tuple X (finite set) of d × d symmetric contractions, there exists a tuple

T of commuting symmetric matrices and an isometry V such that X = ϑ(d)V ∗TV .

2. Dilations and Free Spectrahedral Inclusions

This section presents preliminaries on free spectrahedral inclusions and dilations, tying

the existence of dilations to appropriate commuting tuples (the commutability index) to free

spectrahedral inclusion.

The following proposition gives a sufficient condition for the inclusion of one spectrahedron

in another. It will later be applied to C, the free cube. Recall the definitions of LA(x), LA(X),

DLA and SLA from Section 1.3. Any r > 0 (and necessarily 1 ≥ r) with the property that the

inclusion SLA ⊆ SLB implies the inclusion rDLA ⊆ DLB provides an estimate for the error in

testing spectrahedral inclusion using the free spectrahedral inclusion as a relaxation. Indeed,

suppose that SLA ⊆ SLB , but, for t > 1, that tSLA 6⊆ SLB . The free relaxation amounts to

finding the largest ρ such that ρDLA ⊆ DLB and concluding that necessarily ρSLA ⊆ SLB .

Since ρ ≥ r, it follows that r then provides a lower bound for the error.

Proposition 2.1. Suppose A is a g-tuple of symmetric m×m matrices, d is a positive integer,

r > 0 and for each X ∈ DLA(d) there is a Hilbert space H, an isometry W : Rd → H and a

tuple T = (T1, . . . , Tg) of commuting bounded self-adjoint operators Ti on H with joint spectrum

contained in SLA such that rXi = W ∗TiW for all i ∈ {1, . . . , g}. If B is a tuple of d × d
symmetric matrices and SLA ⊆ SLB , then rDLA ⊆ DLB .

2https://arxiv.org/abs/1412.1481

https://arxiv.org/abs/1412.1481
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Remark 2.2. It turns out that in the case of DLA = C(g), one only needs to assume that B

is a tuple of m×m symmetric matrices each of rank at most d. See [B-TN02] or Section 7 of

this paper, where an elaboration on the argument below plus special properties of the C(g) are

used to establish this result. �

The proof of the proposition employs the following lemma which will also be used in

Section 7.

Lemma 2.3. If A is a g-tuple of symmetric m×m matrices, B is a g-tuple of symmetric d×d
matrices and if %DLA(d) ⊆ DLB (d), then %DLA(n) ⊆ DLB (n) for every n.

Proof. Suppose %DLA(d) ⊆ DLB (d), n ∈ N, n ≥ d and (X1, . . . Xg) ∈ DLA(n). We have to

show that %(X1, . . . Xg) ∈ DLB (n). Given x ∈ Rd ⊗ Rn, write

x =
d∑
s=1

es ⊗ xs,

where es are the standard basis vectors of Rd. Let M denote the span of {xs : 1 ≤ s ≤ d} and

let P denote the projection onto M . Then

〈
(
∑

Bj ⊗Xj)x, x
〉

=
∑
j,s,t

〈Bjes, et〉 〈Xjxs, xt〉

=
∑
j,s,t

〈Bjes, et〉 〈PXjPxs, xt〉

=
〈
(
∑

Bj ⊗ PXjP )x, x
〉
.

(2.1)

Now %PXP = %(PX1P, . . . , PXgP ) ∈ %DLA(r) ⊆ DLB (r) where r ≤ d is the dimension of M .

Hence, by Equation (2.1),

%
〈
(
∑

Bj ⊗Xj)x, x
〉
≤ ‖x‖2.

For n < d, simply taking a direct sum with 0 (of size n− d) produces the tuple X ⊕ 0 ∈
DLA(d) and hence %X ⊕ 0 ∈ DLB (d) by hypothesis. Compressing to the first summand gives

%X ∈ DLB (n) and the proof is complete.

Proof of Proposition 2.1. Suppose SLA ⊆ SLB and let X ∈ DLA(d). Choose a Hilbert space

H, an isometry W : Rd → H and a tuple T = (T1, . . . , Tg) of commuting bounded self-adjoint

operators Ti on H with joint spectrum contained in SLA such that rXi = W ∗TiW for all

i ∈ {1, . . . , g}. Then the joint spectrum of T is contained in SLB . Writing B =
∑g

i=1Bixi
with symmetric Bi ∈ Sn, we have to show that r

∑g
i=1Bi ⊗Xi � Idn. Let E denote the joint



COMMUTING DILATIONS AND LINEAR MATRIX INEQUALITIES 17

spectral measure of T whose support is contained in SLB ⊆ Rg. Then

r

g∑
i=1

Bi ⊗Xi =

g∑
i=1

Bi ⊗W ∗TiW

=

g∑
i=1

Bi ⊗W ∗
(∫

SLB

yidE(y)

)
W

=

∫
SLB

(
g∑
i=1

Biyj

)
︸ ︷︷ ︸

�Id

⊗W ∗dE(y)W︸ ︷︷ ︸
�0

�
∫

SLB

Id ⊗W ∗dE(y)W

= Id ⊗W ∗
(∫

SLB

dE(y)

)
W

= Id ⊗W ∗ idHW = Id ⊗W ∗W = Id ⊗ In = Idn.

Hence X ∈ DLB (d). An application of Lemma 2.3 completes the proof.

3. Lifting and Averaging

This subsection details the connection between averages of matrices over the orthogonal

group and the dilations of tuples of symmetric matrices to commuting tuples of contractive

self-adjoint operators, a foundation for the proof of Theorem 1.1.

Let Md denote the collection of d×d matrices. Let O(d) ⊆Md denote the orthogonal group

and let dU denote the Haar measure on O(d). Let D(d) denote the collection of measurable

functions D : O(d) → Md which take diagonal contractive values. Thus, letting M(O(d),Md)

denote the measurable functions from O(d) to Md,

(3.1) D(d) = {D ∈M(O(d),Md) : D(U) is diagonal and ‖D(U)‖ ≤ 1 for every U ∈ O(d)}.

Let H denote the Hilbert space

(3.2) H = Rd ⊗ L2(O(d)) = L2(O(d))d = L2(O(d),Rd).

Let V : Rd → H denote the mapping

(3.3) V x(U) = x.

Thus, V embeds Rd into H as the constant functions. For D ∈ D(d), define MD : H → H by

(MDf)(U) = UD(U)U∗f(U)

for all U ∈ O(d). Because D(U) is pointwise a symmetric contraction for all U ∈ O(d), MD is

a self-adjoint contraction on H. Let

(3.4) Cd = {MD : D ∈ D(d)}.
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Remark 3.1. Alternately one could define V by V x(U) = U∗x instead of conjugating D(U)

by U and U∗. �

Lemma 3.2. Each MD is a self-adjoint contraction.

Lemma 3.3. If D,E ∈ D(d), then MDE = MD ◦ ME = ME ◦ MD. Thus, MD and ME

commute.

Proof. The result follows from the fact that D and E pointwise commute and hence the func-

tions U 7→ UD(U)U∗ and U 7→ UE(U)U∗ pointwise commute.

Lemma 3.4. The mapping V is an isometry and its adjoint

V ∗ : L2(O(d),Rd)→ Rd

is given by

V ∗(f) =

∫
O(d)

f(U)dU

for all f ∈ L2(O(d),Rd).

Proof. For all x ∈ Rn and f ∈ L2(O(d),Rd), we have

〈V x, f〉 =

∫
O(d)
〈x, f(U)〉dU =

〈
x,

∫
O(d)

f(U)dU

〉
,

thus computing V ∗. Moreover, V is an isometry as

〈V x, V x〉 =

〈
x,

∫
O(d)

xdU

〉
= 〈x, x〉.

Lemma 3.5. For D ∈ D(d),

V ∗MDV =

∫
O(d)

UD(U)U∗dU.

For notation purposes, let

(3.5) CD =

∫
O(d)

UD(U)U∗dU.
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Proof. For x ∈ Rd, we have,

CDx =

(∫
O(d)

UD(U)U∗dU

)
x

=

∫
O(d)

UD(U)U∗x dU

=

∫
O(d)

UD(U)U∗
(
(V x)(U)

)
dU

=

∫
O(d)

(MD(V x))(U) dU

= V ∗(MD(V x)).

Remark 3.6. Suppose S is a subset of D(d) and consider the family of symmetric matrices

(CD)D∈S . The lemmas in this subsection imply that this family dilates to the commuting

family of self-adjoint contractions (MD)D∈S . Let µ(D) := 1
‖CD‖ for D ∈ D(d) and suppose

µ := sup{µ(D) : D ∈ S}

is finite. It follows that the collection of symmetric contractions (µ(D)CD)D∈S dilates to the

commuting family (Mµ(D)D = µ(D)MD)D∈S of self-adjoint operators of operator norm at most

µ,

µ(D)CD = µ(D)V ∗MDV

for all D ∈ S.

Our aim, in the next few sections, is to turn this construction around. Namely, given

a family C ⊆ Md of symmetric contractions (not necessarily commuting), we hope to find a

t ∈ [0, 1] (as large as possible) and a family (FC)C∈C in D(d) such that

tC = V ∗MFCV.

for all C ∈ C. Any t so obtained feeds into the hypotheses of Proposition 2.1. �

4. A Simplified Form for ϑ

Given a symmetric matrix B, let sign0(B) = (p, n), where p, n ∈ N0 denote the num-

ber of nonnegative and negative eigenvalues of B respectively. It is valuable to think of the

optimization problem (1.1) over symmetric matrices B in two stages based on the signature.

Let

(4.1) κ∗(s, t) = min
B∈Sd

sign0(B)=(s,t)

tr |B|=d

∫
Sd−1

|ξ∗Bξ| dξ

and note that the minimization (1.1) is

(4.2)
1

ϑ(d)
= κ∗(d) := min{κ∗(s, t) : s+ t = d}.
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Given s, t ∈ N0 and a, b ≥ 0, let

J(s, t; a, b) := aIs ⊕−bIt.

Thus J(s, t; a, b) is the diagonal matrix whose diagonal reads

a, . . . , a︸ ︷︷ ︸
s times

,−b, . . . ,−b︸ ︷︷ ︸
t times

.

We simplify the optimization problem (1.1) as follows. The first step consists of showing,

for fixed s, t ∈ N0 (with s + t = d), that the optimization can be performed over the set

J(s, t; a, b) for a, b ≥ 0 such that as + bt = d. The second step is to establish, again for fixed

integers s, t, an implicit criteria to identify the values of a, b which optimize (4.1). Toward this

end we introduce the following notations. Define

(4.3) κ(s, t; a, b) :=

∫
Sd−1

|ξ∗J(s, t; a, b)ξ| dξ.

Finally, let for 1 ≤ j ≤ s,

(4.4) α(s, t; a, b) =

∫
Sd−1

sgn
[
ξ∗J(s, t; a, b)ξ

]
ξ2
j dξ,

and, for s+ 1 ≤ j ≤ d,

(4.5) β(s, t; a, b) = −
∫
Sd−1

sgn
[
ξ∗J(s, t; a, b)ξ

]
ξ2
j dξ.

(It is straightforward to check that α and β are independent of the choices of j.)

Remark 4.1. The quantities α = α(s, t; a, b) and β = β(s, t; a, b) are interpreted in terms of

the regularized beta function in Lemma 6.6. �

Proposition 4.2. For each d ∈ N, s, t ∈ N0 with s+ t = d, the minimum in Equation (4.1) is

achieved at a B of the form J(s, t; a, b) where a, b > 0 and as+ bt = d, and

κ∗(s, t) = min
as+bt=d

∫
Sd−1

|ξ∗J(s, t; a, b)ξ| dξ.

Moreover, κ∗(d, 0) = ka∗(0, d) ≥ κ∗(s, t) and for s, t ∈ N, the minimum occurs at a pair

a(s, t), b(s, t) uniquely determined by a(s, t), b(s, t) ≥ 0, sa(s, t) + tb(s, t) = d and

α(s, t; a(s, t), b(s, t)) = β(s, t; a(s, t), b(s, t)),

so that κ∗(s, t) = κ(s, t; a(s, t), b(s, t)). In particular,

κ∗(s, t) = dα(s, t; a(s, t), b(s, t)) = dβ(s, t; a(s, t), b(s, t)).

Consequently, the minimum in Equation (1.1) is achieved and is

(4.6) min
s+t=d

κ∗(s, t) = min
s+t=d

d β(s, t; a(s, t), b(s, t)).

It occurs at a B of the form J(s, t; a(s, t), b(s, t)).



COMMUTING DILATIONS AND LINEAR MATRIX INEQUALITIES 21

Proof. Let T denote the set of symmetric d×d matrices B such that tr(|B|) = d and note that

T is a compact subset of Sd. Hence (1.1) is well defined in that the infimum in the definition

of ϑ(d) is indeed a minimum. Fix a B ∈ T and suppose B has s nonnegative eigenvalues and

t negative eigenvalues (hence s+ t = d). Without loss of generality, assume that B is diagonal

with first s diagonal entries a1, . . . , as nonnegative and last t diagonal entries −bs+1, . . . ,−bd
negative (thus bj > 0). Thus,

∫
Sd−1

|ξ∗Bξ| dξ =

∫
Sd−1

∣∣∣ s∑
j=1

ajξ
2
j −

d∑
j=s+1

bjξ
2
j

∣∣∣ dξ.
Let Σ denote the subgroup of the group of permutations of size n which leave invariant

the sets {1, . . . , s} and {s+ 1, . . . , n}. Each σ ∈ Σ gives rise to a permutation matrix Vσ. It is

readily checked that

∫
Sd−1

|ξ∗V ∗σBVσξ| dξ =

∫
Sd−1

∣∣∣ s∑
j=1

aσ(j)ξ
2
j −

d∑
j=s+1

bσ(j)ξ
2
j

∣∣∣ dξ.
Let N denote the cardinality of Σ and note that a = 1

N

∑
σ∈Σ aσ(j), b = 1

N

∑
σ∈Σ bσ(j) are

independent of j. Thus,

1

N

∑
σ∈Σ

V ∗σBVσ =
∑
σ∈Σ

diag
(
aσ(1) . . . aσ(s) − bσ(s+1) . . . −bσ(d)

)
= J(s, t; a, b).

Further, as + bt = d (which depends on averaging over the subgroup Σ rather than the

full symmetric group) and hence J(s, t; a, b) ∈ T . Therefore,∫
Sd−1

∣∣ξ∗J(s, t; a, b)ξ
∣∣ dξ =

∫
Sd−1

∣∣∣ξ∗( 1

N

∑
σ∈Σ

V ∗σBVσ
)
ξ
∣∣∣ dξ

≤ 1

N

∑
σ∈Σ

∫
Sd−1

|ξ∗VσBVσξ| dξ =
1

N

∑
σ∈Σ

∫
Sd−1

|ξ∗Bξ| dξ

=

∫
Sd−1

|ξ∗Bξ| dξ.

Thus with s, t ≥ 0 and a, b ≥ 0

min
s+t=d
as+bt=d

∫
Sd−1

∣∣ξ∗J(s, t; a, b)ξ
∣∣ dξ ≤ min

B∈Sd
tr |B|=d

∫
Sd−1

|ξ∗Bξ| dξ.

By compactness of the underlying set for fixed d the minimum is attained; of course on a

diagonal matrix.
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Finally to write κ(s, t; a, b) in terms of α and β, note that

κ(s, t; a, b) =

∫
Sd−1

sgn
[
ξ∗J(s, t; a, b)ξ

] (
ξ∗J(s, t; a, b)ξ

)
dξ

=

∫
Sd−1

sgn
[
ξ∗J(s, t; a, b)ξ

](
a

s∑
j=1

ξ2
j − b

d∑
j=s+1

ξ2
j

)
dξ

= asα(s, t; a, b) + btβ(s, t; a, b).

To this point it has been established that there is a minimizer of the form B = J(s, t; a, b).

First note that α, β ≤ 1
d , since, for instance,

dα(s, t; a, b) ≤ d
∫
Sd−1

ξ2
j dξ =

∫
Sd−1

d∑
m=1

ξ2
m dξ =

∫
Sd−1

dξ = 1.

Hence,

κ(s, t; a, b) = asα(s, t; a, b) + btβ(s, t; a, b) ≤ 1

d
(as+ bt) = 1.

Moreover, in the case that s = d and t = 0, then B = I and κ∗(d, 0) = 1. Hence, κ∗(d, 0) ≥
κ∗(s, t). Turning to the case s, t ∈ N0, observe if b = 0, then a = d

s and κ(s, t; ds , 0) = 1 and

similarly, κ(s, t; 0, dt ) = 1. Hence, for such s, t, the minimum is achieved at a point in the

interior of the set {as + bt = d : a, b ≥ 0}. Thus, it can be assumed that minimum occurs at

B = J(s, t; a∗, b∗) for some a∗, b∗ > 0.

Any other J(s, t, a, b), for a, b near a∗, b∗, can be written as

J(s, t; a∗, b∗) + λJ(s, t; t,−s)

(in particular, a∗ + λt > 0 as well as b∗ − λs > 0). By optimality of a∗, b∗,

0 ≤
∫
|ξ∗J(s, t; a, b)ξ| dξ −

∫
|ξ∗J(s, t; a∗, b∗)ξ| dξ

=

∫ (
sgn[ξ∗J(s, t; a, b)ξ]− sgn[ξ∗J(s, t; a∗, b∗)ξ]

)
ξ∗J(s, t; a∗, b∗)ξ dξ

+ λ

∫
sgn[ξ∗J(s, t; a, b)ξ] ξ∗J(s, t; t,−s)ξ dξ,

where the integrals are over Sd−1. Observe that the integrand of the first integral on the right

hand side is always nonpositive and is negative on a set of positive measure. Hence this integral

is negative. Hence,

(4.7) 0 < λ

∫
sgn[ξ∗J(s, t; a, b)ξ] ξ∗J(s, t; t,−s)ξ dξ.

Choosing λ > 0, dividing Equation (4.7) by λ and letting λ tend to 0 gives

0 ≤
∫

sgn[ξ∗J(s, t; a∗, b∗)ξ] ξ
∗J(s, t; t,−s)ξ dξ.

On the other hand, choosing λ < 0, dividing by λ and letting λ tend to 0 gives the reverse

inequality.
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Hence,

0 =

∫
sgn[ξ∗J(s, t; a∗, b∗)ξ] ξ

∗J(s, t; t,−s)ξ dξ = st (α(s, t; a∗, b∗)− β(s, t; a∗, b∗)) .

Finally, the uniqueness of a∗, b∗ follows from the strict inequality in Equation (4.7), since

λ 6= 0 corresponds exactly to (a, b) 6= (a∗, b∗). We henceforth denote (a∗, b∗) by (a(s, t), b(s, t)).

In particular, (a(s, t), b(s, t)) is uniquely determined by a, b ≥ 0, as+ bt = d and α(s, t; a, b) =

β(s, t; a, b).

Note from the proof a limitation of our α = β optimality condition. It was obtained by

fixing s, t and then optimizing over a, b ≥ 0. Thus it sheds no light on subsequent minimization

over s, t. To absorb this information requires many of the subsequent sections of this paper.

5. ϑ is the Optimal Bound

In this section we establish Theorems 1.7 and 1.1. We also state and prove a version of

Theorem 1.6 under the assumption that B is a tuple of d×d matrices, rather than the (weaker)

assumption that it is a tuple of n × n matrices each with rank at most d. In Section 5.2 we

begin to connect, in the spirit of Remark 3.6, the norm of CD to that of MD. The main results

are in Section 5.4.

5.1. Averages over O(d) equal averages over Sd−1. The next trivial lemma allows us to

replace certain averages over O(d) with averages over Sd−1.

Lemma 5.1. Suppose B is a Banach space and let Sd−1 ⊆ Rd denote the unit sphere. If

(5.1) f : Sd−1 → B,

is an integrable function and γ ∈ Sd−1, then

(5.2)

∫
Sd−1

f(ξ) dξ =

∫
O(d)

f(Uγ) dU.

In particular, ∫
O(d)

f(Uγ) dU

does not depend on γ ∈ Sd−1.

We next apply Lemma 5.1 to represent the matrices CD defined in Equation (3.5) as

integrals over Sd−1. Given J ∈ Sd and choosing an arbitrary unit vector γ in Rd, define a

matrix EJ by

EJ :=

∫
O(d)

sgn
[
γ∗U∗JUγ

]
Uγγ∗U∗ dU.

Note that EJ depends only on J but not on γ. In fact,

(5.3) EJ =

∫
Sd−1

sgn[ξ∗Jξ]ξξ∗ dξ
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by Lemma 5.1. Given J ∈ Sd, define

DJ : O(d)→Md

into the diagonal matrices given by

(5.4) DJ(U) :=
d∑
j=1

sgn[e∗jU
∗JUej ] eje

∗
j .

In particular DJ ∈ D(d), where D(d) is defined in Equation (3.1). Recall, from (3.5), the

definition of CD. In particular,

CDJ =

∫
O(d)

UDJ(U)U∗dU.

Lemma 5.2. For J ∈ Sd, independent of j,

CDJ = d EJ =
d∑
j=1

∫
O(d)

sgn[e∗jU
∗JUej ]eje

∗
jdU = d

∫
Sd−1

sgn[ξ∗Jξ]ξξ∗ dξ.

Further, if J 6= 0, then CDJ 6= 0.

Proof. The first statement follows from the definitions and Equation 5.3. For the second

statement, observe that

tr(EJJ) =

∫
Sd−1

|ξ∗Jξ| dξ > 0.

Remark 5.3. The rest of this paper uses averaging over the sphere and not the orthogonal

group. But it should be noted that various arguments in Section 3 use integration over the

orthogonal group in an essential way. �

5.2. Properties of matrices gotten as averages. This section describes properties of the

matrices EJ defined by Equation (5.3).

Lemma 5.4. If U is an orthogonal matrix and J ∈ Sd, then

EU∗JU = U∗EJU.

Proof. Using the invariance of Haar measure,

EU∗JU =

∫
Sd−1

sgn[ξ∗U∗JUξ] ξξ∗ dξ

=

∫
Sd−1

sgn
[
(U∗ξ)∗U∗JU(U∗ξ)

]
(U∗ξ)(U∗ξ)∗ dξ

=

∫
Sd−1

sgn[ξ∗UU∗JUU∗ξ]U∗ξξ∗U dξ,

= U∗EJU.

Recall the definitions of α(s, t; a, b) and β(s, t; a, b) from Equations (4.4) and (4.5).
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Lemma 5.5. For s, t ∈ N and a, b ≥ 0,

EJ(s,t;a,b) = J
(
s, t;α(s, t; a, b), β(s, t; a, b)

)
= α(s, t; a, b)Is ⊕−β(s, t; a, b)It.

Moreover if a, b are not both 0, then α(s, t; a, b) and β(s, t; a, b) are not both zero.

Proof. If X,Y are s × s and t × t orthogonal matrices respectively, then U = X ⊕ Y ∈ O(d)

commutes with J := J(s, t; a, b) and by Lemma 5.4,

U∗EJU = EJ .

It follows that there exists α0 and β0 such that EJ = J(s, t;α0, β0). That not both α0 and β0

are zero follows from Lemma 5.2 which says EJ 6= 0. Finally, in view of Equation (5.3),

α0 = 〈EJe1, e1〉 =

∫
Sd−1

sgn[ξ∗J(s, t; , a, t)ξ] ξ2
1 dξ = α(s, t; a, b)

and similarly β0 = β(s, t; a, b).

Lemma 5.6. Let s, t ∈ N0 be given and let d = s + t. Let a(s, t), b(s, t) denote the pair from

Proposition 4.2. Thus, a(s, t), b(s, t) is uniquely determined by

(i) a(s, t), b(s, t) ≥ 0;

(ii) s a(s, t) + t b(s, t) = d;

(iii) α(s, t; a(s, t), b(s, t)) = β(s, t : a(s, t), b(s, t));

and produces the minimum,

(iv) κ∗(s, t) = κ(s, t; a(s, t), b(s, t)) = dα(s, t, a(s, t), b(s, t)).

Abbreviate J∗ = J
(
s, t; a(s, t), b(s, t)

)
; then

(5.5) EJ∗ =
κ∗(s, t)

d
J(s, t; 1, 1).

Proof. Since Proposition 4.2 contains the first four items, it only remains to establish Equation

(5.5). From Lemma 5.5 and Item (iii),

dEJ∗ = d α(s, t; a(s, t), b(s, t))J(s, t; 1, 1) = κ∗(s, t)J(s, t; 1, 1).

5.3. Dilating to commuting self-adjoint operators. A d × d matrix R is a signature

matrix if R = R∗ and R2 = I. Thus, a symmetric R ∈ Sd is a signature matrix if its spectrum

lies in the set {−1, 1}. Let E (d) denote d × d signature matrices and C(d) the set of d × d
symmetric contractions. Thus E (d) ⊆ C(d).

Lemma 5.7. The set of extreme points of the set of C(d) is E (d). Moreover, each element of

C(d) is a (finite) convex combination of elements of E (d).

By Caratheodory’s Theorem, there is a bound on the number of summands needed in

representing an element of C(d) as a convex combination of elements of E (d).
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Proof. Suppose for the moment that the set of extreme points of C(d) is a subset of E (d).

Since E (d) is closed and C(d) is compact, it follows that C(d) = co(E (d)) = co(E (d)), where

co denotes convex hull. Thus the second part of the lemma will follow once it is shown that

the extreme points of C(d) lie in E (d).

Suppose X ∈ C(d) is not in E (d). Without loss of generality, we may assume X is diagonal

with diagonal entries δk. In particular, there is an ` such that |δ`| 6= 1. Thus, there exists

y, z ∈ (0, 1) such that y + z = 1 and y − z = δ`. Let Y denote the diagonal matrix with k-th

diagonal entries δk for j 6= ` and with `-th diagonal entry 1. Define Z similarly, but with `-th

diagonal entry −1. It follows that yY + zZ = X. Thus X is not an extreme point of C(d) and

therefore the set of extreme points of C(d) is a subset of E (d).

The proof that each E ∈ E (d) is an extreme point is left to the interested reader.

Our long march of lemmas now culminates in the following lemma. Recall the definitions

of κ∗(s, t) and κ∗(d) from the outset of Section 4. A symmetric matrix R is a symmetry

matrix if R2 is projection. Equivalently, R is a symmetry matrix if R = R∗ and the spectrum

of R lies in the set {−1, 0, 1}. For a symmetric matrix D, the triple sign(D) = (p, z, n),

called the signature of D, denotes the number of positive, zero and negative eigenvalues of D

respectively. Note that a symmetry matrix R is determined, up to unitary equivalence, by its

signature.

Lemma 5.8. If R is a signature matrix with s positive eigenvalues and t negative eigenvalues,

then there exists D ∈ D(d) such that

κ∗(s, t)R = V ∗MDV.

In particular, replacing D with D′ = κ∗(d)
κ∗(s,t)

D and noting that κ∗(d) ≤ κ∗(s, t), we have D′ ∈
D(d) and

κ∗(d)R = V ∗MD′V.

Here V is the isometry from Lemma 3.4. We emphasize that the V does not depend on R or

even on s, t.

Proof. There is an s, t and unitary W such that R = W ∗J(s, t; 1, 1)W . From Lemma 5.6, there

exists a J∗ ∈ Sd such that EJ∗ = κ∗(s,t)
d J(s, t; 1, 1). Using Lemmas 3.5, 5.2 and 5.4,

V ∗MDW∗J∗W
V = CDW∗J∗W

= dEW ∗J∗W

= W ∗dEJ∗W

= W ∗d
κ∗(s, t)

d
J(s, t; 1, 1)W

= κ∗(s, t)W
∗J(s, t; 1, 1)W

= κ∗(s, t)R.



COMMUTING DILATIONS AND LINEAR MATRIX INEQUALITIES 27

Theorem 5.9. Given d, there exists family Cd of commuting self-adjoint contractions on a

(common) Hilbert space H and an isometry V : Rd → H such that for each contraction C ∈ Sd,
there is a TC ∈ Cd with

κ∗(d)C = V ∗TCV.

Proof. Set H := L2(O(d),Rd) and let V : Rd → H denote the isometry from Lemma 3.4. Let

Cd denote the collection of operators MD for D ∈ D(d). By Lemma 3.3, Cd is a collection of

commuting operators. By Lemma 3.2, each MD is a self-adjoint contraction. Finally, observe

that Cd is convex.

By Lemma 5.7 there exists an h and signature matrices R1, . . . , Rh such that C =∑n
j=1 cjRj , where cj ≥ 0 and

∑
cj = 1. By Lemma 5.8, there exists S1, . . . , Sh ∈ Cd such that

κ∗(d)Rk = V ∗SkV for k ∈ {1, . . . , h}. Hence, κ∗(d)C = V ∗SV, where S =
∑
cjSj ∈ Cd.

5.4. Optimality of κ∗(d). The following theorem contains the optimality statement of The-

orem 1.1 and Theorem 1.7. It also contains a preliminary version of Theorem 1.6. Recall C(g)

is the sequence (C(g)(d))d and C(g)(d) is the set of g-tuples of symmetric d× d contractions.

Theorem 5.10. For each g and d, if B is any g-tuple of symmetric d × d matrices, then

[−1, 1]g ⊆ SLB implies κ∗(d)C(g) ⊆ DLB .

Conversely, if κ > κ∗(d), then there exists a g and a g-tuple of symmetric matrices B such

that [−1, 1]g ⊆ SLB , but κC(g) 6⊆ DLB .

In particular, ϑ(d) = (κ∗(d))−1 is the optimal constant in Theorem 1.1.

Proof. Starting with the proof of the second statement, fix d and suppose κ > κ∗(d). Let

(ŝ, t̂) be a pair for which κ∗(d) = κ∗(ŝ, t̂). Let (â, b̂) be a pair of positive numbers such that

ŝâ + t̂b̂ = d and κ∗(d) = κ(ŝ, t̂; â, b̂) coming from Lemma 5.6. Let Ĵ = J(ŝ, t̂; â, b̂) and define

the distinguished (infinite variable pencil) L̂ : L∞(O(d))→ Sd by

(5.6) L̂(x) =
1

κ∗(d)

∫
O(d)

U∗ Ĵ U x(U) dU,

for x ∈ L∞(O(d)). By analogy with the sets DLB , let DL̂(n) denote those measurable X :

O(d)→ Sn such that

L̂(X) =
1

κ∗(d)

∫
O(d)

U∗ Ĵ U ⊗X(U) dU,

satisfies I − L̂(X) � 0.

Let C∞ denote the sequence of sets (C∞(n)), where elements of C∞(n) are measurable

functions

X : O(d)→ Sn,

such that X(U) is a symmetric contraction for each U ∈ O(d). In particular, x ∈ C∞(1) is an

element of L∞(O(d)) of norm at most one and C∞ can be thought of as an infinite dimensional

matrix cube.
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Given x ∈ C∞(1) and a unit vector e, note that

e∗L̂(x)e ≤ 1

κ∗(d)

∫
O(d)
|e∗U∗ĴUe| dU =

1

κ∗(d)

∫
Sd−1

|ξ∗Ĵξ| dξ = 1.

Thus I − L̂(x) � 0. Hence C∞(1) ⊆ DL̂(1) = SL̂.

Now consider the mapping X : O(d)→ O(d) defined by

X(U) = U∗J(ŝ, t̂; 1, 1)U.

In particular, X pointwise has norm one and thus X ∈ C∞(d). We next show that X 6∈ 1
κDL̂(d).

For U ∈ O(d), let Z(U) = U∗ĴU . With e =
1√
d

d∑
j=1

ej ⊗ ej ,

e∗(Z(U)⊗X(U))e =
1

d

d∑
s,t=1

e∗sZ(U)ete
∗
sX(U)et =

1

d
〈Z(U), X(U)〉tr,

where 〈·, ·〉tr is the trace inner product,

〈A,B〉tr = tr(AB∗) =
∑
j,k

e∗jAeke
∗
kBej .

Now,

tr(Z(U)X(U)) = tr(U∗ĴJ(ŝ, t̂; 1, 1)U)

= tr(ĴJ(ŝ, t̂; 1, 1)) = ŝa(ŝ, t̂) + t̂b(ŝ, t̂)

= d.

Hence

e∗L̂(X)e =
1

κ∗(d)

∫
e∗(Z(U)⊗X(U))e dU

=
1

κ∗(d)

1

d
d.

Thus ‖L̂(X)‖ ≥ 1
κ∗(d) >

1
κ , so

1

κ
I − L̂(X) 6� 0

as predicted.

We next realize L̂ as a limit of pencils LB with B ∈ Sgd. Suppose (Pk) is a sequence of

(measurable) partitions of O(d) and write Pk = {Pk,1, . . . , Pk,gk}. Consider the corresponding

gk-tuples Ak = (Ak1, . . . , A
k
gk

) ∈ Sgkd , where

Akj =
1

κ∗(d)

∫
Pk,j

U∗ Ĵ U dU =

∫
Pk,j

Z(U) dU,

and the associated homogeneous linear pencil,

Lk(x) =

gk∑
j=1

Akjxj .
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Given y ∈ C(gk)(1) = [−1, 1]gk , let x =
∑gk

j=1 yjχPk,j , where χP denotes the characteristic

function of the set P . Since x ∈ C∞(1) and

Lk(y) = L̂(x),

it follows that y ∈ SL
Ak

. Thus, [−1, 1]gk ⊆ SL
Ak

.

Suppose that Uk,j are given points in Pk,j . Given k, let Xk = (Xk
1 , . . . , X

k
gk

) where

Xk
j = X(Uk,j) = U∗k,jJ(ŝ, t̂; 1, 1)Uk,j .

In particular, ‖Xk
j ‖ ≤ 1. Evaluate,

Lk(X
k) =

1

κ∗(d)

gk∑
j=1

Ak,j ⊗Xk,j .

Hence

L̂(X)− Lk(Xk) =

gk∑
j=1

∫
Pk,j

Z(U)⊗
(
X(U)−X(Uk,j)

)
dU.

The uniform continuity of X(U) implies there exists a choice of Pk,j and Uk,j such that Lk(X
k)

converges to L̂(X). Hence, ‖Lk(Xk)‖ > κ for sufficiently large k. Consequently X ∈ Cgk(d),

but κX /∈ DL
Ak

(d) and the proof of the second statement is complete.

Turning to the first part of the theorem, suppose that B is a g-tuple of d × d symmetric

matrices and [−1, 1]g ⊆ SLB . Given a g-tuple X ∈ C(g)(d), Theorem 5.9 produces a Hilbert

space H, a g-tuple of commuting self-adjoint contractions on H, an isometry V : Rd → H such

that

κ∗(d)Xj = V ∗TjV,

a relationship summarized by κ∗(d)X = V ∗TV. By Proposition 2.1, κ∗(d)C(g) ⊆ DLB and the

proof of the first statement of the theorem is complete.

For the last statement in the theorem, suppose κ has the property that for every g each

g-tuple of commuting symmetric matrices of size d dilates to a tuple of commuting symmetric

contractions on Hilbert space. Proposition 2.1 implies κC(g) ⊆ DLB for any g-tuple B of

symmetric matrices of size d such that [−1, 1]g ⊆ SLB . Hence, by what has already been

proved, κ ≤ κ∗(d).

6. The Optimality Condition α = β in Terms of Beta Functions

In this section α(s, t; a, b) and β(s, t; a, b) which were defined in Equations (4.4) and (4.5)

(see also Lemma 5.5) are computed in terms of the regularized incomplete beta function. See

Lemma 6.6. A consequence is the relation of Equation (1.5). Lemma 6.5 figures in the proof

of Theorem 1.6 in Section 7.

Let Γ denote the Euler gamma function [Rai71].

Lemma 6.1. Suppose m ∈ R≥0. Then∫ ∞
0

rme−r
2
dr =

1

2
Γ

(
m+ 1

2

)
.
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Proof. Setting s := r2, we have rm = s
m
2 and ds

dr = dr2

dr = 2r, i.e., dr = ds
2r = ds

2
√
s
. Then∫ ∞

0
rme−r

2
dr =

∫ ∞
0

s
m
2

2
√
s
ds =

1

2

∫ ∞
0

s
m−1

2 ds =
1

2
Γ

(
m+ 1

2

)
.

Lemma 6.2. ∫
Rn
e−‖x‖

2
dx = π

n
2 .

Proof.∫
Rn
e−‖x‖

2
dx =

∫
R
· · ·
∫
R
e−x

2
1 . . . e−x

2
ndxn . . . dx1 =

(∫
R
e−x

2
dx

)n
6.1
= Γ

(
1

2

)n
= π

n
2 .

We equip the unit sphere in Sn−1 ⊆ Rn with the unique rotation invariant probability

measure.

Remark 6.3. Recall that the surface area of the n− 1-dimensional unit sphere Sn−1 ⊆ Rn is

area(Sn−1) =
nπ

n
2

Γ(1 + n
2 )

=
2π

n
2

Γ(n2 )
.

�

Now we come to a key step, converting integrals over the sphere Sd−1 to integrals over

Rd.

Lemma 6.4. Suppose A ∈ Rd×d and f : Rd → R is quadratically homogeneous, i.e., f(λx) =

λ2f(x) for all x ∈ Rd and λ ∈ R. Suppose furthermore that f |Sd−1 is integrable on Sd−1. Then∫
Sd−1

f(ξ)dξ =
2

dπ
d
2

∫
Rd
f(x)e−‖x‖

2
dx and

d

∫
Sd−1

f(ξ)dξ =
1

(2π)
d
2

∫
Rd
f(x)e−

‖x‖2
2 dx.

Proof. The first equality follows from∫
Rd
f(x)e−‖x‖

2
dx =

∫
Sd−1

∫ ∞
0

area(rSd−1)f(rξ)e−‖rξ‖
2
drdξ

=

∫
Sd−1

∫ ∞
0

rd−1 area(Sd−1)r2f(ξ)e−r
2
drdξ

= area(Sd−1)

(∫ ∞
0

rd+1e−r
2
dr

)∫
Sd−1

f(ξ)dξ

=
dπ

d
2

Γ(1 + d
2)

1

2
Γ

(
1 +

d

2

)∫
Sd−1

f(ξ)dξ.

where the last equation uses Remark 6.3 and Lemma 6.1. The proof of the second equality is

similar and is left as an exercise for the reader.
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Lemma 6.5. Suppose J ∈ Rd×d is any matrix and consider the zero matrix 0u := 0 ∈ Ru×u.

Suppose also i, j ∈ {1, . . . , d}. Then there is some γ ∈ R such that

∫
Sd+u−1

sgn
[
ξ∗(J⊕0u)ξ

]
ξiξj dξ =


d

d+ u

∫
Sd−1

sgn[ξ∗Jξ] ξiξj dξ if i, j ∈ {1, . . . d}

γ if i = j ∈ {d+ 1, . . . d+ u}
0 otherwise

Proof. Set

C :=
1

2
(d+ u)π

d+u
2 and c :=

1

2
dπ

d
2 .

By Lemma 6.4, the left hand side equals equals

1

C

∫
Rd+u

sgn[x∗(J ⊕ 0s)x]xixje
−‖x‖2dx.

If i, j ∈ {1, . . . , d}, then this in turn equals

1

C

∫
Rd

∫
Ru

sgn[y∗Jy] yiyj e
−‖y‖2−‖z‖2 dzdy =

1

C

(∫
Ru
e−‖z‖

2
dz

)∫
Rd

sgn[y∗Jy] yiyje
−‖y‖2 dy

=
c

C
π
u
2

∫
Sd−1

sgn[ξ∗Jξ]ξiξjdξ

where the last equality follows from Lemmas 6.2 and 6.4. If i, j ∈ {d + 1, . . . , d + u}, then it

equals

1

C

∫
Rd

∫
Ru

sgn[y∗Jy] zi−dzj−d e
−‖y‖2−‖z‖2dzdy

which equals up to a constant depending only on J the integral∫
Ru
zi−dzj−de

−‖z‖2dz

which is zero for symmetry reasons if i 6= j and which depends only on u if i = j. The

remaining case where one of i and j is in {1, . . . , d} and the other one in {d + 1, . . . , d + u}
follows similarly.

Lemma 6.6. Let s, t ∈ N, d := s+ t and a, b ∈ R≥0 with a+ b > 0. Then

(6.1) α(s, t; a, b) :=

∫
Sd−1

sgn[ξ∗J(s, t; a, b)ξ]ξ2
i dξ =

1

d

(
2I a

a+b

(
t

2
,
s

2
+ 1

)
− 1

)
for all i ∈ {1, . . . , s}. Analogously,

(6.2) β(s, t; a, b) := −
∫
Sd−1

sgn[ξ∗J(s, t; a, b)ξ]ξ2
i dξ =

1

d

(
2I b

a+b

(
s

2
,
t

2
+ 1

)
− 1

)
for all i ∈ {s+ 1, . . . , s+ t}. An additional obvious property is

(6.3) α(s, t; a, b) = β(t, s; b, a).
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Proof. We have∫
Sd−1

sgn[ξ∗J(s, t; a, b)ξ]ξ2
i dξ

6.4
=

2

dπ
d
2

∫
Rd

sgn[x∗J(s, t; a, b)x]x2
i e
−‖x‖2dx

=
2

sdπ
d
2

∫
Rd

sgn[x∗J(s, t; a, b)x] (x2
1 + · · ·+ x2

s)e
−‖x‖2dx

=
2

sdπ
d
2

∫
Rs

∫
Rt

sgn[a‖y‖2 − b‖z‖2] ‖y‖2e−‖y‖2−‖z‖2 dz dy

=
2

sdπ
d
2

∫ ∞
0

area(σSs−1)

∫ ∞
0

area(τSt−1) sgn[aσ2 − bτ2] σ2e−σ
2−τ2 dτ dσ

=
2

sdπ
d
2

∫ ∞
0

σs−1 2π
s
2

Γ( s2)

∫ ∞
0

τ t−1 2π
t
2

Γ( t2)
sgn[aσ2 − bτ2] σ2e−σ

2−τ2 dτ dσ

=
8

sdΓ( s2)Γ( t2)

∫ ∞
0

∫ ∞
0

σs+1τ t−1 sgn[aσ2 − bτ2] e−σ
2−τ2 dτ dσ

=
8

sdΓ( s2)Γ( t2)

∫ ∞
0

r

∫ π
2

0
(r cosϕ)s+1(r sinϕ)t−1 sgn[a(cosϕ)2 − b(sinϕ)2] e−r

2
dϕ dr

=
8

sdΓ( s2)Γ( t2)

(∫ ∞
0

rd+1e−r
2
dr

)∫ π
2

0
(cosϕ)s+1(sinϕ)t−1 sgn[a(cosϕ)2 − b(sinϕ)2]dϕ dr

6.1
=

4Γ
(
d
2 + 1

)
sdΓ( s2)Γ( t2)

∫ π
2

0
(cosϕ)s+1(sinϕ)t−1 sgn[a(cosϕ)2 − b(sinϕ)2] dϕ

=
Γ
(
d
2

)
sΓ( s2)Γ( t2)

∫ 1

0
(1− x)

s+1−1
2 x

t−1−1
2 sgn[a(1− x)− bx] dx

=
1

sB
(
s
2 ,

t
2

) ∫ 1

0
(1− x)

s
2x

t
2
−1 sgn[a− (a+ b)x] dx

using a change of variable x = (sinϕ)2 which makes

dx

dϕ
= 2(sinϕ)(cosϕ) = 2

√
x
√

1− x.

Now suppose that a, b ∈ R≥0 with a+ b > 0. Then the integral in the last expression equals

∫ a
a+b

0
(1− x)

s
2x

t
2
−1dx−

∫ 1

a
a+b

(1− x)
s
2x

t
2
−1dx

=B a
a+b

(
t

2
,
s

2
+ 1)−

∫ b
a+b

0
x
s
2 (1− x)

t
2
−1dx

=B a
a+b

(
t

2
,
s

2
+ 1

)
−B b

a+b

(
s

2
+ 1,

t

2

)
.
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Using

B

(
s

2
,
t

2

)
=

Γ
(
s
2

)
Γ
(
t
2

)
Γ
(
d
2

) =
d

s

s
2Γ
(
s
2

)
Γ
(
t
2

)
d
2Γ
(
d
2

) =
d

s

Γ
(
s
2 + 1

)
Γ
(
t
2

)
d
2Γ
(
d
2 + 1

) =
d

s
B

(
s

2
+ 1,

t

2

)
,

we see that

α(s, t; a, b) =
1

d

(
I a
a+b

(
t

2
,
s

2
+ 1

)
− I b

a+b

(
s

2
+ 1,

t

2

))
where I denotes the regularized (incomplete) beta function. Finally, (6.1) follows using

I1−p(ζ, η) = 1− Ip(η, ζ).

The proof of (6.2) is similar.

7. Rank versus Size for the Matrix Cube

In this section we show how to pass from size d to rank d in the first part of Theorem

5.10, thus completing our dilation theoretic proof of Theorem 1.6. Accordingly fix, for the

remainder of this section, positive integers d ≤ m.

Given positive integers s, t, u and numbers a, b, c, let

J(s, t, u; a, b, c) = aIs ⊕−bIt ⊕ cIu.

Lemma 7.1. Given positive integers s, t with s+ t = d and nonnegative numbers a, b, c, there

exists real numbers α, β, and γ such that

J(s, t,m− d;α, β, γ) = m

∫
Sm−1

sgn[ξ∗J(s, t,m− d; a, b, c)ξ] ξξ∗ dξ.

Proof. Given Uv ∈ O(v), for v = s, t,m−d, let U denote the block diagonal matrix with entries

Us, Ut, Um−d. Thus, U ∈ O(m) and U commutes with J(s, t,m−d; a, b, c). The conclusion now

follows, just as in Lemma 5.5.

Lemma 7.2. For each s, t with s+ t = d, there exists a γ = γ(s, t) such that

(7.1) κ∗(s, t)J(s, t, u; 1, 1, γ(s, t)) = m

∫
Sm−1

sgn[ξ∗J(s, t,m− d; a(s, t), b(s, t), 0)ξ] ξξ∗ dξ.

Here κ∗(s, t), a(s, t) and b(s, t) are the optimal choices from Proposition 4.2.

Proof. Denote the right hand side of (7.1) by E. Then by Lemma 6.5,

eiEej =


d

∫
Sd−1

sgn[ξ∗J(s, t; a(s, t), b(s, t))ξ] eiξξ
∗ej dξ if i = j ∈ {1, . . . , d}

γ if i = j ∈ {d+ 1, . . . ,m}
0 otherwise

for some γ ∈ R and all i, j ∈ {1, . . . ,m}. On the other hand, from Lemma 5.6,

κ∗(s, t)

d
J(s, t; 1, 1) =

∫
Sd−1

sgn[ξ∗J(s, t; a(s, t), b(s, t))ξ] ξξ∗ dξ.
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Hence, with P denoting the projection of Rd ⊕ Rm−d onto the first d coordinates,

PEP = κ∗(s, t)J(s, t; 1, 1)

and the conclusion of the lemma follows.

Let H denote the Hilbert space Rm⊗L2(O(m)) and let V : Rm → H denote the isometry,

V x(U) = x.

Thus H and V are the Hilbert space and isometry (with m in place of d) from Equations (3.2)

and (3.3). Recall too the collection D(m) of contractive measurable mappings D : O(m)→Mm

taking diagonal values, and, for D ∈ D(m), the contraction operator MD : H → H.

Lemma 7.3. For each m ×m symmetry matrix R of rank d there exists a D ∈ D(m) such

that

κ∗(d) PRP = PV ∗MDV P,

where P is the projection onto the range of R.

Proof. The proof is similar to the proof of Lemma 5.8. Let s and t denote the number of

positive and negative eigenvalues of R. Hence, R = W ∗J(s, t,m− d; 1, 1, 0)W for some m×m
unitary W . Let J∗ = J(s, t,m− d; a(s, t), b(s, t), 0) and define D ∈ O(m) by

D(U) =

m∑
j=1

sgn[e∗jU
∗W ∗JWUej ] eje

∗
j dU.

Now, by Lemma 3.5, Remark 5.3 and Lemma 7.2,

V ∗MDW∗J∗W
V = CDW∗J∗W

=

∫
O(m)

UD(U)U∗ dU

=
m∑
j=1

∫
O(m)

sgn[e∗jU
∗W ∗JWUej ]Ueje

∗
jU
∗ dU

=

m∑
j=1

∫
O(m)

sgn[e∗jU
∗JUej ]W

∗Ueje
∗
jU
∗W dU

= W ∗
( m∑
j=1

∫
O(m)

sgn[e∗jU
∗JUej ]Ueje

∗
jU
∗ dU

)
W

= mW ∗
( ∫

Sm−1

sgn[ξ∗Jξ] ξξ∗ dξ
)
W

= κ∗(s, t)W
∗J(s, t,m− d; 1, 1, γ(s, t))W.

The observation

PW ∗J(s, t,m− d; 1, 1, γ(s, t))WP = PW ∗J(s, t,m− d; 1, 1, 0)WP

completes the proof.
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Given a g-tuple M = (M1, . . . ,Mg) of d-dimensional subspaces of Rm, let C(M) denote

the collection of g-tuples of m ×m symmetric contractions C = (C1, . . . , Cg) where each Cj
has range in Mj .

Lemma 7.4. The set C(M) is closed and convex and its extreme points are the tuples of the

form E = (E1, . . . , Eg), where each Ej is a symmetry matrix with rank d.

Proof. Given a subspaceN of Rm of dimension d, note that the set n×n symmetric contractions

with range in N is a convex set whose extreme points are symmetry matrices whose range is

exactly N (cf. Lemma 5.7). Since M = ×gj=1Mj the result follows.

Lemma 7.5. Suppose X = (X1, . . . , Xg) is a tuple of m × m symmetric contractions. If

P1, . . . , Pg is a tuple of rank d projections, then there exists a tuple of m × m symmetric

contractions Y = (Y1, . . . , Yg) such that

(i) PjXjPj = PjYjPj; and

(ii) there exists a tuple of commuting self-adjoint contractions Z = (Z1, . . . , Zg) on a Hilbert

space H such that κ∗(d)Y lifts to Z.

Thus, there exists an isometry W : Rm → H such that

Yj =
1

κ∗(d)
W ∗ZjW and PjW

∗ZjWPj = PjXjPj .

Proof. LetMj denote the range of Pj . Let Cj = PjXjPj . By Lemma 7.4, there exists a positive

integer N and extreme points E1, . . . , EN in C(M) and nonnegative numbers ε1j , . . . , ε
N
j that

sum to 1 such that

Cj =

N∑
k=1

εkjE
k
j .

For each k, j there exist positive integers skj , t
k
j such that skj + tkj = 1 and a unitary matrix W k

j

such that (W k
j )∗Rd ⊕ {0} =Mj and

Ekj = (W k
j )∗J(skj , t

k
j ,m− d, 1, 1, 0)W k

j .

In particular,

Ekj = PjE
k
j Pj .

By Lemma 7.3, there exists Dk
j ∈ D(m) such that

κ∗(d)Ekj = PjV
∗MDkj

V Pj .

Let

Zj =
∑
k=1

εkjMDkj
.
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Thus Z is a g-tuple of commuting contractions and

PjV
∗ZjV Pj =

N∑
k=1

εkjPjV
∗MDkj

V Pj

=
N∑
k=1

εkjE
k
j

= Cj .

Choosing Yj = V ∗ZjV completes the proof since the Zj are commuting self-adjoint contractions

(and V is an isometry independent of j).

7.1. Proof of Theorem 1.6. Our dilation theoretic proof of Theorem 1.6 concludes in this

subsection. Accordingly, suppose B = (B1, . . . , Bg) is a given g-tuple of m × m symmetric

matrices of rank at most d and [−1, 1]g ⊆ SB. We are to show κ∗(d)C(g) ⊆ DB.

Let

ΛB(x) =

g∑
j=1

Bjxj

be the homogeneous linear pencil associated with B. The aim is to show that ΛB(κ∗(d)X) � I
for tuples X ∈ C(g) and, by Lemma 2.3, it suffices to suppose X has size m. Let x ∈ Rm⊗Rm

be a given unit vector. The proof reduces to showing

κ∗(d)〈ΛB(X)x, x〉 ≤ 1.

Fix j and let {fj1, fj2, . . . , fjd} denote an orthonormal basis for the range of Bj (or any

d-dimensional subspace that contains the range of Bj). This uses the rank at most d as-

sumption. Extend this basis to an orthonormal basis {fj1, . . . , fjm} of all Rm. Note that

fjp ∈ {fj1, fj2, . . . , fjd}⊥ ⊆ (imBj)
⊥ = kerBj for all j ∈ {1, . . . , g} and p ∈ {d + 1, . . . ,m}

since Bj is symmetric. The unit vector x can be written in g different ways (indexed by

j ∈ {1, . . . , g}) as

x =

m∑
p=1

fjp ⊗ xjp,

for vectors xjp ∈ Rm. Let Pj be the orthogonal projection onto

Mj := span({xj1, . . . , xjd})
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and compute for j fixed and any m×m tuple Y such that PjYjPj = PjXjPj ,

〈
(Bj ⊗Xj)x, x

〉
=

m∑
p,q=1

〈Bjfjp, fjq〉 〈Xjxjp, xjq〉

=

d∑
p,q=1

〈Bjfjp, fjq〉 〈Xjxjp, xjq〉

=
d∑

p,q=1

〈Bjfjp, fjq〉 〈PjXjPjxjp, xjq〉

=

d∑
p,q=1

〈Bjfjp, fjq〉 〈PjYjPjxjp, xjq〉

=
d∑

p,q=1

〈Bjfjp, fjq〉 〈Yjxjp, xjq〉

=
m∑

p,q=1

〈Bjfjp, fjq〉 〈Yjxjp, xjq〉

=
〈
(Bj ⊗ Yj)x, x

〉
.

From Lemma 7.5 there exists a Hilbert space K (infinite dimensional generally), an isom-

etry V : Rm → K and a tuple of commuting self-adjoint contractions Z = (Z1, . . . , Zg) acting

on K such that Yj , defined by κ∗(d)Yj = V ∗ZjV, satisfies PjYjPj = PjXjPj . Hence,

κ∗(d)〈ΛB(X)x, x〉 = κ∗(d)〈ΛB(Y )x, x〉

=
〈
(Im ⊗ V ∗)ΛB(Z)(Im ⊗ V )x, x

〉
= 〈ΛB(Z)z, z〉,

where z = (I ⊗ V )x. In particular, z is a unit vector. Since Z is a commuting tuple of

self-adjoint contractions, just as in Proposition 2.1, the inclusion [−1, 1]g ⊆ SLB implies,

〈ΛB(Z)z, z〉 ≤ 1.

The final conclusion is

κ∗(d)〈ΛB(X)x, x〉 ≤ 1.

8. Free Spectrahedral Inclusion Generalities

This section begins with a bound on the inclusion scale which depends little on the LMIs

involved, Section 8.1. In Subsection 8.2 we prove that the inclusion scale equals the com-

mutability index, that is, Theorem 1.4. In summary, all the claims made in Section 1.3 are

established here.
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8.1. A general bound on the inclusion scale. This subsection gives a bound on the inclu-

sion scale which depends little on the LMIs involved. Recall SLA is the spectrahedron DLA(1)

determined by the tuple A.

Proposition 8.1. Suppose A and B are g-tuples of symmetric matrices, where the Bj are

d× d matrices. Suppose further that −DLA ⊆ DLA. If SLA ⊆ SLB , then DLA(n) ⊆ d DLB (n)

for each n.

Lemma 8.2. Suppose T = (Tj,`) is a d × d block matrix with blocks of equal square size. If

‖Tj,`‖ ≤ 1 for every j, `, then ‖T‖ ≤ d.

Proof. Recall that the Cauchy-Schwarz inequality applied with one of the vectors being the all

ones vector gives the relation between the 1-norm and 2-norm on Rd, namely( d∑
j=1

aj
)2 ≤ d d∑

j=1

a2
j for all a1, . . . , ad ∈ R.

Consider a vector x =
∑d

`=1 x` ⊗ e` and estimate,

‖Tx‖2 =
d∑
j=1

∥∥ d∑
`=1

Tj,`x`
∥∥2

≤
d∑
j=1

(
d∑
`=1

‖x`‖)2

≤
d∑
j=1

d
d∑
`=1

‖x`‖2

=
d∑
j=1

d‖x‖2

= d2‖x‖2.

Thus, ‖Tx‖ ≤ d‖x‖.

Proof of Proposition 8.1. Let {es} denote the standard orthonormal basis for Rn. Fix 1 ≤ s 6=
t ≤ n and set p±s,t := 1√

2
(es ± et) ∈ Rn. In particular, with

P±s,t = Id ⊗ p±s,t,

the orthonormality of the basis gives,

(P±s,t)
∗P±s,t = Id.

Moreover, for d× d matrix C and n× n matrix M,

(P±s,t)
∗(C ⊗M)P±s,t = C ⊗

(1

2
(Ms,s ±Ms,t ±Mt,s +Mt,t)

)
.

Hence,

(P+
s,t)
∗(C ⊗M)P+

s,t − (P−s,t)
∗(C ⊗M)P−s,t = C ⊗ (Ms,t +Mt,s).
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In particular, if M is symmetric, then the right hand side is 2C ⊗Ms,t.

Let X ∈ DLA(n) be given and let

Z =
∑
j

Aj ⊗Xj .

By hypothesis, −X ∈ DLA(n) too, so that both ±Z � In. Thus ±(P±s,t)
∗ZP±s,t ≤ 1. Hence

±(p∗s,t)
±Xp±s,t ∈ SLA for each 0 ≤ s, t ≤ n. Convexity of SLA implies

1

2

(
(p+
s,t)
∗Xp+

s,t − (p−s,t)
∗Xp−s,t

)
= Xs,t := ((X1)s,t, . . . , (Xg)s,t) ∈ SLA .

By hypothesis, Xs,t ∈ SLB and therefore,

Ts,t :=
∑

Bj(Xj)s,t � Id, 0 ≤ s, t ≤ n.

Apply Lemma 8.2 to the n× n block matrix

T =
∑
j

Xj ⊗Bj

to get

‖
∑

Bj ⊗Xj‖ ≤ n
Likewise for −X, and therefore, ∑

Bj ⊗Xj � nIdn.

Hence 1
nX ∈ DLB . At this point we have DLA(n) ⊆ nDLB (n).

Since B has size d and DLA(d) ⊆ dDLB (d), it follows from Lemma 2.3 that DLA(n) ⊆
dDLB (n) for all n; that is, DLA ⊆ dDLB .

Example 8.3. This example shows that, in the case d = 2, the estimate r(A)(d)DLA ⊆ DLB (d)

of Proposition 8.1 is sharp.

In this example SLA = SLB is the unit disc D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. We take

LA(X) � 0 to be the infinite set3 of scalar inequalities

sin(t)X1 + cos(t)X2 � In for all t.

Next define LB to be the pencil with coefficients

B1 =

(
1 0

0 −1

)
, B2 =

(
0 1

1 0

)
.

Of course d = size(LB) is 2.

Now we show that DLA(2) 6⊆ (2 − ε)DLB (2) for ε > 0 by selecting Xj = Bj . Evidently,

X ∈ DLA(2) but, up to unitary equivalence,

LB(X) =


1 0 0 1

0 −1 1 0

0 1 −1 0

1 0 0 1

 .

3For cp fans this actually is the the minimal operator system structure for D.
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Thus 2I4 − LB(X) � 0, but if ρ < 2, then ρI4 − LB(X) 6� 0.

To complete the example, we show thatA can be viewed as a limit of tuples of matrices. Let

{tj : j ∈ N} denote an a countably dense subset of [0, 2π). Given n ∈ N, let Tn = {t1, . . . , tn}
and let A

(n)
1 denote the n × n diagonal matrix with j-th diagonal entry sin(tj) and let A

(n)
2

denote the n×n diagonal matrix with j-th diagonal entry cos(tj). In particular, if LA(n)(X) � 0

for all n, then LA(X) � 0. Thus, the smallest ρ such that LA(n)(X) � 0 implies LB(1
ρX) � 0

is 2. �

8.2. The inclusion scale equals the commutability index. The goal here is to prove

Theorem 1.4 which we essentially restate as Theorem 8.4 and then prove.

Fix a tuple A ∈ Sgm and a positive integer d. Assume SLA ⊆ Rg is bounded. Let

ΩA(d) = {r ≥ 0 : if B ∈ Sgd and SLA ⊆ SLB , then rDLA ⊆ DLB}.

Observe that Ω ⊆ [0, 1]. Let FA denote the collection of tuples T = (T1, . . . , Tg) of commuting

self-adjoint operators on Hilbert space whose joint spectrum lies in SLA . Let

ΓA(d) = {t ≥ 0 : if X ∈ DLA(d), then tX dilates to a T ∈ FA}.

That ΓA(d) ⊆ [0, 1] follows by noting that x is in the boundary of SLA and if t > 1, then tx

can not dilate to a T ∈ FA.

Theorem 8.4. Fix g ∈ N. Assuming SLA is bounded, the sets ΓA(d) and ΩA(d) contain

non-zero positive numbers and are closed and equal. In particular, for each fixed d ∈ N,

sup ΩA(d) = sup ΓA(d).

The supremum of ΩA(d) is the optimal free spectrahedral inclusion constant for A and

d. Namely, it is the largest number with the property that if B ∈ Sgd and SLA ⊆ SLB , then

ΩA(d)DLA ⊆ DLB . On the other hand, the supremum of ΓA(d) is the optimal scaling constant

for A and d in the sense that if X ∈ DLA(d) then ΓA(d)X dilates to a tuple in FA.

8.2.1. Matricial Hahn-Banach background. The proof of this theorem given here uses the

Effros-Winkler matricial Hahn-Banach Separation Theorem [EW97] for matrix convex sets.

With g fixed let Sg denote the sequence (Sgn)n. A matrix convex subset C of Sg containing 0

is a sequence (C(n)) such that

(a) C(n) ⊆ Sgn for each n;

(b) 0 is in the interior of C(1);

(c) C is closed under direct sums: If X ∈ C(n) and Y ∈ C(m), then X ⊕ Y = (X1 ⊕
Y1, . . . , Xg ⊕ Yg) ∈ C(n+m), where

Xj ⊕ Yj =

(
Xj 0

0 Yj

)
.

(d) C is closed under simultaneous conjugation by contractions: If X ∈ C(n) and M

is an n×m contraction, then

M∗XM = (M∗X1M, . . . ,M∗XgM) ∈ C(m).
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The matrix convex set C is closed if each C(n) is closed. A version of the matricial Hahn-

Banach theorem immediately applicable here can be found in [HM12]. It says, in the language

of this article, if C ⊆ Sg is closed and matrix convex and if X ∈ Sgd r C(d), then there exists

B ∈ Sgd such that C ⊆ DLB , but X /∈ DLB (d). In particular,

C =
⋂
{DLB : B ∈ Sg, C ⊆ DLB}.

8.2.2. Proof of Theorem 8.4. For notational convenience, since A and d are fixed, let Ω =

ΩA(d), Γ = ΓA(d) and F = FA.

That Ω is closed is easily seen. To see that Ω contains a positive number, first note that the

assumption that SLA is bounded implies there exists a constant C > 0 such that DLA ⊆ CCg.
On the other hand, since DLA is the set of tuples X ∈ Sg such that I −

∑
Aj ⊗Xj � 0, there

is a constant c > 0 such that cCg ⊆ DLA . By Theorem 1.6 there is a constant s > 0 such that

if B ∈ Sgd and [−1, 1]g ⊆ SLB , then sCg ⊆ DLB . Hence, if instead SLA ⊆ SLB , then

c[−1, 1]g ⊆ SLA ⊆ SLB .

It follows that Cg ⊆ D B
sc

. Thus,

DLA ⊆ CC
g ⊆ C

sc
DLB .

Hence sc
C ∈ Ω.

To prove the sets Ω and Γ are equal, first observe that Proposition 2.1 implies Γ ⊆ Ω. To

prove the converse, suppose r ∈ Ω. Let Σ denote the smallest closed matrix convex set with

the property that Σ(1) = DLA(1) = SLA . The equality,

Σ(d) =
⋂
{DLB (d) : B ∈ Sgd and Σ ⊆ DLB}

is a consequence of the Effros-Winkler matricial Hahn-Banach Separation Theorem [EW97].

To prove this assertion, first note the inclusion Σ(d) into the set on the right hand side is

obvious. On the other hand, if X 6∈ Σ(d), then by Effros-Winkler theorem produces a B ∈ Sgd
such that Σ ⊆ DLB , but X 6∈ DLB (d) and the reverse inclusion follows. Now the definition of

Σ implies Σ ⊆ DLB if and only if SLA = Σ(1) ⊆ SLB . Hence,

Σ(d) =
⋂
{DLB (d) : B ∈ Sgd and SLA ⊆ SLB}.

Thus, as SLA ⊆ SLB implies rDLA ⊆ DLB ,

Σ(d) ⊇
⋂
{DLB (d) : B ∈ Sgd and rDLA ⊆ DLB}

and therefore Σ(d) ⊇ rDLA(d).

It remains to show, if Z ∈ Σ, then Z dilates to some T ∈ F . For positive integers n, let

Λ(n) = {X ∈ Sgn : X dilates to some T ∈ F}.

The sequence Λ = (Λ(n))n is a matrix convex set with Λ(1) = Σ(1). To prove that Λ(n) is

closed, suppose (Xk)k is a sequence from Λ(n) which converges to X ∈ Sgn. For each k there
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is a Hilbert space Hk, a sequence of commuting self-adjoint contractions T k = (T k1 , . . . , T
k
g ) on

Hk with joint spectrum in SLA and an isometry Vk : Rn → Hk such that

Xk = V ∗k T
kVk.

Let T denote the tuple ⊕T k acting on the Hilbert space H = ⊕Hk. The fact that each T k has

joint spectrum in the bounded set SLA and that each T kj is self-adjoint, implies the sequence

(T k)k is uniformly bounded. Hence T is a bounded operator. Let S denote the operator system

equal to the span of {I, T1, . . . , Tg} (this set is self-adjoint since each Tk is self-adjoint) and let

φ : S →Mn denote the unital map determined by

φ(Tj) = Xj .

It is straightforward to check that φ is well defined. On the other hand, next it will be shown

that φ is completely positive, an argument which also shows that φ is in fact well defined. If

C = (C0, . . . , Cg) ∈ Sg+1
m and C0⊗ I +

∑
Cj ⊗Tj � 0, then C0⊗ I +

∑
Cj ⊗T kj � 0 for each k.

Thus, C0⊗I+
∑
Cj⊗Xk

j � 0 for all k and finally C0⊗I+
∑
Cj⊗Xj � 0. Thus φ is completely

positive. Given a Hilbert space E , let B(E) denote the C-star algebra of bounded operators on

E . By the standard application of Stinespring-Arveson ([Pau02, Corollary 7.7]) there exists a

Hilbert space K, a representation π : B(H)→ B(K) and an isometry W : Rn → K such that

Xj = φ(Tj) = W ∗π(Tj)W.

Since π is a representation, the tuple π(T ) = (π(T1), . . . , π(Tg)) is a commuting tuple of self-

adjoint contractions on the Hilbert space K with joint spectrum in SLA . Hence X ∈ Λ(n).

Now Λ is a closed matrix convex set with Λ(1) ⊇ Σ(1). Hence, Σ ⊆ Λ by the definition of

Σ. In particular, rDLA(d) ⊆ Σ(d) ⊆ Λ(d) and the proof is complete.

8.2.3. Matrix cube revisited. Returning to the special case of the matrix cube, for g, d ∈ N
define

ρg(d) = sup{r ≥ 0 : if B ∈ Sgd and [−1, 1]g ⊆ SLB , then rC(g) ⊆ DLB}.

For d fixed, the sequence (ρg(d))∞g=1 is evidently decreasing and hence converges to some ρ(d).

Similarly, let Fg denote the collection of tuples T = (T1, . . . , Tg) of commuting self-adjoint

contractions on Hilbert space and let

τg(d) = sup{t ≥ 0 : if X ∈ C(g)(d), then tX dilates to a T ∈ Fg}.

The sequence (τg(d))∞g=1 also decreases and hence converges to some τ(d). By Theorem 8.4,

τg(d) = ρg(d) for all g, d.

Corollary 8.5. τ(d) = lim τg(d) = lim ρg(d) = 1
ϑ(d) .

Remark 8.6. To this point τ(d) = lim ρg(d) has been derived through operator theoretic

means not involving ϑ and [B-TN02]. Of course, in view of Theorems 1.6 and 1.7, τ(d) = 1
ϑ(d) .

On the other hand, it is not obviously possible to recover Theorem 1.1 from this corollary. See

Remark 1.8. �
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9. Reformulation of the Optimization Problem

The goal here is to bring pieces together in order to lay out our key classical optimization

problem (1.1) in terms of regularized Beta functions (see Problem 9.1 and Proposition 9.2).

The reformulated optimization problem is then solved in Section 12 after preliminary work in

Sections 10 and 11.

Recall that
1

ϑ(d)
for d ≥ 2 equals the minimum over all s, t ∈ N and a, b ∈ R>0 such that

s+ t = d = sa+ tb of

2a
s

d
I a
a+b

(
t

2
, 1 +

s

2

)
+ 2b

t

d
I b
a+b

(
s

2
, 1 +

t

2

)
− 1.

(Combine Lemma 6.6 with Proposition 4.2.) Note that the constraint d = sa + tb is just a

matter of scaling of a and b with the same factor which won’t affect the substitution

p =
b

a+ b
∈ (0, 1)

which we are now going to make. This substitution entails 1 − p =
a

a+ b
, d = (a + b)(sp +

t(1− p)),
a

d
=

a

(a+ b)(sp+ t(1− p))
=

1− p
sp+ t(1− p)

and
b

d
=

b

(a+ b)(sp+ t(1− p))
=

p

sp+ t(1− p)
.

By continuity, we can let p range over the compact interval [0, 1]. We therefore observe that
1

ϑ(d)
equals the minimum over all s, t ∈ N with s+ t = d of the minimum value of the function

fs,t : [0, 1]→ R given by

(9.1) fs,t(p) =
2(1− p)sI1−p

(
t
2 , 1 + s

2

)
+ 2ptIp

(
s
2 , 1 + t

2

)
(1− p)s+ pt

− 1

for p ∈ [0, 1]. Using the standard identities Ip(x, y) =
Bp(x, y)

B(x, y)
,
∂

∂p
Bp(x, y) = px−1(1− p)y−1,

B

(
s

2
, 1 +

t

2

)
=

t

s+ t
B

(
t

2
,
s

2

)
and B

(
t

2
, 1 +

s

2

)
=

s

s+ t
B

(
s

2
,
t

2

)
, one can easily verify

that the derivative f ′s,t of fs,t takes the surprisingly simple form given by

f ′s,t(p) =
2st

((1− p)s+ pt)2

(
Ip

(
s

2
, 1 +

t

2

)
− I1−p

(
t

2
, 1 +

s

2

))
for p ∈ [0, 1] (two of the six terms cancel when one computes the derivative using the product

and quotient rule). This shows that fs,t is strictly decreasing on [0, σs,t] and strictly increasing

on [σs,t, 1] where σs,t ∈ (0, 1) is defined by

(9.2) Iσs,t

(
s

2
, 1 +

t

2

)
= I1−σs,t

(
t

2
, 1 +

s

2

)
.
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We shall use (in Section 12) bounds on σs,t for s, t ∈ N. Lower bounds are given in

Corollary 12.5, while upper bounds are presented in Theorem 10.1, cf. (12.4).

Problem 9.1. Given a positive integer d, minimize

fs,t(σ) =
2(1− σ)sI1−σ

(
t
2 , 1 + s

2

)
+ 2σtIσ

(
s
2 , 1 + t

2

)
(1− σ)s+ σt

− 1

subject to the constraints

(i) s, t ∈ N and s+ t = d;

(ii) s ≥ d

2
;

(iii) 0 ≤ σ ≤ 1; and

(iv) Iσ

(
s

2
,
t

2
+ 1

)
= I1−σ

(
t

2
,
s

2
+ 1

)
.

Since Problem 9.1 computes ϑ(d), Theorem 1.2 can be rephrased as follows.

Proposition 9.2. When d is even the minimum in Problem 9.1 occurs when s = t = d
2 and

in this case σ = 1
2 . When d is odd, the minimum in Problem 9.1 occurs when s = d+1

2 and

t = d−1
2 . In this case σ, and hence the optimum, is implicitly determined by condition (iv).

The proof of Proposition 9.2 is organized as follows. The next section contains an im-

provement of Simmons’ Theorem from probability. It is used to obtain the bound

σs,t ≤
s

s+ t

valid for s ≥ d
2 . In Section 11 we present the lower bound

s+ 2

s+ t+ 4
≤ σs,t

valid for s ≥ d
2 . Finally, the proof of Proposition 9.2 is completed in Section 12.

10. Simmons’ Theorem for Half Integers

This material has been motivated by the Perrin-Redside [PR07] proof of Simmons’ in-

equality from discrete probability which has the following simple interpretation. Let s, d ∈ N
with s ≥ d

2 . Toss a coin whose probability for head is s
d , d times. (So the expected number of

head is s.) Simmons’ inequality then states that the probability of getting < s heads is smaller

than the probability of getting > s heads.

Theorem 10.1 below is a half-integer generalization of Simmons’ Theorem.

Theorem 10.1. For d ∈ N and s, t ∈ N with s+ t = d, if d
2 ≤ s < d, then

(10.1) I s
d

(
s

2
+ 1,

t

2

)
≥ 1− I s

d

(
s

2
,
t

2
+ 1

)
.

Equivalently,

(10.2) σs,t ≤
s

d
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for d
2 ≤ s < d with s ∈ N.

The proof of this consumes this whole section and we begin by setting notation. For

s, t ∈ R with s > −2 and t > 0 (in the sequel, s and t will mostly be integers with s ≥ −1 and

t ≥ 1; we really need the case s = −1, for example after (10.15)) and d := s+ t, let fs denote

the density function of the Beta distribution

d

2
B

(
s

2
+ 1,

t

2

)
,

i.e.,

(10.3) fs(x) :=


0 x ≤ 0

1

B
(
s
2 + 1, t2

) (d
2

)−1− s
2

x
s
2

(
1− 2

d
x

) t
2
−1

0 < x < d
2

0 x ≥ d
2 .

Consider the function

F (s, p) = Ip

(
s

2
+ 1,

t

2

)
+ Ip

(
s

2
,
t

2
+ 1

)
− 1.

Equation (10.1) is the statement that F (s, sd) ≥ 0. Since, for s fixed, F (s, p) strictly increases

with p and σs,t is determined by F (s, σs,t) = 0, the second part of the theorem is obviously

equivalent to the first one.

Let

(10.4) bs :=

∫ s
2

0
fs = I s

d

(
s

2
+ 1,

t

2

)
and

(10.5) as :=

∫ ∞
s
2

fs−2 = 1−
∫ s

2

0
fs−2 = 1− I s

d

(
s

2
,
t

2
+ 1

)
.

Equation (10.1) is equivalent to

(10.6) cs := bs − as = F
(
s,
s

d

)
≥ 0

for d, s ∈ R>0 with d
2 ≤ s < d.

10.1. Two step monotonicity of cs. In this subsection, in Proposition 10.7, we show for

s, d ∈ R with d
2 ≤ s ≤ d− 4, that cs+2 ≥ cs. Note that d

2 ≤ d− 4 implies d ≥ 8.

Lemma 10.2. We have for s ∈ R with 0 < s < d− 2,

(xfs)
′ =

(
1 +

s

2

)
(fs − fs+2)(

(d− 2x)fs+2

)′
= (d− s− 2)(fs − fs+2).

(10.7)

Proof. Straightforward.
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For notational convenience we introduce, for s ∈ R with −2 < s ≤ d− 3,

Is :=

∫ s
2

+1

s
2

fs.

Lemma 10.3. For s ∈ R with 0 < s < d− 2,

as+2 − as = fs

(s
2

)
− Is

bs+2 − bs = Is − fs
(s

2
+ 1
)
.

(10.8)

Proof. This is a consequence of the recursive formulas in Lemma 10.2:

as+2 − as =

∫ ∞
s
2

+1
fs −

∫ ∞
s
2

fs−2

=

∫ ∞
s
2

(fs − fs−2)−
∫ s

2
+1

s
2

fs

(10.7)
= −d− 2x

d− s
fs|∞s

2
− Is

= fs

(s
2

)
− Is.

Similarly,

bs+2 − bs =

∫ s
2

+1

0
fs+2 −

∫ s
2

0
fs

=

∫ s
2

+1

0
(fs+2 − fs) +

∫ s
2

+1

s
2

fs

(10.7)
= − xfs

1 + s
2

|
s
2

+1

0 + Is

= Is − fs
(s

2
+ 1
)
.

Lemma 10.4. If s ∈ R with −2 < s < d− 2, then

(10.9) cs+2 − cs = 2Is − fs
(s

2

)
− fs

(s
2

+ 1
)
.

Proof. This is immediate from (10.6) and Lemma 10.3.

Lemma 10.5. For 0 < x < d
2 and 0 < s ≤ d, the inequality f ′′s (x) < 0 holds if and only if

(10.10)
4(d− 4)(d− 2)

d2
x2 − 4(d− 4)s

d
x+ (s− 2)s < 0.

Proof. Note that for 0 < x < d
2 ,

f ′′s (x) =
2
s
2
−1d−s/2x

s
2
−2
(
1− 2x

d

) d−s
2
(
d2(s− 2)s− 4(d− 4)dsx+ 4(d− 4)(d− 2)x2

)
(d− 2x)3B

(
s+2

2 , d−s2

) .

Pulling a factor of d2 out of the last factor in the numerator yields (10.10).
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Lemma 10.6. If d, s ∈ R and d
2 ≤ s ≤ d− 4, then fs is concave on [ s2 ,

s
2 + 1].

Proof. Since s ≥ d
2 with s ≤ d − 4, then d ≥ 8 and thus s ≥ 4. For very small x > 0, the

left-hand side of (10.10) is positive and has a positive leading coefficient. So it suffices to verify

(10.10) for x = s
2 and x = s

2 + 1. Let Fs(x) denote the left-hand side of (10.10). Then

Fs

(s
2

)
=

2s

d2

(
−d2 + ds+ 4s

)
≤ 2s

d2

(
−d2 + d(d− 4) + 4(d− 4)

)
= −32s

d2

< 0.

Similarly,

Fs

(s
2

+ 1
)

= −2(d− s− 2)

d2

(
d(s− 2) + 4(s+ 2)

)
< 0.

Proposition 10.7. For d, s ∈ R with d
2 ≤ s ≤ d− 4, we have

(10.11) cs+2 > cs.

Furthermore,

(10.12) c d
2

= 0.

Proof. Since under the given constraints on s, the function fs is concave on
(
s
2 ,

s
2 + 1

)
, its

integral Is over this interval is bigger than

1

2

(
fs

(s
2

)
+ fs

(s
2

+ 1
))

.

The Equation (10.11) now follows from Lemma 10.4.

Using Ix(a, b) = 1− I1−x(b, a) we get that

a d
2

= 1− I 1
2

(
d

4
,
d

4
+ 1

)
= I 1

2

(
d

4
+ 1,

d

4

)
= b d

2
,

whence c d
2

= 0.

For d ≥ 8 and even, an implication of two step monotonicity in Proposition 10.7 together

with (10.12) is that either

min{cs :
d

2
≤ s < d} = cd−1

or

(10.13) min{cs :
d

2
≤ s < d, s even} = c d

2
= 0 and min{cs :

d

2
≤ s < d, s odd} = c d

2
+1.

Likewise for d ≥ 8 and odd either

min{cs :
d

2
≤ s < d} = cd−1
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or

(10.14) min
s even

cs = c d
2

+1 and min
s odd

cs = c d
2

+ 3
2
.

Thus proving Theorem 10.1 for an even integer d ≥ 8 reduces to establishing that cd−1 >

0 and c d
2

+1 are nonnegative and proving the result for d ≥ 8 odd reduces to showing in

addition that c d
2

+1 and c d
2

+ 3
2

are both nonnegative, facts established in Sections 10.3 and 10.4

respectively. Finally, that cs ≥ 0 for all d, s with d
2 ≤ s ≤ d < 8 was checked symbolically by

Mathematica.

10.2. The upper boundary case. This subsection is devoted to proving the following lemma

which is essential for proving both the even and odd cases of Proposition 10.7.

Lemma 10.8. cd−1 > 0 for d ∈ N with d ≥ 2. In addition if d ∈ R with d ≥ 6 then cd−1 > 0.

Proof. It is easy to verify the given inequality by hand for d = 2, 3, 4, 5. Without loss of

generality we assume d ∈ R with d ≥ 6 in what follows.

Recall that cs = bs − as. Observe that

bd−1 =

∫ d−1
2

0
fd−1 = 1−

∫ d
2

d−1
2

fd−1,

and recall that,

ad−1 =

∫ d
2

d−1
2

fd−3.

Hence cd−1 ≥ 0 iff

(10.15)

∫ d
2

d−1
2

(fd−1 + fd−3) ≤ 1.

We next use Lemma 10.2 with s = d− 3 ≥ −1 > −2 to express

fd−1 = fd−3 −
(
(d− 2x)fd−1

)′
,

whence the left-hand side of (10.15) transforms into∫ d
2

d−1
2

(fd−1 + fd−3) = 2

∫ d
2

d−1
2

fd−3 + fd−1

(
d− 1

2

)
.(10.16)

Sublemma 10.9. fd−3 is concave on (d−1
2 , d2).

Proof. First note that

f ′′d−3(x) =
2
d−5
2 d

1
2

(−d−1)x
d−7
2

(
(d− 5)(d− 3)d2 + 4(d− 4)(d− 2)x2 − 4(d− 4)(d− 3)dx

)
(d− 2x)

√
1− 2x

d B
(
d−1

2 , 3
2

)
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by a straightforward computation. Thus the sign of f ′′d−3(x) is determined by that of

(d− 5)(d− 3)d2 − 4(d− 4)(d− 3)d x+ 4(d− 4)(d− 2)x2

= 4(d− 4)(d− 2)

(
x− (d− 3)d

2(d− 2)

)2

− 2(d− 3)d2

d− 2

Since d > 5 and (d−3)d
2(d−2) ≤

d−1
2 ≤ x ≤

d
2 , this expression can be bound as follows:

(d− 5)(d− 3)d2 − 4(d− 4)(d− 3)d x+ 4(d− 4)(d− 2)x2

≤ 4(d− 4)(d− 2)

(
d

2
− (d− 3)d

2(d− 2)

)2

− 2(d− 3)d2

d− 2
= −d2 < 0.

By Sublemma 10.9,

2

∫ d
2

d−1
2

fd−3 ≤ fd−3

(
d

2
− 1

4

)
.

It thus suffices to establish

(10.17) fd−3

(
d

2
− 1

4

)
+ fd−1

(
d

2
− 1

2

)
≤ 1.

The left-hand side of (10.17) expands into

Ψ(d) :=
2d1− d

2

(
(d− 1)

d−3
2 + 21− d

2 (2d− 1)
d−3
2

)
Γ
(
d
2

)
√
πΓ
(
d−1

2

) .

We use [KV71, (1.7)]:

Γ
(
d
2

)
Γ
(
d−1

2

) ≤ d
d
2
− 1

2

√
2e (d− 1)

d
2
−1
.

Using this, Ψ(d) ≤ 1 will follow once we establish√
πe

2d
(d− 1)

d
2
−1 ≥ (d− 1)

d
2
− 3

2 +
1√
2

(
d− 1

2

) d
2
− 3

2

,

i.e.,

(10.18)

√
πe

2
≥
√
d

(
(d− 1)−

1
2 +

1√
2

(
d− 1

2

)− 1
2
(

1 +
1

2(d− 1)

) d
2
−1
)
.

Sublemma 10.10. The sequence

(10.19)

(
1 +

1

2(d− 1)

) d
2
−1

is increasing with limit

4
√
e.
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Proof. Letting δ = 2(d− 1), (10.19) can be rephrased as(
1 +

1

δ

) δ
4
(

1 +
1

δ

)− 1
2

.

The first factor is often used to define e and is well-known to form an increasing sequence. It

is clear that the sequence
(
1 + 1

δ

)− 1
2 is increasing.

Now the right-hand side of (10.18) can be bound above by

(10.20)
√
d

(
(d− 1)−

1
2 +

1√
2

(
d− 1

2

)− 1
2
(

1 +
1

2(d− 1)

) d
2
−1
)

≤
√
d

(
(d− 1)−

1
2 +

4
√
e√
2

(
d− 1

2

)− 1
2

)
=: Φ(d).

Both of the sequences

√
d(d− 1)−

1
2 and

√
d

(
d− 1

2

)− 1
2

are decreasing, and the limit as d→∞ of the right-hand side of (10.20) is

1 +
4
√
e√
2
≈ 1.90794.

Since

Φ(6) =

√
6

5
+

√
6

11
4
√
e ≤

√
πe

2
,

all this establishes (10.17) for d ≥ 6 as was required.

10.3. The lower boundary cases for d even. Here we prove c d
2

+1 > 0 for d ∈ R with d ≥ 2

(the other lower boundary case, c d
2
≥ 0 was already proved), thus establishing (10.13) and

proving Theorem 10.1 for d even.

Lemma 10.11. c d
2

+1 > 0 for d ∈ R such that d ≥ 2.

Proof. We want to prove that

(10.21) I 1
2

+ 1
d

(
d

4
+

3

2
,
d

4
− 1

2

)
+ I 1

2
+ 1
d

(
d

4
+

1

2
,
d

4
+

1

2

)
≥ 1.

Using

(10.22) Ix(a+ 1, b− 1) = Ix(a, b)− xa(1− x)b−1

a B(a, b)

we rewrite the first summand in (10.21) as

(10.23) I 1
2

+ 1
d

(
d

4
+

3

2
,
d

4
− 1

2

)
= I 1

2
+ 1
d

(
d

4
+

1

2
,
d

4
+

1

2

)
−
(

1
2 + 1

d

) 1
2

+ d
4
(

1
2 −

1
d

)− 1
2

+ d
4(

d
4 + 1

2

)
B
(
d
4 + 1

2 ,
d
4 + 1

2

) .
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Upon multiplying (10.21) with B
(
d
4 + 1

2 ,
d
4 + 1

2

)
and using (10.23), (10.21) is equivalent to

(10.24) 2B 1
2

+ 1
d

(
d

4
+

1

2
,
d

4
+

1

2

)
≥ B

(
d

4
+

1

2
,
d

4
+

1

2

)
+

(
1
2 + 1

d

) 1
2

+ d
4
(

1
2 −

1
d

)− 1
2

+ d
4

d
4 + 1

2

.

The left-hand side of this inequality can be rewritten as

2B 1
2

+ 1
d

(
d

4
+

1

2
,
d

4
+

1

2

)
= 2

∫ 1
2

+ 1
d

0
x
d
4
− 1

2 (1− x)
d
4
− 1

2 dx

= 2B 1
2

(
d

4
+

1

2
,
d

4
+

1

2

)
+ 2

∫ 1
2

+ 1
d

1
2

x
d
4
− 1

2 (1− x)
d
4
− 1

2 dx

= B

(
d

4
+

1

2
,
d

4
+

1

2

)
+ 2

∫ 1
2

+ 1
d

1
2

x
d
4
− 1

2 (1− x)
d
4
− 1

2 dx.

Now (10.24) is equivalent to

(10.25) 2

∫ 1
2

+ 1
d

1
2

x
d
4
− 1

2 (1− x)
d
4
− 1

2 dx ≥
(

1
2 + 1

d

) 1
2

+ d
4
(

1
2 −

1
d

)− 1
2

+ d
4

d
4 + 1

2

.

The derivative of the integrand on the left hand side equals

−1

4
(d− 2)(2x− 1)((1− x)x)

d−6
4

and is thus nonpositive on [1
2 , 1] ⊇ [1

2 ,
1
2 + 1

d ]. Hence

2

∫ 1
2

+ 1
d

1
2

x
d
4
− 1

2 (1− x)
d
4
− 1

2 dx ≥ 2

d

(
1

2
+

1

d

) d
4
− 1

2
(

1

2
− 1

d

) d
4
− 1

2

=

(
1
2 + 1

d

) 1
2

+ d
4
(

1
2 −

1
d

)− 1
2

+ d
4

d
4 + 1

2

,

as desired.

This concludes the proof of Theorem 10.1 for even d.

10.4. The lower boundary cases for d odd. In this subsection we establish two key in-

equalities:

c d
2

+ 1
2
> 0 and c d

2
+ 3

2
> 0.

We show that the first holds for d ∈ R with d ≥ 3 and the second for d ∈ N with d ≥ 3 or for

d ∈ R with d ≥ 16. Combined with Lemma 10.8 these inequalities show that the minimum of

cs over d
2 ≤ s ≤ d− 1 is strictly positive and as a consequence proves Theorem 10.1 in the case

of d odd.

Lemma 10.12. c d
2

+ 1
2
> 0 for d ∈ R and d ≥ 3.
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Proof. We claim that

(10.26) I 1
2

+ 1
2d

(
d

4
+

5

4
,
d

4
− 1

4

)
+ I 1

2
+ 1

2d

(
d

4
+

1

4
,
d

4
+

3

4

)
≥ 1.

Using (10.22) we rewrite the first summand in (10.26) as

(10.27) I 1
2

+ 1
2d

(
d

4
+

5

4
,
d

4
− 1

4

)
= I 1

2
+ 1

2d

(
d

4
+

1

4
,
d

4
+

3

4

)
−
(

1
2 + 1

2d

) 1
4

+ d
4
(

1
2 −

1
2d

)− 1
4

+ d
4(

d
4 + 1

4

)
B
(
d
4 + 1

4 ,
d
4 + 3

4

) .

Upon multiplying (10.26) with B
(
d
4 + 1

4 ,
d
4 + 3

4

)
and using (10.27), (10.26) rewrites to

(10.28) 2B 1
2

+ 1
2d

(
d

4
+

1

4
,
d

4
+

3

4

)
≥ B

(
d

4
+

1

4
,
d

4
+

3

4

)
+

4
(
1 + 1

d

) 1
4

+ d
4
(
1− 1

d

)− 1
4

+ d
4

2
d
2 (d+ 1)

The left-hand side of this inequality can be expanded as

2B 1
2

+ 1
2d

(
d

4
+

1

4
,
d

4
+

3

4

)
= 2

∫ 1
2

+ 1
2d

0
x
d
4
− 3

4 (1− x)
d
4
− 1

4 dx

= 2B 1
2

(
d

4
+

1

4
,
d

4
+

3

4

)
+ 2

∫ 1
2

+ 1
2d

1
2

x
d
4
− 3

4 (1− x)
d
4
− 1

4 dx.

Now (10.28) is equivalent to

(10.29) 2B 1
2

(
d

4
+

1

4
,
d

4
+

3

4

)
+ 2

∫ 1
2

+ 1
2d

1
2

x
d
4
− 3

4 (1− x)
d
4
− 1

4 dx

≥ B
(
d

4
+

1

4
,
d

4
+

3

4

)
+

4
(
1 + 1

d

) 1
4

+ d
4
(
1− 1

d

)− 1
4

+ d
4

2
d
2 (d+ 1)

.

A brief calculation shows

2B 1
2

(
d

4
+

1

4
,
d

4
+

3

4

)
−B

(
d

4
+

1

4
,
d

4
+

3

4

)
=

∫ 1/2

0
x
d
4
− 3

4 (1− x)
d
4
− 3

4
(√

1− x−
√
x
)
dx.

(10.30)

We next set out to provide a lower bound on (10.30). First, rewrite

(10.31)
√

1− x−
√
x =

1− 2x√
1− x+

√
x

and observe that
√

1− x +
√
x is increasing from 1 to

√
2 on

[
0, 1

2

]
. Hence (10.31) can be

bound as

(10.32)
1√
2

(1− 2x) ≤
√

1− x−
√
x ≤ 1− 2x.
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This gives

(10.30) ≥ 1√
2

∫ 1/2

0
x
d
4
− 3

4 (1− x)
d
4
− 3

4 (1− 2x) dx

=
1√
2

∫ 1/2

0
x
d
4
− 3

4 (1− x)
d
4
− 3

4 dx−
√

2

∫ 1/2

0
x
d
4

+ 1
4 (1− x)

d
4
− 3

4 dx

=
1√
2
B 1

2

(
d

4
+

1

4
,
d

4
+

1

4

)
−
√

2B 1
2

(
d

4
+

5

4
,
d

4
+

1

4

)
.

(10.33)

Using the well-known formula

B(z, a+ 1, b) =
aB(z, a, b)− za(1− z)b

a+ b

on B 1
2

(
d
4 + 5

4 ,
d
4 + 1

4

)
, the final expression in (10.33) simplifies into

(10.34)
2

2
d
2 (d+ 1)

.

Sublemma 10.13. For 3 ≤ d ∈ R, the integrand η(x) in the second summand in (10.29) is

decreasing and concave on (1
2 ,

1
2 + 1

2d).

Proof. This is routine. The derivative of η is

η′(x) =
1

4
(1− x)

d−5
4 x

d−7
4 (−2dx+ 4x+ d− 3)

So its sign on (1
2 ,

1
2 + 1

2d) is governed by that of −2dx+ 4x+ d− 3. However,

−2dx+ 4x+ d− 3 ≤ 2d · 1

2
+ 4

(
1

2
+

1

2d

)
+ d− 3 = −1 +

2

d

is negative for d ≥ 3. Thus η is decreasing.

Further,

η′′(x) =
1

16
(1− x)

d−9
4 x

d−11
4
(
4(d− 4)(d− 2)x2 − 4(d− 4)(d− 3)x+ d2 − 10d+ 21

)
.

For
1

2
≤ x ≤ 1

2
+

1

2d
we have,

4(d− 4)(d− 2)x2 − 4(d− 4)(d− 3)x+ d2 − 10d+ 21

≤4(d− 4)(d− 2)

(
1

2
+

1

2d

)2

− 4(d− 4)(d− 3) · 1

2
+ d2 − 10d+ 21

=
8

d2
+

10

d
− 6

and the last expression is negative for d ≥ 3, whence η′′(x) < 0.

By Sublemma 10.13, the integral in (10.29) can be bound below by

1

2

1

2d

((
1

2
+

1

2d

) d
4
− 3

4
(

1

2
− 1

2d

) d
4
− 1

4

+ 21− d
2

)
.



54 J.W. HELTON, I. KLEP, S. MCCULLOUGH, AND M. SCHWEIGHOFER

Moving this to the right-hand side of (10.29) means we have to show that (10.30) is at least

(10.35)
1

2
d
2 d

(
3

(
1 +

1

d

) d−3
4
(

1− 1

d

) d−1
4

− 1

)
.

It suffices to replace (10.30) with its lower bound (10.34). That is, we shall prove

(10.36)
3d+ 1

d+ 1
≥ 3

(
1 +

1

d

) d−3
4
(

1− 1

d

) d−1
4

.

Rearranging the right-hand side of (10.36) we get

3

(
1 +

1

d

) d−3
4
(

1− 1

d

) d−1
4

= 3

(
1 +

1

d

) d+1
4
(

1− 1

d

) d−1
4
(

1 +
1

d

)−1

= 3

(
1 +

1

d

) d+1
4
(

1− 1

d

) d−1
4 d

d+ 1
.

In particular, (10.36) is equivalent to

(10.37) 3d+ 1 ≥ 3d

(
1 +

1

d

) d+1
4
(

1− 1

d

) d−1
4

.

As before, the sequence

(
1 +

1

d

) d+1
4

is increasing with limit e
1
4 , so

3d

(
1 +

1

d

) d+1
4
(

1− 1

d

) d−1
4

≤ 3de
1
4

(
1− 1

d

) d−1
4

= 3de
1
4

(
1− 1

d

) d
4
(

1− 1

d

)− 1
4

(10.38)

The sequence

(
1− 1

d

) d
4

is increasing with limit e−
1
4 , so the right-hand side of (10.38) is further

at most

3d

(
1− 1

d

)− 1
4

.

Now (10.37) is implied by

1 +
1

3d
≥
(

1− 1

d

)− 1
4

,

an inequality easy to establish using calculus.

Lemma 10.14. c d
2

+ 3
2
> 0 for 3 ≤ d ∈ N. In addition, if d ∈ R and d ≥ 16, then c d

2
+ 3

2
> 0.

Proof. We claim that

(10.39) I 1
2

+ 3
2d

(
d

4
+

7

4
,
d

4
− 3

4

)
+ I 1

2
+ 3

2d

(
d

4
+

3

4
,
d

4
+

1

4

)
≥ 1.
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Using (10.22) we rewrite the first summand in (10.39) as

(10.40) I 1
2

+ 3
2d

(
d

4
+

7

4
,
d

4
− 3

4

)
= I 1

2
+ 3

2d

(
d

4
+

3

4
,
d

4
+

1

4

)
−
(

1
2 + 3

2d

) 3
4

+ d
4
(

1
2 −

3
2d

)− 3
4

+ d
4(

d
4 + 3

4

)
B
(
d
4 + 3

4 ,
d
4 + 1

4

) .

Upon multiplying (10.39) with B
(
d
4 + 3

4 ,
d
4 + 1

4

)
and using (10.40), (10.39) rewrites to

(10.41) 2B 1
2

+ 3
2d

(
d

4
+

3

4
,
d

4
+

1

4

)
≥ B

(
d

4
+

3

4
,
d

4
+

1

4

)
+

4
(
1 + 3

d

) 3
4

+ d
4
(
1− 3

d

)− 3
4

+ d
4

2
d
2 (d+ 3)

Further, using

(10.42) Bz(a+ 1, b) =
aBz(a, b)− za(1− z)b

a+ b

on the two betas in (10.41), we get

d− 1

d
B 1

2
+ 3

2d

(
d

4
− 1

4
,
d

4
+

1

4

)
−

2
(
1 + 3

d

)− 1
4

+ d
4
(
1− 3

d

)+ 1
4

+ d
4

2
d
2 d

≥ d− 1

2d
B

(
d

4
− 1

4
,
d

4
+

1

4

)
+

4
(
1 + 3

d

) 3
4

+ d
4
(
1− 3

d

)− 3
4

+ d
4

2
d
2 (d+ 3)

,

or equivalently,

(10.43) 2B 1
2

+ 3
2d

(
d

4
− 1

4
,
d

4
+

1

4

)
−B

(
d

4
− 1

4
,
d

4
+

1

4

)
≥

12
(
1− 3

d

) d−3
4
(
1 + 3

d

) d+3
4

2
d
2 (d+ 3)

.

The first summand on the left-hand side of this inequality can be expanded as

2B 1
2

+ 3
2d

(
d

4
− 1

4
,
d

4
+

1

4

)
= 2B 1

2

(
d

4
− 1

4
,
d

4
+

1

4

)
+ 2

∫ 1
2

+ 3
2d

1
2

x
d
4
− 5

4 (1− x)
d
4
− 3

4 dx.

As in Lemma 10.12,

(10.44)

2B 1
2

(
d

4
− 1

4
,
d

4
+

1

4

)
−B

(
d

4
− 1

4
,
d

4
+

1

4

)
=

∫ 1/2

0
x
d
4
− 5

4 (1− x)
d
4
− 5

4
(√

1− x−
√
x
)
dx

can be bound below by

(10.45)
4

2
d
2 (d− 1)

.

Similarly, x
d
4
− 5

4 (1− x)
d
4
− 3

4 is decreasing and concave on
(

1
2 ,

1
2 + 3

2d

)
for d ≥ 5, so

(10.46) 2

∫ 1
2

+ 3
2d

1
2

x
d
4
− 5

4 (1− x)
d
4
− 3

4 dx ≥
6

((
1− 3

d

) d−3
4
(
1 + 3

d

) d−5
4 + 1

)
2
d
2 d

.
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Using the two lower bounds (10.45) and (10.46) in (10.43), it suffices to establish

4

d− 1
≥

12
(
1− 3

d

) d−3
4
(
1 + 3

d

) d+3
4

d+ 3
−

6

((
1− 3

d

) d−3
4
(
1 + 3

d

) d−5
4 + 1

)
d

= 6

(
1− 3

d

) d−3
4
(

1 +
3

d

) d−5
4
(

2
d+ 3

d2
− 1

d

)
− 6

d

= 6

(
1− 3

d

) d−3
4
(

1 +
3

d

) d−5
4 d+ 6

d2
− 6

d

(10.47)

The sequences (
1− 3

d

) d+1
4

,

(
1 +

3

d

) d−5
4

are increasing, the product of their limits is 1. The inequality (10.47) is easy to verify (by hand

or using a computer algebra system) for d = 1, 2, . . . , 16. Now assume d ∈ R with d ≥ 16. It

is enough to prove

(10.48)
4

d− 1
+

6

d
≥ 6

(
1− 3

d

)−1 d+ 6

d2
= 6

d+ 6

d(d− 3)
.

Equivalently,

2
(
2d2 − 33d+ 27

)
(d− 3)(d− 1)d

≥ 0.

But this holds for all d ≥ 3
4

(
11 +

√
97
)
≈ 15.6366.

The proof of Theorem 10.1 is now complete.

11. Bounds on the Median and the Equipoint of the Beta Distribution

Like the median, the equipoint is a measure of central tendency in a probability distribu-

tion function (PDF). In this section we establish, for the Beta distribution, new lower bound

for the median and, by relating the equipoint to the median, bounds on the equipoint needed

in the proof of Theorem 1.2.

As in Section 1.8 we follow the convention that s, t ∈ R>0, and consider the Beta dis-

tribution Beta(s, t) supported on [0, 1]. We denote by %s,t : [0, 1] → R the probability density

function of Beta(s, t), i.e.,

%s,t(x) =
xs−1(1− x)t−1

B(s, t)

for x ∈ [0, 1]. The cumulative distribution function of Beta(s, t) is Ix(s, t) defined for x ∈ [0, 1].

We are interested in the medianms,t ∈ [0, 1] of Beta(s, t) and in the (s, t)-equipoint es,t ∈ [0, 1]

defined by

(11.1) Ims,t(s, t) =
1

2
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and

(11.2) Ies,t(s, t + 1) + Ies,t(s + 1, t) = 1

respectively. Here we used that Ix(s, t) and Ix(s, t+ 1) + Ix(s+ 1, t) are strictly monotonically

increasing for x ∈ [0, 1]. We will continue to use this tacitly throughout this section.

11.1. Lower bound for the equipoint es,t. In (11.2), if we move one of the two terms to

the other side, we get the equivalent forms

Ies,t(s, t + 1) = I1−es,t(t, s + 1), Ies,t(s + 1, t) = I1−es,t(t + 1, s).

Lemma 11.1. For all s, t ∈ R>0 and x ∈ [0, 1], we have

(a) Ix(s, t + 1) + Ix(s + 1, t) = 2Ix(s, t) + (s− t)
xs(1− x)t

stB(s, t)

(b) Ix(s, t + 1) + Ix(s + 1, t) = 2Ix(s + 1, t + 1) + (1− 2x)
(s + t)xs(1− x)t

stB(s, t)

Proof. Use the identities (8.17.20) and (8.17.21) from http://dlmf.nist.gov/8.17#iv.

Although there are some results on the median ms,t for special values of s, t ∈ R≥0
4, about

the only general thing that seems to be known [PYY89] is that

(11.3) µs,t :=
s

s + t
< ms,t <

s− 1

s + t− 2

if 1 < t < s (see also [Ker+] for an asymptotic analysis and numerical evidence in support of

better bounds). The lower bound in (11.3) is actually the mean µs,t of Beta(s, t) if s, t > 0

and the upper bound is the mode of Beta(s, t) if s, t > 1. In the next subsection we shall

significantly improve the upper bound in (11.3).

Using Lemma 11.1(a), we see that

Ims,t(s, t + 1) + Ims,t(s + 1, t) = 2
1

2
+ (s− t)

ms
s,t(1−ms,t)

t

stB(s, t)
≥ 1

and therefore

(11.4) es,t ≤ ms,t

whenever s, t ∈ R and 0 < t ≤ s. Using Lemma 11.1(b), we get

Ims+1,t+1(s, t + 1) + Ims+1,t+1(s + 1, t) =

2
1

2
+ (1− 2ms+1,t+1)

(s + t)(ms+1,t+1)s(1−ms+1,t+1)t

stB(s, t)
≤ 1.

since ms+1,t+1 ≥
s + 1

s + t + 2
≥

s
2 + t

2 + 1

s + t + 2
=

1

2
by (11.3). This shows that

(11.5) ms+1,t+1 ≤ es,t
whenever s, t ∈ R and 0 < t < s.

4see http://en.wikipedia.org/wiki/Beta_distribution

http://dlmf.nist.gov/8.17#iv
http://en.wikipedia.org/wiki/Beta_distribution
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These inequalities combine to give:

Proposition 11.2. For s, t ∈ R>0,

(11.6) es,t ≤ ms,t <
s− 1

s + t− 2

when 1 < t < s and
s + 1

s + t + 2
< ms+1,t+1 ≤ es,t

when 0 < t < s. Later this lower bound on es,t proves important to us.

Proof. The first line of inequalities (11.6) follows from (11.3) and (11.4). The second from

(11.3) and (11.5).

Remark 11.3. The inequality (11.6) is easier to prove than the inequality es,t ≤ s
s+t from

Theorem 10.1; however, this weaker inequality seems not to be strong enough to prove Theorem

1.2. �

11.2. New bounds on the median of the beta distribution. Having a lower bound for

the equipoint es,t in terms of the median ms+1,t+1, we now turn our attention to the median

of the beta distribution.

By Lemma 11.1(a), Simmons’ inequality (10.2) is equivalent to

(11.7) 2Iµs,t(s, t) + (s− t)
(µs,t)

s(1− µs,t)t

stB(s, t)
≥ 1

which is therefore conjectured for all s, t ∈ R with 0 < s ≤ t. Proposition 11.5 below proves

a weakening of (11.7) where an extra factor of 2 is introduced in the second term on the left

hand side.

Lemma 11.4. Suppose s, t ∈ R>0 and set µ := µs,t. Then

(11.8)

∫ µ

0
(µ− x)s−1(1− µ+ x)t−1x dx =

∫ 1−µ

0
(µ+ x)s−1(1− µ− x)t−1x dx

=
µs(1− µ)t

s + t
=

sstt

(s + t)s+t+1
.

Proof. Reversing the direction of integration in the first integral and changing the domain of

integration in the second integral, we get∫ µ

0
(µ− x)s−1(1− µ+ x)t−1x dx =

∫ µ

0
xs−1(1− x)t−1(µ− x)dx,(11.9) ∫ 1−µ

0
(µ+ x)s−1(1− µ− x)t−1x dx =

∫ 1

µ
xs−1(1− x)t−1(x− µ)dx.(11.10)

If we subtract (11.9) from (11.10) and divide by B(s, t), we get∫ 1

0
%s,t(x)(x− µ)dx = µ− µ = 0
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by the definition of the mean µ. So the first equality is proved. On the other hand, if we add

(11.9) and (11.10) and divide again by B(s, t), we get∫ 1

0
%s,t(x)|x− µ|dx

which is by the formula for the mean absolute deviation of Beta(s, t) (cf. the proof of [DZ91,

Corollary 1]) equal to
2µ(1− µ)

s + t
%s,t(µ),

thus showing the second equation. The third equation in (11.8) is clear.

Proposition 11.5. Suppose 1 ≤ t ≤ s such that s + t ≥ 3 and set µ := µs,t. Then we have

2Iµ(s, t) + 2(s− t)
µs(1− µ)t

stB(s, t)
≥ 1

Proof. We have to show

Iµ(s, t) + 2(s− t)
µs(1− µ)t

stB(s, t)
≥ I1−µ(t, s)

which is equivalent to

Bµ(s, t) + 2χ ≥ B1−µ(t, s)

where

χ :=
s− t

st
µs(1− µ)t.

This means

2χ+

∫ µ

0
xs−1(1− x)t−1dx ≥

∫ 1−µ

0
xt−1(1− x)s−1dx

which we rewrite as

χ+

∫ µ

0
(µ− x)s−1(1− µ+ x)t−1dx ≥ −χ+

∫ 1−µ

0
(µ+ x)s−1(1− µ− x)t−1dx.

We have 1
2 ≤ µ ≤ 1 and therefore 0 ≤ 1 − µ ≤ 1

2 ≤ µ ≤ 1. In particular, the domain of

integration is smaller on the left hand side. The idea is to compare the two terms under the

integral pointwise on [0, 1− µ] after correcting these two terms using χ and −χ, respectively.

The two terms agree when substituting x = 0. The derivative at x = 0 of the term under the

integral on the left hand side is by the product rule the negative term

µs−2(1− µ)t−2(µ(s + t− 2)− s + 1) = µs−2(1− µ)t−2 t− s

s + t

and on the right hand side it is the additive inverse. We want to counterbalance the derivatives

at x = 0 by adding and subtracting a multiple of the term from Lemma 11.4 on the left and

right hand side, respectively. The derivative of that latter term at x = 0 is of course

µs−1(1− µ)t−1 = µs−2(1− µ)t−2 st

(s + t)2
.

We thus would like to add

c :=
(s− t)(s + t)

st
=

s2 − t2

st
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times the term from Lemma 11.4 on the left hand side and subtract it on the right hand side.

The miracle now is that this is exactly χ. Our claim can thus be rewritten as∫ µ

0
(µ− x)s−1(1− µ+ x)t−1(1 + cx)dx ≥

∫ 1−µ

0
(µ+ x)s−1(1− µ− x)t−1(1− cx)dx.

The two terms under the integral now take the same value at x = 0 and have the same

derivative there. There is now a hope to show for x ∈ [0, 1− µ] that the term on the left hand

side is pointwise less than or equal the term on the right hand side. We will do this and thus

even show the stronger claim that∫ 1−µ

0
(µ− x)s−1(1− µ+ x)t−1(1 + cx)dx ≥

∫ 1−µ

0
(µ+ x)s−1(1− µ− x)t−1(1− cx)dx.

If we define (noting that 1− cx ≥ 1− c(1− µ) = 1− c t
s+t = 1− s−t

s = t
s > 0)

g : [0, 1− µ)→ R, x 7→
(
µ− x
µ+ x

)s−1(1− µ+ x

1− µ− x

)t−1 1 + cx

1− cx
,

it is thus enough to show that g(x) ≥ 1 for all x ∈ [0, 1− µ]. Clearly we have g(0) = 1. So it

is enough to show that g′(x) ≥ 0 for all x ∈ [0, 1− µ). A straightforward calculation shows

g′(x) =
2
(
µ−x
µ+x

)s (
1−µ+x
1−µ−x

)t
(1− cx)2(1− µ+ x)2(µ− x)2

+ x2h(x2)

where

h :

[0, (1− µ)2]→ R

y 7→ (s−t)(s+t−3)
s+t − (s+t)(s4−s3(2t+1)+2s2t+2s(t−1)t2−(t−1)t3)

s2t2
y.

Since h is linear, it is thus enough to show that h(0) ≥ 0 and h((1 − µ)2) ≥ 0. The first

condition follows from the hypothesis s + t ≥ 3. Another straightforward calculation shows

h((1− µ)2) =
(t− 1)

(
2s2 − 3st + t2

)
s2

.

Because of t ≥ 1 it remains only to show that 2s2 − 3st + t2 ≥ 0. Now we have

2s2 − 3st + t2 = (s− t)(2s− t) ≥ 0

since s ≥ t.

The following corollary improves the previously known upper bound (11.3) on the median

ms,t in the case where 1 < t ≤ s and s + t ≥ 3 because of the following lemma.

Lemma 11.6. Suppose s, t ∈ R such that s ≥ t ≥ 1 and s + t > 2. Then

s

s + t
+

s− t

(s + t)2
≤ s− 1

s + t− 2
.

Proof. A straightforward calculation yields

s− 1

s + t− 2
− s

s + t
− s− t

(s + t)2
=

2(s− t)

(s + t− 2)(s + t)2
≥ 0.
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Corollary 11.7. Suppose 1 ≤ t ≤ s such that s + t ≥ 3. Then we have

µs,t =
s

s + t
≤ ms,t ≤ µs,t +

s− t

(s + t)2
.

Proof. The first inequality comes from [PYY89]. To prove the second, we have to show that

2Iµ(s, t) + 2

∫ µ+ s−t

(s+t)2

µ
%s,t(x)dx ≥ 1

where µ := µs,t. By Proposition 11.5, it is henceforth enough to show that∫ µ+ s−t

(s+t)2

µ
%s,t(x)dx ≥ (s− t)

µs(1− µ)t

stB(s, t)
.

This is trivial if s = t. If 1 < t (and therefore 1 < s), then s−1
s+t−2 is the mode of Beta(s, t) and

by Lemma 11.6 we have

%s,t(x) ≥ %s,t(µ)

for all x ∈ [µ, µ+ s−t
(s+t)2

]. Therefore it is enough to show that

s− t

(s + t)2
%s,t(µ) ≥ (s− t)

µs(1− µ)t

stB(s, t)

but this holds even with equality since

1

(s + t)2
=
µ(1− µ)

st
.

The following table illustrates the quality of the lower bound µs,t on the median ms,t (for

1 ≤ t ≤ s) and the quality of the new upper bound µs,t + s−t
(s+t)2

(for 1 ≤ t ≤ s with s + t ≥ 3)

as compared to the less tight old upper bound s−1
s+t−2 . If one assumes that (11.7) is true for all

real s, t (as opposed to s, t ∈ 1
2N as given by Theorem 10.1) with 1 ≤ t ≤ s with s + t ≥ 3,

then one can deduce along the lines of Corollary 11.7 an even better upper bound on ms,t for

1 ≤ t ≤ s with s + t ≥ 3, namely µs,t + s−t
2(s+t)2

which we therefore also include in the table.

s t µs,t ms,t µs,t + s−t
2(s+t)2

µs,t + s−t
(s+t)2

s−1
s+t−2

2.5 1 0.714286 0.757858 0.77551 0.836735 1

3 1 0.75 0.793701 0.8125 0.875 1

3 2 0.6 0.614272 0.62 0.64 0.666667

4 2 0.666667 0.68619 0.694444 0.722222 0.75

10 3 0.769231 0.783314 0.789941 0.810651 0.818182

10 7 0.588235 0.591773 0.593426 0.598616 0.6

12. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by establishing Proposition 9.2. We start by tweaking

Problem 9.1:
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Problem 12.1. Given a positive integer d, minimize

fs,t(σ) =
2(1− σ)sI1−σ

(
t
2 , 1 + s

2

)
+ 2σtIσ

(
s
2 , 1 + t

2

)
(1− σ)s+ σt

− 1

subject to the constraints

(i) s, t ∈ N and s+ t = d;

(ii) s ≥ d

2
;

(iii) 0 ≤ σ ≤ s

d
; and

(iv) Iσ

(
s

2
,
t

2
+ 1

)
= I1−σ

(
t

2
,
s

2
+ 1

)
.

Problem 12.1 is equivalent to Problem 9.1. Indeed, the only difference is the interval for

σ in (iii). However, by Section 10 we know that σs,t = σ ∈ [0, 1], the solution to (iv) will

automatically satisfy σs,t ≤
s

d
.

12.1. An auxiliary function. For s, t ∈ R>0 let

(12.1) gs,t(σ) := −1 + Iσ

(
s

2
,
t

2
+ 1

)
+ I1−σ

(
t

2
,
s

2
+ 1

)
.

Lemma 12.2. For s, t ∈ R>0, we have

fs,t(σs,t) = gs,t(σs,t) = 2 Iσs,t

(
s

2
, 1 +

t

2

)
− 1.

Thus at the minimizer of fs,t, the functions fs,t and gs,t have the same value.

Proof. This is straightforward since fs,t assumes its minimum where the two incomplete beta

expressions (appearing in both fs,t and gs,t) are equal.

Lemma 12.3. The function gs,t can be rewritten as

(12.2) gs,t(σ) = σs/2(1− σ)t/2
Γ
(
s
2 + t

2 + 1
)

Γ
(
s
2 + 1

)
Γ
(
t
2 + 1

) .
Proof. First recall that I1−x(b, a) = 1− Ix(a, b) and apply this to the second incomplete beta

summand in the definition of gs,t:

gs,t(σ) = Iσ

(
s

2
,
t

2
+ 1

)
− Iσ

(
s

2
+ 1,

t

2

)
.

Now use recursive formulas for Iσ
5 and simplify.

Lemma 12.4. The function gs,t is monotonically increasing on

[
0,

s

s+ t

]
whenever s, t ∈ R>0

with s ≥ t.

5Equations (8.17.20) and (8.17.21) in http://dlmf.nist.gov/8.17.

http://dlmf.nist.gov/8.17
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Proof. Using Lemma 12.3 it is easy to see that

g′s,t(σ) = −1

2
σ
s
2
−1(1− σ)

t
2
−1
(
s(σ − 1) + σt

) Γ
(
s
2 + t

2 + 1
)

Γ
(
s
2 + 1

)
Γ
(
t
2 + 1

) .
We shall exploit bounds on σs,t. The lower bound can be deduced from our results in

Section 11:

Corollary 12.5. For s, t ∈ N with s ≥ t we have

(12.3) σs,t ≥
s+ 2

s+ t+ 4
.

Proof. Simply note that in the notation of Section 11, σs,t = e s
2
, t
2

and use Proposition 11.2.

Combining this lower bound for σs,t with Theorem 10.1, we have for s, t ∈ N with s ≥ t,

(12.4) ψ(s, t) :=
s+ 2

s+ t+ 4
≤ σs,t ≤

s

s+ t
=: ψ(s, t).

Lemma 12.6. For s, t ∈ N with s ≥ t we have

(12.5) gs,t(

ψ(s, t)) ≤ gs,t(σs,t) = fs,t(σs,t) = gs,t(σs,t) ≤ gs,t(ψ(s, t)).

Proof. This follows from the monotonicity of gs,t on

[
0,

s

s+ t

]
and by the coincidence of fs,t

and gs,t in the equipoint σs,t.

12.2. Two step monotonicity of fs,t(σs,t). In this subsection, in Proposition 12.8, we show

for s, t ∈ N with s ≥ t that fs,t(σs,t) ≤ fs+2,t−2(σs+2,t−2)..

Lemma 12.7. If s, t ∈ R>0 with s ≥ t then

(12.6) gs+2,t−2(

ψ

(s+ 2, t− 2)) ≥ gs,t(ψ(s, t)).

Proof. With d = s+ t, (12.6) is equivalent to

(12.7) (4 + s)s+2dd ≥ ss(4 + d)d(2 + s)2.

This follows from (12.2) and the identities B(α + 1, β) =
α

α+ β
B(α, β) and B(α, β + 1) =

β

α+ β
B(α, β).

Rewrite (12.7) into

(12.8)

(
1 +

4

d

)d
≤
(

1 +
4

s

)s(s+ 4

s+ 2

)2

=: ξ(s).



64 J.W. HELTON, I. KLEP, S. MCCULLOUGH, AND M. SCHWEIGHOFER

We claim the right-hand side ξ(s) is an increasing function of s on R≥0. Indeed, using

s = 2S,

Ξ(S) = ξ
(s

2

)
=

(
1 +

2

S

)2S (S + 2

S + 1

)2

=

(
1 +

2

S

)S
·
(

1 +
2

S

)S (S + 2

S + 1

)2

.

The first factor in the last expression is well-known to be an increasing function with limit e2.

Let

ζ(S) :=

(
1 +

2

S

)S (S + 2

S + 1

)2

.

Then

ζ ′(S) =
(S + 2)2

(
S+2
S

)S (
(S + 1) log

(
S+2
S

)
− 2
)

(S + 1)3
.

Observe that (S + 1) log

(
S + 2

S

)
− 2 ≥ 0 iff

(
1 +

2

S

)S+1

≥ e2.

But it is well-known and easy to see that this left-hand side is decreasing with limit e2. This

shows that ζ ′(S) ≥ 0 and hence the right-hand side of (12.8) is an increasing function of s.

It thus suffices to show

(12.9)

(
d+ 4

d

)d
≤ ξ

(
d

2

)
=

(
d+ 8

d+ 4

)2(d+ 8

d

) d
2

,

or equivalently,

(12.10)

(
d+ 4

d

) d
2

≤
(
d+ 8

d+ 4

)2+ d
2

.

Again, we show this hold for d ∈ R>0. Writing d = 4D, (12.10) becomes

(12.11)

(
D + 1

D

)2D

≤
(
D + 2

D + 1

)2+2D

.

So it suffices to establish (
1 +

1

D

)D
≤
(

1 +
1

D + 1

)D+1

.

But this is well-known or easy to establish using calculus.

Proposition 12.8. For s, t ∈ N with s ≥ t we have

(12.12) fs,t(σs,t) ≤ fs+2,t−2(σs+2,t−2).
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Proof. Observe that

fs+2,t−2(σs+2,t−2)
(12.5)

≥ gs+2,t−2( ψ(s+ 2, t− 2))

(12.6)

≥ gs,t(ψ(s, t))

(12.5)

≥ fs,t(σs,t).

12.3. Boundary cases. Having established for each d monotonicity in s of fs,d−s(σs,d−s),

where d
2 ≤ s ≤ d− 2, we now turn to the boundary cases.

Lemma 12.9. For s ∈ N we have

(12.13) gs+1,s−1( ψ(s+ 1, s− 1)) ≥ gs,s(ψ(s, s)).

Remark 12.10. The proof uses Chu’s inequality (see e.g. [MV70, p. 288]) on the quotient of

gamma functions, which says that for s ∈ N,√
2s+ 1

4
≤

Γ( s2 + 1)

Γ( s+1
2 )

≤ s+ 1√
2s+ 1

.

Thus, it is at this point the assumption that s is an integer is used. �

Proof. Inequality (12.13) is equivalent to

(12.14)
(s+ 2)−s((s+ 1)(s+ 3))

s+1
2 Γ

(
s
2 + 1

)2
2Γ
(
s+3

2

)2 ≥ 1.

Further, using Chu’s inequality it suffices to establish

(12.15)

(
1− 1

(s+ 2)2

) s+1
2

≥ 1− 1

2s+ 5
.

Equivalently,

(12.16)

(
1− 1

(s+ 2)2

) s+1
2

(2s+5)

≥
(

1− 1

2s+ 5

)2s+5

.

The right-hand side of (12.16) is increasing with limit as s→∞ being e−1. Further, as

s+ 1

2
(2s+ 5) ≤ (s+ 2)2 − 1 for s ≥ −1,

we have

(12.17)

(
1− 1

(s+ 2)2

) s+1
2

(2s+5)

≥
(

1− 1

(s+ 2)2

)(s+2)2−1

Now consider

ζ(x) :=

(
1− 1

x2

)x2−1

.



66 J.W. HELTON, I. KLEP, S. MCCULLOUGH, AND M. SCHWEIGHOFER

We claim it is (for x > 1) decreasing. Indeed,

ζ ′(x) =
2
(
1− 1

x2

)x2
x
(
x2 log

(
1− 1

x2

)
+ 1
)

x2 − 1

and

x2 log

(
1− 1

x2

)
+ 1 < 0

since (
1− 1

x2

)x2
is increasing with limit e−1.

Now the left-hand side of (12.16) is greater than the right-hand side of (12.17) which is

decreasing with s towards e−1 which is an upper bound on the right-hand side of (12.16).

Lemma 12.11. For s ∈ R with s ≥ 1 we have

(12.18) gs+2,s−1(

ψ

(s+ 2, s− 1)) ≥ gs+1,s(ψ(s+ 1, s)).

Proof. Expanding g’s as was done to obtain (12.7), we see (12.18) is equivalent to

(12.19) ξ(s) :=
s+ 4

s+ 2

(
1 +

4

s

) s
2
(

2s+ 1

2s+ 5

)s+ 1
2

≥ 1

Letting s = 2S, consider

Ξ(S) = ξ
(s

2

)
=
S + 2

S + 1

(
1 +

2

S

)S (
1− 4

4S + 5

)2S+ 1
2

.

We have to show that Ξ(S) ≥ 1 for S ∈ [1
2 ,∞). To this end, we will show that Ξ′(S) ≤ 0

for S ∈ [1
2 ,∞) and limS→∞ Ξ(S) = 1. For the latter, note that

lim
S→∞

(
1− 4

4S + 5

)2S+ 1
2

= lim
S→∞

(
1− 4

4S + 5

)−2
√

lim
S→∞

(
1− 4

4S + 5

)5+4S

= e−4

and therefore

lim
S→∞

Ξ(S) = e2
√
e−4 = 1.

A straightforward computation shows

Ξ′(S) =

(
1 + 2

S

)S (
1− 4

4S+5

)2S+ 1
2

(S + 1)2(4S + 5)
Ξ1(S)

where

Ξ1(S) := 1 + 2S + (S + 1)(S + 2)(4S + 5)

log

(
1− 8

4S + 5
+

16

(4S + 5)2
− 16

(4S + 5)S
+

32

(4S + 5)2S
+

2

S

)
.
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It is enough to show that Ξ1(S) ≤ 0 for S ∈ [1
2 ,∞). Using log x ≤ x− 1 for x > 0, we have

Ξ1(S) ≤

1 + 2S + (S + 1)(S + 2)(4S + 5)

(
− 8

4S + 5
+

16

(4S + 5)2
− 16

(4S + 5)S
+

32

(4S + 5)2S
+

2

S

)
=

9

5(4S + 5)
+

4

5S
− 2

which evaluates to −1
7 for S = 1

2 and therefore is clearly negative for S ≥ 1
2 .

Proof of Proposition 9.2. Suppose d = s + t is an even integer. If s and t are even integers

with s ≥ t, then two step monotonicity in Proposition 12.8 tells us that the minimizer over r

even with s− r ≥ t+ r, of fs−r,t+r(σs−r,t+r) occurs where s− r = t+ r; that is, s = d
2 = t. If

s and t are odd integers with s ≥ t, then stepping r by 2 preserves odd integers, so two step

monotonicity gives that the minimizer in this case is at s = d
2 + 1 and t = d

2 − 1. Compare the

two minimizers using Lemmas 12.7 and 12.9 which give:

(12.20) fs,s(σs,s) ≤ gs,s(ψ(s, s)) ≤ gs+1,s−1( ψ(s+ 1, s− 1)) ≤ fs+1,s−1(σs+1,s−1).

Apply this inequality to s = d
2 to get the minimizer is d

2 .

Suppose d is an odd integer. As before, Proposition 12.8 gives that the minimizer of

fs,t(σs,t) over s odd and t even is s = d
2 + 1

2 and t = d
2 −

1
2 . Likewise minimizing over t odd

and s even yields a minimizer which compares to the previous one unfavorably (using Lemmas

12.7 and 12.11).

13. Estimating ϑ(d) for Odd d.

Recall that ϑ(d) (d ∈ N) has been introduced in (1.1) and was simplified in Proposition

4.2. It was explicitly determined in (1.2) for even d by the expression which we repeat in part

(b) of Theorem 13.1. For odd d, we have only the implicit characterization of Theorem 1.2. We

do not know a way of making this more explicit. In this section, we exhibit however, for odd d,

a compact interval containing ϑ(d) whose end-points are given by nice analytic expressions in

d. For the upper end point of the interval, we provide two versions: one involving the gamma

function only and another which seems to be even tighter but involves the regularized beta

function. The main result of this section is

Theorem 13.1. Let d ∈ N.

(a) ϑ(1) = 1

(b) Suppose d is even. Then

ϑ(d) =
√
π

Γ
(
1 + d

4

)
Γ
(

1
2 + d

4

) .
(c) Suppose d ≥ 3 is odd. Then there is a unique p ∈ [0, 1] satisfying

Ip

(
d+ 1

4
,
d+ 3

4

)
= I1−p

(
d− 1

4
,
d+ 5

4

)
.
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For this p, we have p ∈ [1
2 ,

d+1
2d ],

(13.1) ϑ−(d) ≤ ϑ(d) =
Γ
(
d+3

4

)
Γ
(
d+5

4

)
p
d−1
4 (1− p)

d+1
4 Γ

(
d
2 + 1

) ≤ min{ϑ+(d), ϑ++(d)}

where ϑ−(d), ϑ+(d) and ϑ++(d) are given by

ϑ−(d) = 4

√
d2d

(d+ 1)d+1(d− 1)d−1
ϑ++(d),

1

ϑ+(d)
=
d− 1

d
I d+1

2d

(
d+ 1

4
,
d+ 3

4

)
+
d+ 1

d
I d−1

2d

(
d− 1

4
,
d+ 5

4

)
− 1 and

ϑ++(d) =

√
π

2

Γ
(
d+3

2

)
Γ
(
d
2 + 1

) .
13.1. Proof of Theorem 13.1. Our starting point is the optimization Problem 9.1 (or its

equivalent Problem 12.1) from Section 9. Any good approximation p of σs,t will now give upper

bound fs,t(p) on the minimum fs,t(σs,t) of fs,t. This will be our strategy to get a good upper

bound of 1
ϑ(d) , i.e., a good lower bound of ϑ(d). Getting good upper bounds of ϑ(d) will be

harder. To do this, we introduce sort of artificially simplified versions gs,t, hs,t : [0, 1] → R of

fs,t having the property

f(σs,t) = g(σs,t) = h(σs,t)

but decreasing at least in one direction while moving away from σs,t. The upper bound of

ϑ(d) arising from g seems to be tighter while the one arising from h will be given by a simpler

expression. Let these functions be given by

gs,t(p) = 2

(
sI1−p

(
t
2 ,

s
2 + 1

)
s+ t

+
tIp
(
s
2 ,

t
2 + 1

)
s+ t

)
− 1 and

hs,t(p) = I1−p

(
t

2
,
s

2
+ 1

)
+ Ip

(
s

2
,
t

2
+ 1

)
− 1

for p ∈ [0, 1]. Using the standard identities with beta functions, it is easy to compute

g′s,t(p) =
2p

s
2
−1(1− p)

t
2
−1

B
(
s
2 ,

t
2

) (1− 2p) and

h′s,t(p) =
p
s
2
−1(1− p)

t
2
−1(s+ t)((1− p)s− pt)
stB

(
s
2 ,

t
2

)
for p ∈ [0, 1]. Therefore gs,t is strictly increasing on [0, 1

2 ] and strictly decreasing on [1
2 , 1], and

hs,t is strictly increasing on [0, s
s+t ] and strictly decreasing on [ s

s+t , 1]. Another useful identity

which we will use is

(13.2) fs,t

(
s

s+ t

)
= hs,t

(
s

s+ t

)
.
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Lemma 13.2. Let s, t ∈ N and p ∈ [0, 1]. Then

hs,t(p) =
2(s+ t)

stB( s2 ,
t
2)
p
s
2 (1− p)

t
2

=
p
s
2 (1− p)

t
2(

s
2 + t

2 + 1
)
B
(
s
2 + 1, t2 + 1

)
=

Γ
(
s
2 + t

2 + 1
)

Γ
(
s
2 + 1

)
Γ
(
t
2 + 1

)p s2 (1− p)
t
2 .

Proof. Using the identities Ip(x, y) = Ip(x − 1, y + 1) − px−1(1− p)y

yB(x, y)
6 and B

(
s

2
+ 1,

t

2

)
=

s

s+ t
B

(
s

2
,
t

2

)
, we get

1− I1−p

(
t

2
,
s

2
+ 1

)
= Ip

(
s

2
+ 1,

t

2

)
= Ip

(
s

2
,
t

2
+ 1

)
− p

s
2 (1− p)

t
2

t
2B( s2 + 1, t2)

= Ip

(
s

2
,
t

2
+ 1

)
− 2(s+ t)p

s
2 (1− p)

t
2

stB( s2 ,
t
2)

and therefore hs,t(p) equals the first of the three expressions. Using B

(
s

2
+ 1,

t

2
+ 1

)
=

s

s+ t+ 2
B

(
s

2
,
t

2
+ 1

)
=

st

(s+ t)(s+ t+ 2)
B

(
s

2
,
t

2

)
, we get from this that hs,t(p) also equals

the second expression. Finally,

B

(
s

2
+ 1,

t

2
+ 1

)
=

Γ
(
s
2 + 1

)
Γ
(
t
2 + 1

)
Γ
(
s
2 + t

2 + 2
) =

Γ
(
s
2 + 1

)
Γ
(
t
2 + 1

)(
s
2 + t

2 + 1
)

Γ
(
s
2 + t

2 + 1
) ,

yielding that hs,t(p) equals the third expression.

Proof of Theorem 13.1. (a) is clear. Part (b) has already been proven in (1.2) but we shortly

give again an argument: If d is even, we know that

1

ϑ(d)
= f d

2
, d
2
(σ d

2
, d
2
) = h d

2
, d
2
(σ d

2
, d
2
)

but obviously σ d
2
, d
2

= 1
2 and so by Lemma 13.2

1

ϑ(d)
= h d

2
, d
2

(
1

2

)
=

Γ
(
d
2 + 1

)
Γ
(
d
4 + 1

)2
2
d
2

.

By the Lagrange duplication formula7 we have

Γ

(
d

2
+ 1

)
= Γ

(
2

(
d

4
+

1

2

))
=

1
√
π2

d
2

Γ

(
d

4
+

1

2

)
Γ

(
d

4
+ 1

)
which proves part (b).

6see (8.17.19) in http://dlmf.nist.gov/8.17
7see 5.5.5 in http://dlmf.nist.gov/5.5

http://dlmf.nist.gov/8.17
http://dlmf.nist.gov/5.5
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It remains to prove (c) and we suppose from now on that d ≥ 3 is odd. Then the defining

Equation (9.2) for p := σ d+1
2
, d−1

2
is the one stated in (c) and we know from Theorem 1.2 that

1

ϑ(d)
= f d+1

2
, d−1

2
(p) = g d+1

2
, d−1

2
(p) = h d+1

2
, d−1

2
(p).

Using Lemma 13.2, we get

1

ϑ(d)
= h d+1

2
, d−1

2
(p) =

Γ
(
d+1

4 + d−1
4 + 1

)
Γ
(
d+1

4 + 1
)

Γ
(
d−1

4 + 1
)p d+1

4 (1− p)
d−1
4 ,

showing the equality we claim for ϑ(d). From Section 11 we know that

1

2
≤ p ≤ d+ 1

2d
.

By the monotonicity properties observed earlier, this implies

g d+1
2
, d−1

2

(
d+ 1

2d

)
≤ g d+1

2
, d−1

2
(p) =

1

ϑ(d)

and

h d+1
2
, d−1

2

(
1

2

)
≤ h d+1

2
, d−1

2
(p) =

1

ϑ(d)
.

The first inequality shows by a simple calculation that ϑ(d) ≤ ϑ+(d).

To show that ϑ(d) ≤ ϑ++(d), it is enough to verify that

(13.3) h d+1
2
, d−1

2

(
1

2

)
=

1

ϑ++(d)
.

To this end, we use the third expression in Lemma 13.2 to obtain

h d+1
2
, d−1

2

(
1

2

)
=

Γ
(
d
2 + 1

)
Γ
(
d+1

4 + 1
)

Γ
(
d−1

4 + 1
)

2
d
2

.

By the Lagrange duplication formula, we have

Γ

(
d+ 3

2

)
= Γ

(
2

(
d+ 3

4

))
=

1√
π

2
d+1
2 Γ

(
d+ 3

4

)
Γ

(
d+ 5

4

)
and therefore

h d+1
2
, d−1

2

(
1

2

)
=

Γ
(
d
2 + 1

)
Γ
(
d+3

2

) √π√
2

=

√
2

π

Γ
(
d
2 + 1

)
Γ
(
d+3

2

) =
1

ϑ++(d)
.

Finally, we show that ϑ−(d) ≤ ϑ(d). This will follow from

1

ϑ(d)
= f d+1

2
, d−1

2
(p) ≤ f d+1

2
, d−1

2

(
d+ 1

2d

)
(13.2)

= h d+1
2
, d−1

2

(
d+ 1

2d

)
if we can show that

h d+1
2
, d−1

2

(
d+ 1

2d

)
=

1

ϑ−(d)
.
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But this follows from

1

ϑ−(d)
=

(
d+ 1

d

) d+1
4
(
d− 1

d

) d−1
4 1

ϑ++(d)
=(

d+ 1

d

) d+1
4
(
d− 1

d

) d−1
4

h d+1
2
, d−1

2

(
1

2

)
= h d+1

2
, d−1

2

(
d+ 1

2d

)
where the second equality stems from 13.3 and the third from Lemma 13.2.

The following table shows the approximate values of ϑ(d) and its lower and upper bounds

from Theorem 13.1 for t ≤ 20

d ϑ−(d) ϑ(d) ϑ+(d) ϑ++(d)

1 − 1 − −
2 − 1.5708 − −
3 1.73205 1.73482 1.77064 1.88562

4 − 2 − −
5 2.15166 2.1527 2.17266 2.26274

6 − 2.35619 − −
7 2.49496 2.49548 2.50851 2.58599

8 − 2.66667 − −
9 2.79445 2.79475 2.80409 2.87332

10 − 2.94524 − −
11 3.064 3.06419 3.07131 3.13453

12 − 3.2 − −
13 3.31129 3.31142 3.31707 3.37565

14 − 3.43612 − −
15 3.54114 3.54123 3.54585 3.6007

16 − 3.65714 − −
17 3.75681 3.75688 3.76076 3.8125

18 − 3.86563 − −
19 3.96068 3.96073 3.96404 4.01316

20 − 4.06349 − −

13.2. Explicit bounds on ϑ(d). In this subsection we present explicit bounds on ϑ(d) for

d ∈ N. Theorem 13.1 gives an explicit analytic expression for ϑ(d) when d ∈ N is even, and

gives analytic bounds for ϑ(d) with d odd.

Proposition 13.3. Let d ∈ N.

(1) If d is even, then
√
π

2

√
d+ 1 ≤ ϑ(d) ≤

√
π

2
· d√

d− 1
.
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(2) If d is odd, then

4

√(
1− 1

d+ 1

)d+1(
1 +

1

d− 1

)d−1

·
√
π

2

√
d+

3

2
≤ ϑ(d) ≤

√
π

2
· d+ 2√

d+ 5
2

.

(3) We have lim
d→∞

ϑ(d)√
d

=

√
π

2
.

Proof. Suppose that d is even. By Theorem 1.2,

(13.4) ϑ(d) =
√
π

Γ
(
d
4 + 1

)
Γ
(
d
4 + 1

2

) .
Since d is even, we may apply Chu’s inequality (see Remark 12.10), to the the right-hand side

of (13.4) and obtain (1).

Similarly, (2) is obtained by applying Chu’s inequality to (13.1). Finally, (3) is an easy

consequence of (1) and (2).

Observe that these upper bounds are tighter than the bound ϑ(d) ≤ π

2

√
d given in

[B-TN02].

14. Dilations and Inclusions of Balls

In this section free relaxations of the problem of including the unit ball of Rg into a

spectrahedron are considered. Here the focus is the dependence of the inclusion scale as a

function of g (rather than d). Among the results we identify the worst case inclusion constant

as g. This inclusion constant can be viewed as a symmetric variable matrix version of the

quantitative measure α(Cg) of the difference between the maximal and minimal operator space

structures associated with the unit ball in Cg introduced by Paulsen [Pau02] for which the best

results give only upper and lower bounds [Pis03].

14.1. The general dilation result. Let A ∈ Sgd be a given g-tuple and assume DLA is

bounded.

Proposition 14.1. Suppose DLA has the property that if C ∈ DLA and 1 ≤ j ≤ g, then

Ĉj = (0, . . . , 0, Cj , 0, . . . , 0) ∈ DLA .

If C ∈ DLA(n), then there exists a commuting tuple T ∈ DLA(gn) such that C dilates to gT .

The estimate is sharp in that g is the smallest number such that for every g-tuple A (satisfying

the assumption above) and g-tuple X ∈ DLA there exists a commuting g-tuple T of symmetric

matrices of size gn such that X dilates to gT and the joint spectrum of T lies in DLA(1).
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Proof. Given C, let Tj = ⊕gk=1Tjk, where Tjk = 0 (the n×n zero matrix) if j 6= k and Tjj = Cj .

It is automatic that the Tj commute. Further,

LA(T ) =

g⊕
j=1

(
I −Aj ⊗ Cj

)
� 0,

so that T ∈ DLA . Finally, let V : Rn → Rn ⊗ Rg denote the mapping

V h =
1
√
g

g⊕
1

h.

It is routine to verify that V ∗TV = 1
gC.

The proof of sharpness is more difficult and is completed in Corollary 14.11.

Remark 14.2. The hypothesis of Proposition 14.1 applies to the matrix cube. When d is large

and g is small, the proposition gives a better estimate for the matrix cube relaxation than does

Theorem 1.6 of Ben-Tal and Nemirovski. More generally, if DLA is real Reinhardt, meaning

if X = (X1, . . . , Xg) ∈ DLA , then all the tuples (±X1, . . . ,±Xg) ∈ DLA , then DLA satisfies the

hypothesis of Proposition 14.1. Of course any DLB can be embedded in a DLA which satisfies

the hypotheses of Proposition 14.1. �

14.2. Four types of balls. Let Bg denote the unit ball in Rg. Here we consider four matrix

convex sets each of which, at level 1, equal Bg. Two of these we know to be free spectrahedra.

A third is for g = 2, but likely not for g ≥ 3. The remaining one we will prove is not a free

spectrahedron as part of a forthcoming paper.

14.2.1. The OH ball. The OH ball (for operator Hilbert space [Pis03]) Boh
g is the set of tuples

X = (X1, . . . , Xg) of symmetric matrices such that

g∑
j=1

X2
j � I.

Equivalently, the row matrix
(
X1 X2 . . . Xg

)
(or its transpose) has norm at most 1. The

ball Boh
g is symmetric about the origin and also satisfies the conditions of Proposition 14.1.

Example 14.3. For two variables, g = 2, the commutability index of Boh
2 (2) is at least 1√

2
.

Let

C1 =
1√
2

(
1 0

0 −1

)
and C2 =

1√
2

(
0 1

1 0

)
.

Evidently C = (C1, C2) ∈ Boh
2 . Suppose T = (T1, T2) is a commuting tuple of size 2 + k which

dilates C. Thus,

Tj =

(
Cj aj
a∗j dj

)
,
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where aj is 2× k and dj is k × k. Commutativity of the tuple T implies,(
0 1

−1 0

)
= C1C2 − C2C1 = a1a

∗
2 − a2a

∗
1 =

(
a1 −a2

) (a∗1
a∗2

)
.

It follows that either the norm of (a1 − a2) or (a1 a2)∗ is at least one. In either case,

a1a
∗
1 + a2a

∗
2 6� I.

On the other hand, the (1, 1) block entry of T 2
1 + T 2

2 is

I2 + a1a
∗
1 + a2a

∗
2 6� 2I2.

Thus, for the tuple C the smallest ρ for which there exists a tuple T of commuting

operators with spectrum in Bg such that C dilates to ρT is at least
√

2. In other words, the

commutability index of Boh
2 (2) is at most 1√

2
. �

14.2.2. The min and max balls. Let Bmin
g denote the min ball (the unit ball Bg with the

minimum operator system structure). Namely, X = (X1, . . . , Xg) ∈ Bmin
g if

g∑
j=1

xjXj � I

for all unit vectors x ∈ Rg.

Lemma 14.4. For a tuple X of n× n symmetric matrices, the following are equivalent.

(i) X is in the min ball;

(ii) Bg ⊆ DLX (1);

(iii) for each unit vector v ∈ Rn the vector v∗Xv = (v∗X1v, . . . , v
∗Xgv) ∈ Bg;

(iv) X ∈ DLA(n) for every g-tuple A of symmetric 1× 1 matrices for which DLA(1) ⊇ Bg.

Proof. The equivalence of (i) and (ii) is immediate. The tuple X is in the min ball if and only

if for each pair of unit vectors x, v ∈ Bg,
g∑
j=1

xj(v
∗Xjv) ≤ v∗v = 1

and the equivalence of (i) and (iii) follows. Now suppose X is not in the min ball. In this case

there exists a ∈ Bg such that X /∈ DLa(1) but of course DLa(1) ⊇ Bg. Thus (iv) implies (i). If

(iv) doesn’t hold, then there is a a ∈ Bg such that X /∈ DLa(1), but DLa(1) ⊇ Bg. This latter

inclusion implies a ∈ Bg and it follows that X is not in the min ball and (i) implies (iv).

Remark 14.5. Note that Bmin
g is not exactly a free spectrahedron since it is defined by

infinitely many linear matrix inequalities (LMIs). In a forthcoming paper we show using the

theory of matrix extreme points that in fact Bmin
g is not a free spectrahedron. �

By comparison, the max ball, denoted Bmax
g , is the set of g-tuples of symmetric matrices

X = (X1, . . . , Xg) such that X ∈ DLA for every d and g-tuple A of symmetric d×d matrices for

which DLA(1) ⊇ Bg. Like the min ball, the max ball is not presented as a free spectrahedron
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since it is defined in terms of infinitely many LMIs. It is described by an LMI when g = 2. See

Subsection 14.2.3 below.

Proposition 14.6. The min and max balls are polar dual in the following sense. A tuple

X ∈ Bmax
g (resp. Bmin

g ) if and only if

(14.1)

g∑
j=1

Xj ⊗ Yj � I

for every Y ∈ Bmin
g (resp. Bmax

g ). Moreover, if A is a g-tuple of symmetric d × d matrices

and if DLA(1) = Bg, then, for each n,

Bmax
g (n) ⊆ DLA(n) ⊆ Bmin

g (n).

Proof. Recall that Y ∈ Bmin
g if and only if DLY (1) ⊇ Bg. Thus X ∈ Bmax

g if and only if

X ∈ DLY for every Y ∈ Bmin
g . Conversely, X ∈ Bmax

g if and only if X ∈ DLY for every Y such

that Bg ⊆ DLY (1) (equivalently Y ∈ Bmin
g ).

Now suppose Bg = DLA(1). By definition, if X ∈ Bmax
g , then X ∈ DLA since Bg ⊆ DLA(1).

On the other hand, if X ∈ DLA(n), then, for each unit vector v ∈ Rn,

I = v∗vI � (v∗ ⊗ I)(
∑

Xj ⊗Aj)(v∗ ⊗ I) =
∑
j

(v∗Xjv)Aj .

Hence v∗Xv ∈ DLA(1) ⊆ Bg. By Lemma 14.4(iii), X is in the min ball.

Remark 14.7. The use of the term minimal in min ball refers not to the size of the spec-

trahedron itself, but rather by analogy to its use in the theory of operator spaces [Pau02]. In

particular, the min ball is defined, in a sense, in terms of a minimal number of positivity condi-

tions; whereas the max ball is defined in terms of the maximal number of positivity conditions

(essentially that it should be contained in every free spectrahedron which, at level 1, is the

unit ball). Proposition 14.6 is a version of the duality between the minimum and maximum

operator space structures on a normed vector space [Pau02]. �

14.2.3. The spin ball and the canonical anticommutation relations. Fix a positive integer g.

The description of our fourth ball uses the canonical anticommutation relations (CAR)

[G̊aWg54, Der06]. A g-tuple p = (p1, . . . , pg) of symmetric matrices satisfies the CARs or is a

spin system [Pis03] if

pjpk + pkpj = 2δjkI.

One construction of such a system P = (P1, . . . , Pg), and the one adopted here, starts

with the spin matrices,

σ1 =

(
1 0

0 −1

)
, σ2 =

(
0 1

1 0

)
.

For convenience let σ0 = I2. Given g ≥ 2, each Pj is a (g− 1)-fold tensor product of combina-

tions of the 2 × 2 matrices σj for 0 ≤ j ≤ 2. In particular, each Pj is a symmetric matrix of

size 2g−1. Define P1 = σ1 ⊗ σ0 ⊗ · · · ⊗ σ0 and, for 2 ≤ j ≤ g − 1,

Pj = σ2 ⊗ · · · ⊗ σ2 ⊗ σ1 ⊗ σ0 ⊗ · · · ⊗ σ0,
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where σ1 appears in the j-th (reading from the left) tensor; thus σ2 appears j − 1 times and

σ0 appears g− j− 1 times. Finally, let Pg denote the (g− 1)-fold tensor product σ2⊗ · · · ⊗σ2.

The spin ball, denoted Bspin
g , is the free spectrahedron determined by the tuple P . Thus,

X ∈ Bspin
g if and only if LP (X) = I−

∑
Pj⊗Xj � 0 if and only if

∑g
j=1Xj⊗Pj is a contraction

(cf. Lemma 14.8(iii)). Further relations between the three balls are explored in the following

subsection.

Here are some further observations on the spin ball. Let

σ3 =

(
0 1

−1 0

)
and let

Σ = Σg =
{
⊗g−1
j=1 σjk : jk ∈ {0, 1, 2, 3}

}
.

In particular, the cardinality of Σg is 4g−1.

Lemma 14.8. If X is a g-tuple of d× d symmetric matrices, then the matrix
∑g

j=1Xj ⊗ Pj
has the following properties.

(i)

(I ⊗ u)∗(

g∑
j=1

Xj ⊗ Pj)(I ⊗ u) =

g∑
j=1

±Xj ⊗ Pj

for each u ∈ Σ with each sequence of ± assumed 2g−2 times;

(ii) the sets Σ±g consisting of those elements u of Σg such that (I⊗u)∗(
∑g

j=1Xj⊗Pj)(I⊗u) =

±
∑g

j=1Xj ⊗ Pj have 2g−2 elements; each u ∈ Σ±g , other than the identity, is skew

symmetric;

(iii)
∑

j Xj ⊗ Pj is unitarily equivalent to −
∑

j Xj ⊗ Pj;
(iv)

∑
j Xj⊗Pj has 2d eigenvalues (coming in d pairs of ±λ by item (iii)) each with multiplicity

2g−2;

(v) If (
∑

j Xj ⊗ Pj)Γ = 0, then (
∑

j Xj ⊗ Pj)(I ⊗ u)Γ = 0 for all u ∈ Σ+
g ∪ Σ−g .

Proof. We first prove

(14.2) σkσjσk = ±σj

for 0 ≤ j, k ≤ 3. Observe it may be assumed that 1 ≤ j, k ≤ 3. For such j, k, with s ∈
{1, 2, 3} r {j, k}, evidently σjσk = σs. Hence, σkσs = σj (since j ∈ {1, 2, 3} r {k, s}) and

Equation (14.2) follows.

Equation (14.2) immediately implies u∗Pku = ±Pk for u ∈ Σg and 1 ≤ k ≤ g. Thus

(I ⊗ u)∗[
∑

j Xj ⊗ Pj ](I ⊗ u) =
∑g

j=1±Xj ⊗ Pj for some choice of signs. This proves the first

part of item (i). The rest of item (i) is established after the proof of item (ii).

Turning to the proof of item (ii), observe u ∈ Σ+
g if and only if u∗Pku = Pk for each

1 ≤ k ≤ g. When g = 2, P1 = σ1 and P2 = σ2. Evidently, Σ+
2 = {σ0} and Σ−2 = {σ3}. Now

suppose item (ii) holds for g. In this case, letting {P1, . . . , Pg} denote the CAR matrices for g,

the CAR matrices for g+ 1 are {q1, . . . , qg+1} where q1 = σ1⊗ 1 and qj = σ2⊗Pj−1 for j > 1.
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If u is in Σ+
g , then I ⊗ u ∈ Σ+

g+1 and σ3 ⊗ u ∈ Σ−g+1. Similarly, if u ∈ Σ−g , then σ1 ⊗ u ∈ Σ+
g+1

and σ2 ⊗ u ∈ Σ−g+1. It follows that Σ−g+1 has at least 2g−1 elements and all of these, except for

the identity are skew symmetric. Since v = σ3 ⊗ I ∈ Σ−g+1, it follows that vu ∈ Σ−g+1 for each

u ∈ Σ+
g+1 and therefore Σ−g+1 has at least 2g−1 elements too. By induction, item (ii) holds.

Moreover, this argument shows there is a positive integer Ng so that each sign arrangement is

taken either 0 of Ng times.

We now use induction to show that every sign arrangement is assumed and thus complete

the proof of item (i). The result is evident for g = 2. Now assume it is true for g. Let

r = σ3 ⊗ σ3 ⊗ I. Compute r∗q1r = σ∗3σ1σ3 ⊗ (σ∗3Iσ3) = −q1, but

r′qj+1r =σ∗3σ2σ3 ⊗ (σ3 ⊗ I)Pj(σ3 ⊗ I)

=− σ2 ⊗ (−Pj) = qj+1.

Thus the combinations of I ⊗ u and r∗(I ⊗ u) for u ∈ Σg produce all sign combinations for

g + 1.

Item (iii) is an immediate consequence of item (ii).

To prove item (iv) - namely to see that each eigenvalue has multiplicity a multiple of 2g−2

- observe if (
∑
Xj ⊗ Pj)Γ = λΓ, then the set {uΓ : u ∈ Σ+

g } is linearly independent. To verify

this last assertion, first note that if u, v ∈ Σ+
g , then uv ∈ ±Σ+

g . Further, each u ∈ Σ+
g is skew

symmetric, except for the identity 1. In particular,

〈(1⊗ u)Γ,Γ〉 = 0

for u 6= 1. Hence, if
∑

u∈Σ+
g
cu(I ⊗ u)Γ = 0, then by multiplying by a v for which cv 6= 0, we

can assume c1 (the constant corresponding to the identity 1) is not zero. Thus,

0 = 〈
∑

cu(1⊗ u)Γ,Γ〉 = c1‖Γ‖2

and a contradiction is obtained. To complete the proof, let m is the largest integer such

that there exists Γ1, . . .Γm such that {uΓk : u ∈ Σ+
g , 1 ≤ k ≤ m} spans the eigenspace

corresponding to eigenvalue λ, then the dimension of this space is m2g−2. We prove this

assertion using induction. Suppose 1 ≤ k ≤ m and Sk := {uΓj : u ∈ Σ+
g , 1 ≤ j ≤ k} is linearly

independent (and thus has dimension k2g−2). Arguing by contradiction, suppose the ∆ is in

the intersection of Sk and {uΓk+1 : u ∈ Σ+
g }. From what is already been proved, the dimension

of the span of {u∆ : u ∈ Σ+
g } is 2g−2 but this subspace is a subspace of both the span of Sk

and the span of {uΓk+1 : u ∈ Σ+
g }, contradicting the minimality of m. Hence the dimension of

the span of Sk+1 is (k + 1)2g−2 and the proof is complete.

Item (v) is evident.

Lemma 14.9. The mapping from Rg (in the Euclidean norm) to M2g−1(R) (in the operator

norm),

x 7→
g∑
j=1

xjPj

is an isometry. In particular, Bspin
g (1) = Bg.
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Proof. The result follows from (
∑

j=1 xjPj)
2 = (

∑
j x

2
j )I+

∑
j<k(xjxk−xkxj)PjPk = (

∑
x2
j )I.

A consequence of Lemma 14.9 is that the tuple (P1, . . . , Pg) is in Bmin
g .

14.3. Inclusions and dilations. In this subsection we investigate inclusions between the

different types of balls introduced above.

Lemma 14.10. The norm of
∑g

j=1 Pj ⊗ Pj is g. Hence P is in the (topological) boundary of

gBspin
g . The norm of the block row matrix

(
P1 · · · Pg

)
is
√
g. Thus P is in the boundary

of
√
gBoh

g .

Proof. We prove a bit more. Let {e0, e1} denote the standard basis of R2. In particular,

σ0ej = ej , σ1ej = (−1)jej and σ2ej = ej+1 (modulo 2). For convenience, let h = g − 1. Given

α = (α1, . . . , αh) ∈ Zh2 , let

eα = eα1 ⊗ · · · ⊗ eαh ∈ R2h

and

γ =
∑
α∈Zh2

eα ⊗ eα.

Now we verify that, for 1 ≤ j ≤ g,

(14.3) Pj ⊗ Pjγ = γ.

Indeed, P1eα = (−1)α1eα and hence P1 ⊗ P1eα ⊗ eα = eα ⊗ eα. For 2 ≤ j ≤ h,

Pjeα = eα1 ⊗ · · · ⊗ eαh
= eα1+1 ⊗ · · · ⊗ eαj−1+1 ⊗ (−1)αjeαj ⊗ eαj+1 ⊗ · · · ⊗ eαh
= (−1)αjeβ,

where β = (α1 + 1, . . . , αj−1 + 1, αj , . . . , αh). Thus,

(Pj ⊗ Pj)(eα ⊗ eα) = eβ ⊗ eβ
and the conclusion Pj ⊗ Pjγ = γ for 1 ≤ j ≤ h follows. The argument that Pg ⊗ Pgγ = γ is

similar.

It follows that (
∑

j Pj ⊗ Pj)γ = g γ and hence the norm of
∑
Pj ⊗ Pj is at least g. Since

the norm of each Pj is one, the norm of
∑
Pj ⊗ Pj is at most g. The remainder of the lemma

is evident.

Corollary 14.11. The smallest ρ such that Bmin
g ⊆ ρBspin

g is ρ = g. In particular, the

estimate g in Proposition 14.1 is sharp.

Proof. Suppose Bmin
g ⊆ ρBspin

g . By Lemma 14.9, the tuple P coming from the CAR is in Bmin
g

and by Lemma 14.10, P is in the boundary of gBspin
g . Thus ρ ≥ g. On the other hand, if

X ∈ Bmin
g , then, since Bmin

g satisfies the hypotheses of Proposition 14.1, X = gV ∗TV , where

V is an isometry and T is a commuting tuple of self adjoint matrices with spectrum in Bg.
In particular, T ∈ Bspin

g and thus 1
gX ∈ Bspin

g too. Hence Bmin
g ⊆ gBspin

g . Further, if the
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estimate in Proposition 14.1 were not sharp, the argument just given would produce a ρ < g

such that Bmin
g ⊆ ρBspin

g , a contradiction.

Theorem 14.12. The smallest ρ such that Boh
g embeds into ρBspin

g is
√
g.

Proof. By Lemma 14.10, P is in the topological boundaries of
√
gBoh

g and gBspin
g . Hence

ρ ≥ √g.

To prove the converse inequality, we use complete positivity to show Boh
g ⊆

√
gBspin

g .

We follow the solution [HKM13] to the free spectrahedral inclusion problem as described in

Subsection 1.3.2. Let ei,j denote the (g+ 1)× (g+ 1) matrix units. Letting Ai = e1,i+1 + ei+1,1

for i = 1, . . . , g, and A = (A1, . . . , Ag), we have Boh
g = DA. Similarly, Bspin

g = DP , where

P = (P1, . . . , Pg). It thus suffices to show there is a unital completely positive map

ψ : e1,i+1 + ei+1,1 7→
1
√
g
Pi, i = 1, . . . , g.

Consider the following ansatz for the Choi matrix for ψ:

(14.4) Cψ =


1
2I

1
2
√
gP1 · · · 1

2
√
gPg

1
2
√
gP1

... S
1

2
√
gPg


Set

S =
1

2g

P1
...

Pg


P1

...

Pg


∗

=
1

2g


I P1P2 · · · P1Pg

P2P1 I · · · P2Pg
...

. . .
. . .

...

PgP1 · · · · · · I


It is clear that S � 0. Furthermore, the Schur complement of the top left block of Cψ from

(14.4) is 0. Thus Cψ is positive semidefinite. Furthermore, 1
2I + g 1

2g I = I, whence ψ is

unital.

Proposition 14.13. The smallest ρ such that Bmin
g embeds into ρBoh

g is ρ =
√
g.

Proof. The tuple P is in Bmin
g , but is, by Lemma 14.10, in the topological boundary of

√
gBoh

g .

Thus ρ ≥ √g. On the other hand, if X = (X1, . . . , Xg) is in Bmin
g , then each Xj is a contraction.

Hence the norm of the row matrix X =
(
X1 . . . Xg

)
is at most

√
g; i.e., X ∈ Boh

g .

Proposition 14.14. A 2-tuple X is in the spin ball Bspin
2 if and only if it dilates to a com-

muting 2-tuple T of symmetric matrices (an upper bound on the size of the matrices in T in

terms of g and d can be deduced from the proof) with joint spectrum in B2.

Before giving the proof of Proposition 14.14 let us note a few consequences.

Corollary 14.15. Bspin
2 = Bmax

2 . In particular, for a given 2-tuple A of d × d matrices,

B2 ⊆ DLA(1) if and only if Bspin
2 ⊆ DLA. Finally, Y ∈ Bmin

2 if and only if there exists a

positive integer µ such that Y dilates to Iµ ⊗ P .
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Proof. By Proposition 14.6, Bmax
2 ⊆ Bspin

2 . Thus it remains to show if X ∈ Bspin
2 , then

X ∈ Bmax
2 . By Proposition 14.14, there exists a commuting pair T of symmetric matrices and

an isometry V such that Xj = V ∗TjV and the joint spectrum of T is in B2. It follows that

T ∈ Bmax
2 and thus X ∈ Bmax

2 too.

To prove second statement, note that, by definition of the max ball, if B2 ⊆ DLA(1), then

Bmax
2 ⊆ DLA . The converse is automatic since Bspin

2 (1) = B2. Thus the second part of the

corollary follows immediately from the first.

The final part of the corollary follows easily from [HKM+]. Here is a sketch. Let P denote

the span of {I, P1, . . . , Pk}. Suppose Y ∈ Bmin
2 and let Y denote the span of {I, Y1, Y2}. By

Proposition 14.6 and what has already been proved, if X ∈ Bspin
2 , then I �

∑2
j=1Xj ⊗ Yj .

Hence the unital mapping ϕ : P → Y defined by ϕ(Pj) = Yj is completely positive. The

dilation conclusion follows. Conversely, if Y dilates to Iµ⊗P , then evidently Y is in Bmin
2 and

the proof is complete.

Remark 14.16 (Matrix Ball Problem). Given a d×d monic linear pencil L for g = 2 consider

the problem of embedding the unit ball B2 into the spectrahedron SL = DL(1). Equivalently

(Corollary 14.15), consider embedding Bspin
2 into DL. Both objects are free spectrahedra, so the

complete positivity machinery on embeddings of free spectrahedra applies (see Subsubsection

1.3.2 or [HKM13] for details). That is, B2 ⊆ SL = DL(1) is equivalent to an explicit LMI of

size 4d. �

The proof of Proposition 14.14 uses the following proposition.

Proposition 14.17. A tuple X ∈ Bspin
2 (d) is an extreme point of Bspin

2 (d) if and only if it is

a commuting tuple and
∑g

j=1Xj ⊗ Pj is unitary.

Proof. For notational ease, let Λ(x) =
∑g

j=1 Pjxj , with the dependence on g supressed. Ob-

serve that, by Lemma 14.8, a tuple X ∈ Bspin
g if and only if Λ(X)2 � I. Equivalently, X is in

the spin ball if and only if L(X) := I − Λ∗(X) � 0, where

Λ∗(X) = Λ(X)⊕−Λ(X) =

(
Λ(X) 0

0 −Λ(X)

)
.

In the case of g = 2 and the tuple X = (X1, X2),

Λ(X) =

(
X1 X2

X2 −X1

)
and X is in the spin ball if and only if

I � Λ(X)2 =

(
X2

1 +X2
2 X1X2 −X2X1

−(X1X2 −X2X1) X2
1 +X2

2

)
.

Suppose this inequality holds. If γ ∈ Rd and (X2
1 + X2

2 )γ = γ, then evidently (X1X2 −
X2X1)γ = 0. Let

H = {γ ∈ Rd : (X2
1 +X2

2 )γ = γ}.
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If H = Rd, then X1 and X2 commute. Hence, we may assume H is a proper subspace of Rd.
Let K = Rd 	H.

Let E± denote the nullspace of I ∓ Λ(X). In particular, E , the nullspace of I − Λ(X)2 is

the direct sum E+ ⊕ E−. Let {e0, e1} denote the standard basis for R2. If γ0 ∈ K and γ1 ∈ Rd

and Γ =
∑1

j=0 γj ⊗ ej ∈ E±, then, since (1⊗ σ3)Λ(x)(1⊗ σ3) = −Λ(x) (see Lemma 14.8),

Λ(X)(I ⊗ σ3)Γ = ∓(I ⊗ σ3)Γ,

and hence (I ⊗ σ3)Γ lies in E∓. It follows that I ⊗ σ3 leaves E invariant. Let Q denote the

projection of Rd onto K. If Γ ∈ E , then ((I −Q)⊗ I)Γ ∈ H ⊗ R2 ⊆ E . Hence (Q⊗ I)Γ ∈ E .

Consequently, we can assume there is a nonzero Γ ∈ E ∩ (K ⊗ K). Write, as before Γ =∑1
j=0 γj ⊗ ej . To see that {γ0, γ1} spans a two dimensional space S (is a linearly independent

set), suppose not. In that case, Γ = γ ⊗ e for vectors γ ∈ K and e ∈ R2. Since σ3 is skew

symmetric (as is X1X2 −X2X1),〈[
(X1X2 −X2X1)⊗ σ3

]
Γ,Γ

〉
=
〈
(X1X2 −X2X1)γ, γ〉 〈σ3e, e

〉
= 0.

Thus, as Γ = Λ(X)2Γ,

‖γ‖2 ‖e‖2 = ‖Γ‖2

= 〈Γ,Γ〉

= 〈Λ(X)2Γ,Γ〉

= 〈(X2
1 +X2

2 )γ ⊗ e+ (X1X2 −X2X1)γ ⊗ e, γ ⊗ e〉

= 〈(X2
1 +X2

2 )γ, γ〉 ‖e‖2.

Since I � X2
1 +X2

2 it follows that (X2
1 +X2

2 )γ = γ ∈ H. Hence γ = 0.

Both Γ and (I ⊗ σ3)Γ ∈ E ∩ (S ⊕ S). On the other hand, if {Γ, (I ⊗ σ3)Γ} don’t span

E ∩ (S ⊕S), then it is easily shown that this intersection contains an element of the form γ⊗ e
and we obtain a contradiction as before. Thus E ∩ (S ⊕ S) is spanned by {Γ, (I ⊗ σ3)Γ}.

Define Y = (Y1, Y2) on S as follows. Let Z be a generic 4× 4 matrix. We will choose Z so

that it has the form Λ(Y ) and such that Λ(Z) is zero on E ∩(S⊕S). There are 16 free variables

in Z. Insuring Z has the proper form with Yj = Y ∗j consists of 2 + 2 · 4 = 10 homogeneous

equations. The condition ZΓ = 0 is another 4 homogeneous equations. The form of Z and

ZΓ = 0 implies Z(I ⊗ σ3)Γ = 0 too. Hence we are left with 2 free variables and a choice of

Y 6= 0 exists. And Λ(Y )E ∩ (S ⊕ S) = 0 for such a choice of Y .

Extend the definition of Y to all of Rd by declaring Yj = 0 on S⊥. It follows that Y 6= 0 and

at the same time Λ(Y ) is 0 on E and hence on each of E±. With respect to the decomposition

of the space that Λ(X) acts upon as E+ ⊕ E− ⊕H,

Λ(X) =

I 0 0

0 −I 0

0 0 X ′

 , Λ(Y ) =

0 0 0

0 0 0

0 0 Y ′

 ,



82 J.W. HELTON, I. KLEP, S. MCCULLOUGH, AND M. SCHWEIGHOFER

where X ′, Y ′ are self-adjoint and X ′ is a strict contraction. It follows, by choosing t small

enough, that I ± Λ(X + tY ) � 0 and thus X is not an extreme point of Bspin
2 .

Proof of Proposition 14.14. If X in the spin ball Bspin
2 (d), then by Caratheodory’s Theorem

there exists an N , extreme points X1, . . . XN of Boh
2 (d) and scalars 0 ≤ t1, . . . , tN such that∑

tj = 1 and X =
∑
tjX

j . Let T = ⊕Xj act on H = ⊕N1 Rd and define V : Rd → H

by V h = ⊕√tjh. Thus V is an isometry and it is evident that V ∗TV =
∑
tjX

j = X. By

Proposition 14.17, T is a commuting tuple of symmetric matrices.

14.3.1. An alternate proof of Proposition 14.14. An ad hoc proof of Proposition 14.14 is based

upon the Halmos dilation of a contraction matrix to a unitary matrix.

Lemma 14.18. Suppose u, v, a, b, d are n× n matrices and let

R =

(
a b

b∗ d

)
If R is positive semidefinite, and

R2 = Z :=

(
u v

−v u

)
,

then a = d and b∗ = −b.

Proof. Note that U∗R2U = R2, where U is the unitary matrix

U =
1

2

(
I I

−I I

)
.

Using the functional calculus it follows that U∗RU = R too. From this relation, direct com-

putation reveals

a− (b+ b∗) + d = 2a

a+ (b− b∗)− d = 2b

from which it follows that b+ b∗ = 0 and a = d.

Proof of Proposition 14.14. Let

S =

(
X Y

Y −X

)
.

Almost by definition, X ∈ Bspin
2 means S is a a contraction. Let D = (I − S2)

1
2 , the defect of

S. By Lemma 14.18,

D =

(
d e

−e d

)
.

In particular, e is skew symmetric, e∗ = −e. The operator

U =

(
S D

D −S

)
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is unitary and consequently

X2 + Y 2 + d2 − e2 = I

XY − Y X + de+ ed = 0

Y d+Xe+ eX − dY = 0

Xd− Y e− dX − eY = 0.

(14.5)

Let

T1 =

(
X e

−e X

)
, T2 =

(
Y d

d −Y

)
.

Compute, using (14.5),

T1T2 − T2T1 =

(
XY + ed− Y X + de Xd− eY − Y e− dX
−eY +Xd− dX − Y e −ed−XY − de+ Y X

)
= 0.

Likewise,

T 2
1 + T 2

2 =

(
X2 − e2 + Y 2 + d2 Xe+ eX + Y d− dY
−eX −Xe+ dY − Y d X2 − e2 + Y 2 + d2

)
= I.

15. Probabilistic Theorems and Interpretations continued

This section follows up on Section 1.8, adding a few more probabilistic facts and summa-

rizing properties involving equipoints. We follow the conventions of Section 1.8. In particular,

for s, t ∈ R with d = s + t > 0 the equipoint es,t is defined by

(15.1) P b(s+1,t)(B ≤ es,t) = P b(s,t+1)(B ≥ es,t).

15.1. The nature of equipoints. Here are basic properties of equipoints versus medians.

Proposition 15.1. Various properties of the distributions Bin(d, p) and Beta(s, t) are:

(1) Bin and Beta: The equipoint exists and is unique.

(2) Bin: Given s, if es,t is an equipoint, then s is a median for Bin(d, es,t).

(3) Bin: For even d and any integer 0 ≤ k ≤ d
2 ,

Pσ
( d2+k)

(
S =

d

2
+ k

)
= Pσ

( d2−k)

(
S =

d

2
− k
)
.

Also we have the symmetry

P d
2

+k

(
S =

d

2
+ k

)
= P d

2
−k

(
S =

d

2
− k
)
.

Proof. (1) Note that for fixed integer s, the function Pp(S ≥ s) is increasing from p = 0 to

p = 1. Likewise Pp(S ≤ s) is decreasing from p = 0 to p = 1. The graphs are continuous, so

must cross at a unique point, namely at es,t. Likewise, P b(s+1,t)(B ≤ p) increases from 0 up to

1 while P b(s,t+1)(B ≥ p) decreases from 1 down to 0.
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(2) Fix d, s, hence es,t. Then by the definition of es,t, we have

(15.2) 1 = 2Pes,t(S < s) + Pes,t(S = s).

If Pes,t(S < s) + Pes,t(S = s) < 1
2 then Pes,t(S > s) + Pes,t(S = s) < 1

2 which contradicts

(15.2). Thus s is a median.

(3) The symmetry is seen by switching the roles of heads and tails:

Pp(S = s) = P1−p(S = d− s).

Then note d− ( d2 + k
d ) = d

2 −
k
d .

15.2. Monotonicity. For d ∈ R>0 fixed recall the functions

(15.3) Φ(s) := P b(s,d−s+1)(B ≤ es,d−s+1) and Φ̂(s) := P b(s,d−s+1)
(
B ≤ s

d

)
based on the CDF of the Beta Distribution. The proof of one step monotonicity of these

functions claimed in Theorem 1.15 from Section 1.8 is proved below in Subsubsection 15.2.1.

A similar result with the CDF replaced by the PDF is established in Subsubsection 15.2.2.

15.2.1. Monotonicity of the CDF.

Proof of Theorem 1.15. (1) The claim is that Φ(s) ≤ Φ(s+ 1) for s, d ∈ 1
2N and d

2 ≤ s < d− 1.

Recall Lemma 12.2 which says that fs,t(σ) defined in (12.1) when evaluated at the equipoint

is

fs,t(σs,t) = 2 Iσs,t

(
s

2
, 1 +

t

2

)
− 1

Using the conversion s = s
2 , we get Φ(s) =

fs,t(σs,t) + 1

2
. Proposition 12.8 gives two step

monotonicity of fs,t(σs,t) when s ≥ t which implies Φ is one step monotone for s ≥ t.

(2) We claim that Φ̂(s) ≤ Φ̂(s + 1) for s, d ∈ R with d
2 ≤ s < d− 1.

Define F̂ by

F̂ (d, s) =
P b(s,t+1)(B ≤ s

d)

Γ (d + 1)
=
I s

d
(s, t + 1)

Γ (d + 1)
=

∫ s
d

0
xs−1(1− x)t dx

Γ (t + 1) Γ (s)
.

for s + t = d. Now we show that for d
2 ≤ s ≤ d− 1 we have F̂ (d, s + 1) ≥ F̂ (d, s), equivalently

F̂ (d, s + 1)

F̂ (d, s)
≥ 1.
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We start by simplifying this quotient:

F̂ (d, s + 1)

F̂ (d, s)
=

∫ s+1
d

0
xs(1− x)t−1 dx Γ (t + 1) Γ (s)

Γ (t) Γ (s + 1)

∫ s
d

0
xs−1(1− x)t dx

=
t

s

∫ s+1
d

0
xs(1− x)t−1 dx∫ s

d

0
xs−1(1− x)t dx

.

Thus
F̂ (d, s + 1)

F̂ (d, s)
≥ 1 is equivalent to

(15.4) t

∫ s+1
d

0
xs(1− x)t−1 dx ≥ s

∫ s
d

0
xs−1(1− x)t dx,

so it suffices to prove

(15.5) t

∫ s+1
d

s
d

xs(1− x)t−1 dx ≥ s

∫ s
d

0
xs−1(1− x)t dx− t

∫ s
d

0
xs(1− x)t−1 dx.

As (
xs(1− x)t

)′
= sxs−1(1− x)t dx− txs(1− x)t−1,

the right-hand side of (15.5) equals
sstt

dd
.

Letting η(x) := xs(1− x)t−1, we see

η′(x) = xs−1(1− x)t−2(−xd + x+ s),

so η(x) is increasing on

[
0,

s

d− 1

]
and decreasing on

[
s

d− 1
, 1

]
. Since s ≤ d − 1, we have

s

d− 1
∈
[
s

d
,
s + 1

d

]
. We claim that

(15.6) η
( s
d

)
≤ η

(
s + 1

d

)
.

Indeed, (15.6) is easily seen to be equivalent to(
1 +

1

s

)s

≥
(

1 +
1

t− 1

)t−1

,

which holds since s ≥ t.

We can now apply a box inequality on the left-hand side of (15.5):

t

∫ s+1
d

s
d

xs(1− x)t−1 dx ≥ t
1

d
η
( s
d

)
=

sstt

dd
,

establishing (15.5).
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Ideas in the paper [PR07] were very helpful in the proof above.

15.2.2. Monotonicity of the PDF. So far we have studied the CDF of the Beta Distribution.

However, the functions

(15.7) Pes,t(S = s) and P s
d
(S = s)

based on PDF’s of the Binomial distribution also have monotonicity properties for integer

d/2 ≤ s ≤ d.

Proposition 15.2. Let d ∈ N. For integer s ≥ d
2 , we have that

(1) P s
d
(S = s) is increasing; its minimum is P s

d
(S = dd/2e);

(2) Pes,t(S = s) is increasing; its minimum is Pσs(S = dd/2e).

Proof. (2) By the definition of es,t, we have Pes,t(S = s) = 2Pes,t(S ≤ s) − 1. Theorem 1.15

implies the required monotonicity.

(1) Recall

P s
d
(S = s) =

(
d

s

)
sstt

dd
.

Thus
P s+1

d
(S = s + 1)

P s
d
(S = s)

=

(
s + 1

s

)s ( t− 1

t

)t−1

is ≥ 1 iff

(15.8)

(
1 +

1

s

)s

≥
(

1 +
1

t− 1

)t−1

.

Since s > t− 1, (15.8) holds, establishing the monotonicity of P s
d
(S = s).
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