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Abstract. Let S ∪ {f} be a set of symmetric polynomials in noncommuting

variables. If f satisfies a polynomial identity
P

i h∗i fhi = 1 +
P

i g∗i sigi for
some si ∈ S ∪ {1}, then f is obviously nowhere negative semidefinite on the

class of tuples of non-zero operators defined by the system of inequalities s ≥ 0

(s ∈ S). We prove the converse under the additional assumption that the
quadratic module generated by S is archimedean.

1. Introduction and main results

We write N := {1, 2, . . . }, R, C for the sets of natural, real and complex numbers.
For k ∈ {R, C}, we consider the algebra k〈X̄〉 of polynomials in n noncommuting
variables X̄ := (X1, . . . , Xn) with coefficients from k. The elements of k〈X̄〉 are
linear combinations of words in n letters X̄. The length of the longest word in
such a linear combination is called the degree. We equip k〈X̄〉 with the involution
∗ reversing the words, e.g., (X1X2 + X2

1 )∗ = X2X1 + X2
1 . Thus k〈X̄〉 is the ∗-

algebra freely generated by n symmetric elements. Let Sym k〈X̄〉 denote the set of
all symmetric elements, that is, Sym k〈X̄〉 = {f ∈ k〈X̄〉 | f = f∗}. A polynomial
of the form g∗g is called a hermitian square.

If f ∈ k〈X̄〉 is a sum of hermitian squares and we substitute bounded self-
adjoint operators A1, . . . , An on the same Hilbert space for the variables X̄, then
the resulting operator f(A1, . . . , An) is positive semidefinite. For operators A and
B on a Hilbert space E, we write A ≤ B (respectively A < B) to express that
B −A is positive semidefinite (respectively positive definite), i.e.,

A ≤ B :⇔ 〈Av, v〉 ≤ 〈Bv, v〉 for all v ∈ E

A < B :⇔ 〈Av, v〉 < 〈Bv, v〉 for all v ∈ E \ {0}

Helton [Hel] proved (a slight variant of) the converse of the above observation: If
f ∈ k〈X̄〉 and f(A1, . . . , An) ≥ 0 for all self-adjoint matrices Ai of the same size,
then f is a sum of hermitian squares. For a beautiful exposition, we refer the reader
to [MP].

We follow the terminology and notation used (in the commutative case) by Mar-
shall in [Mar]. Fix a subset S ⊆ Sym k〈X̄〉. The semialgebraic ‘set’ (called posi-
tivity domain in [HM]) KS associated to S is the class of tuples A = (A1, . . . , An)
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of bounded self-adjoint operators on a non-trivial1 k-Hilbert space making s(A) a
positive semidefinite operator for every s ∈ S. The quadratic module MS is the
set of all elements of the form

∑
i g∗i sigi, where si ∈ S ∪ {1} and gi ∈ k〈X̄〉, i.e.,

the smallest subset of Sym k〈X̄〉 satisfying {1} ∪ S ⊆ MS , MS + MS ⊆ MS and
g∗MSg ⊆ MS for all g ∈ k〈X̄〉. We call MS archimedean if there exists N ∈ N with
N − (X2

1 + · · ·+ X2
n) ∈ MS . In this case, KS is bounded : There exists N ∈ N such

that N − (A2
1 + · · · + A2

n) ≥ 0 whenever (A1, . . . , An) ∈ KS . In other words, the
operator norm is bounded uniformly for all operators appearing in a tuple belong-
ing to KS . As in the commutative case [JP], boundedness of KS does not imply
that MS is archimedean, see Example 1.1 below. Nevertheless, if KS is bounded,
we can add N − (X2

1 + · · · + X2
n) to S for a sufficiently big N ∈ N to make MS

archimedean without changing KS .

1.1. Example. Let n = 2 and write X̄ = (X, Y ), i.e., we consider k〈X̄〉 = k〈X, Y 〉.
For

S := {X − 1, Y − 1, 8−XY − Y X},
KS is bounded, but MS is not archimedean.

To see the latter, consider the k-algebra homomorphism π : k〈X, Y 〉 → k[X, Y ]
making the variables X and Y commute: Like in [JP, Example 4.6], one sees that
there is no N ∈ N such that N − (X2 + Y 2) ∈ π(MS).

Unlike in the commutative case, we have to work a bit to show that KS is
bounded: Let (A,B) ∈ KS and set C := A + B, D := A − B. Then C + D ≥ 2,
C − D ≥ 2 and C2 − D2 ≤ 16. Considering the operator norms c := ‖C‖ and
d := ‖D‖, we get d ≤ c−2 from ±D ≤ C−2 and c2 ≤ 16+d2 from the corresponding
fact with capital letters. This implies c2 ≤ 16 + (c − 2)2 = 16 + c2 − 4c + 4, i.e.,
c ≤ 5 and d ≤ 3. We finally obtain 2‖A2 + B2‖ = ‖C2 + D2‖ ≤ c2 + d2 ≤ 34,
whence 17−A2 −B2 ≥ 0.

In our terminology, the main result of [HM] characterizes symmetric polynomials
(everywhere) positive semidefinite on (bounded) KS with MS archimedean and can
be stated as follows:

1.2. Theorem (Theorem 1.2 in [HM]). Let S ∪ {f} ⊆ Sym k〈X̄〉 and suppose that
MS is archimedean. If f(A) > 0 for all A ∈ KS, then f ∈ MS.

Together with the following proposition whose proof is left to the reader, we see
that under the assumptions of the preceding theorem, f is positive semidefinite on
KS if and only if f + ε ∈ MS for all ε ∈ R>0.

1.3. Proposition. Let S ∪ {f} ⊆ Sym k〈X̄〉. If f ∈ MS, then f(A) ≥ 0 for all
A ∈ KS.

Our main result characterizes symmetric polynomials that are nowhere negative
semidefinite on KS with MS archimedean. We are indebted to Prof. Dr. J. Cimprič
who motivated us to look at this problem. After having completed this work, we
have received his work [C2] containing a different and abstract approach to the
same problem (see [C2, Theorem 5]).

1 In contrast to [HM], we exclude the trivial Hilbert space {0}. This choice does of course not
affect the validity of Theorem 1.2 below [HM, Theorem 1.2] but is necessary for Theorem 1.4 to
hold.
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1.4. Theorem (Nirgendsnegativsemidefinitheitsstellensatz). The following condi-
tions are equivalent for all S ∪ {f} ⊆ Sym k〈X̄〉 provided that MS is archimedean:

(i) f(A) 6≤ 0 for all A ∈ KS.
(ii) There exist r ∈ N and h1, . . . , hr ∈ k〈X̄〉 with

∑r
i=1 h∗i fhi ∈ 1 + MS.

As an application, we characterize polynomials that are positive semidefinite on
the ‘noncommutative cube’ as those polynomials that can be approximated by sums
of hermitian squares. Here, the points of the ’noncommutative cube’ are tuples of
contractions. A contraction is a bounded operator A with operator norm ‖A‖ ≤ 1.
The approximation is with respect to the 1-norm which we define for any polynomial
f =

∑
α aαX̄α in commuting or noncommuting variables with coefficients aα as

‖f‖1 :=
∑
α

|aα|.

1.5. Theorem. Suppose f ∈ k〈X̄〉 is a polynomial of degree d, and set s :=
∑d

i=0 ni.
The following are equivalent:

(i) f(A1, . . . , An) is positive semidefinite for all k-Hilbert spaces E and all con-
tractive self-adjoint operators A1, . . . , An on E.

(ii) f(A1, . . . , An) is positive semidefinite for all contractive self-adjoint matrices
A1, . . . , An ∈ ks×s.

(iii) f ∈ M∅ with respect to the 1-norm, i.e., for all ε ∈ R>0, there exist r ∈ N
and g1, . . . , gr ∈ k〈X̄〉 such that∥∥∥∥∥f −

r∑
`=1

g∗` g`

∥∥∥∥∥
1

< ε.

This result can be viewed as a noncommutative analog of the following well
known result of Berg, Christensen and Ressel.

1.6. Theorem (§9 in [BCR]). For every polynomial f ∈ R[Y1, . . . , Yn] in commuting
variables Yi, the following are equivalent:

(i) f ≥ 0 on the cube [−1, 1]n.
(ii) For all ε ∈ R>0, there exist r ∈ N and g1, . . . , gr ∈ R[Y1, . . . , Yn] such that

‖f −
∑r

`=1 g∗` g`‖1 < ε.

2. Proofs

2.1. Definition. To every quadratic module M ⊆ k〈X̄〉 we associate its ring of
bounded elements

H(M) := {f ∈ k〈X̄〉 | N − f∗f ∈ M for some N ∈ N}.

This is indeed a ring, even a k-subalgebra of k〈X̄〉 as proved in [Vid, Lemma 4] (see
also [C1, Section 2] and [S2, Section 2]).

2.2. Proposition. A quadratic module M ⊆ k〈X̄〉 is archimedean if and only if
H(M) = k〈X̄〉.

Proof. Suppose N ∈ N is such that

N − (X2
1 + · · ·+ X2

n) ∈ M.
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It follows that

N −X2
i = N − (X2

1 + · · ·+ X2
n) +

∑
j 6=i

X2
j ∈ M,

so Xi ∈ H(M) for all i. Since H(M) is a k-algebra, this implies that H(M) =
k〈X̄〉. �

In the terminology of Köthe [Köt], this proposition together with the identity

s =
(

s + 1
2

)2

−
(

s− 1
2

)2

shows that M is an archimedean quadratic module if and only if 1 is an algebraic
interior point of the convex cone M ⊆ Sym k〈X̄〉. Recall: f ∈ M is an algebraic
interior point if for every p ∈ Sym k〈X̄〉 there exists ε > 0 with f + εp ∈ M .

Proof of Theorem 1.4. The easy part is to show that (ii) implies (i) (for which the
archimedean property of MS is not needed). Suppose

∑
i h∗i fhi ∈ 1 + MS for some

hi ∈ k〈X̄〉. By Proposition 1.3, (h∗i fhi)(A) ≥ 1. For every non-zero vector v ∈ E,∑
i

〈f(A)hi(A)v, hi(A)v〉 =
∑

i

〈h∗i (A)f(A)hi(A)v, v〉 ≥ 〈v, v〉 > 0.

And hence (compare the footnote on page 2) f(A) 6≤ 0.
The proof of the non-trivial part proceeds in several steps.
Step 1: Separation.

Let C denote the set of all (finite) sums of elements h∗fh (h ∈ k〈X̄〉). This is a
convex cone in the R-vector space Sym k〈X̄〉. We claim that C ∩ (1 + MS) 6= ∅.
Assume otherwise. Then C contains no algebraic interior points of MS . Thus we
can apply Eidelheit’s separation theorem [Köt, §17.1(3)]. There exists a non-zero
R-linear functional L0 : Sym k〈X̄〉 → R with L0(MS) ⊆ R≥0 and L0(C) ⊆ R≤0.
We now extend L0 to a k-linear functional L : k〈X̄〉 → k satisfying

(1) L(MS) ⊆ R≥0 and L(C) ⊆ R≤0.

In case k = R, we can choose L as an arbitrary linear extension of L0. Now consider
the case k = C. The identity

p =
p + p∗

2
+ i

p− p∗

2i
, p ∈ k〈X̄〉

gives a direct sum decomposition of C〈X̄〉 into two real vector spaces

C〈X̄〉 = Sym C〈X̄〉 ⊕ iSym C〈X̄〉.

Now define L by

L(p + iq) := L0(p) + iL0(q), p, q ∈ Sym C〈X̄〉.

It is easy to check that L is C-linear.
Step 2: The Gelfand-Naimark-Segal construction.

By the Cauchy-Schwarz inequality for semi-scalar products,

N := {p ∈ k〈X̄〉 | L(p∗p) = 0}

is a linear subspace of k〈X̄〉. Similarly, we see that

(2) 〈p, q〉 := L(q∗p)



A NICHTNEGATIVSTELLENSATZ 5

defines a scalar product on k〈X̄〉/N , where p := p + N denotes the residue class of
p ∈ k〈X̄〉 modulo N . Let E denote the completion of k〈X̄〉/N with respect to this
scalar product. Since 1 6∈ N (otherwise L = 0 because MS is archimedean), E is
non-trivial.

Step 3: Construction of X̂ ∈ KS .
To prove that N is a left ideal of k〈X̄〉, we fix i ∈ {1, . . . , n} and show that XiN ⊆
N . Since MS is archimedean, there is some m ∈ N with m−X2

i ∈ MS for every i.
Hence for all p ∈ k〈X̄〉, we have

(3) 0 ≤ L(p∗(m−X2
i )p) ≤ mL(p∗p).

Now (3) shows that L(p∗X2
i p) = 0 for all p ∈ N , i.e., Xip ∈ N .

Because N is a left ideal, the map

Λi : k〈X̄〉/N → k〈X̄〉/N, p 7→ Xip

is well-defined for each i. Obviously, it is linear and it is self-adjoint by the definition
(2) of the scalar product. By (3), Λi is bounded and thus extends to a self-adjoint
operator X̂i on E. We claim that X̂ := (X̂1, . . . , X̂n) ∈ KS . For this, let p ∈ S and
v ∈ E be arbitrary. Without loss of generality, v = h for some h ∈ k〈X̄〉. Hence

〈p(X̂)v, v〉 = 〈ph, h〉 = L(h∗ph) ≥ 0,

because of h∗ph ∈ MS and (1).
Since f is nowhere negative semidefinite on KS , there is some v ∈ E with

〈f(X̂)v, v〉 > 0. As before, we may assume that v = h for some h ∈ k〈X̄〉. From
(1), we get

0 < 〈f(X̂)h, h〉 = 〈fh, h〉 = L(h∗fh) ≤ 0,

a contradiction. �

We now turn to the proof of Theorem 1.5. The following proposition shows that
all polynomial inequalities f ≥ 0 holding for all self-adjoint (contraction) matrices
are symmetric in the sense that f = f∗.

2.3. Proposition. If f ∈ k〈X̄〉 of degree < d satisfies f(A1, . . . , An) = 0 for all
self-adjoint contractions A1, . . . , An ∈ kd×d, then f = 0.

Proof. We form the ∗-polynomial g := f((X1 + X∗
1 )/2, . . . , (Xn + X∗

n)/2) in non-
commuting variables X1, . . . , Xn, X∗

1 , . . . , X∗
n. It follows from the assumption that

g(A1, . . . , An) = 0 for all contractions A1, . . . , An ∈ kd×d. Modify the multilin-
earization process explained in [Row] as follows: The formula for ∆iu given in
[Row, page 126] should be replaced by

∆iug =g

(
X1, . . . ,

Xi + Xu

2
, . . . , Xn

)
− g

(
X1, . . . ,

Xi

2
, . . . , Xn

)
− g

(
X1, . . . ,

Xu

2
, . . . , Xn

)
.

Repeating this, we obtain a multilinear ∗-polynomial of degree < d killing all d× d
contractions. But this is impossible by the general theory of polynomial identities
(cf. [Row, Remark 2.5.14]). �

The following lemma implies Theorem 1.5 in the very special case f = 1 −X2
i ,

which could also be deduced from Theorem 1.6.
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2.4. Lemma. For all m ∈ N, 1−Y 2 + 1
mY 2m is a sum of squares in the polynomial

ring R[Y ].

Proof. Check that

1− Y 2 +
1
m

Y 2m =
1
m

+
1
m

(1− Y 2)2
m−2∑
k=0

(m− 1− k)Y 2k.

�

Proof of Theorem 1.5. To see the easy implication from (iii) to (ii), let A := (A1, . . . , An)
be a tuple of contractive self-adjoint s×s matrices. It is easy to see that (iii) implies
f = f∗, in particular f(A) = f(A)∗. Fix a vector v ∈ ks with ‖v‖ = 1. We show
that

〈f(A)v, v〉 > −ε

for all ε ∈ R>0. Choose r ∈ N and g1, . . . , gr ∈ k〈X̄〉 such that ‖h‖1 < ε for
h := f −

∑r
`=1 g∗` g`. Note that h(A) is self-adjoint whence

〈f(A)v, v〉 = 〈h(A)v, v〉+
r∑

`=1

〈g`(A)v, g`(A)v〉 ≥ −‖h(A)‖ ≥ −‖h‖1 > −ε.

Let us now prove that (ii) implies (i) by contraposition. We assume that there
exists a tuple A := (A1, . . . , An) of self-adjoint contractions on a k-Hilbert space E
for which f(A) is not positive semidefinite. Let v ∈ E be a vector with 〈f(A)v, v〉 <
0 and define

V := Span{Awv | w is a word of length ≤ d}.
V is a finite dimensional k-vector space with dim V ≤ s. Let π : E → V denote
the orthogonal projection and define Bi := πAiπ. Obviously, Bi is a self-adjoint
contraction and

〈f(B1, . . . , Bn)v, v〉 = 〈f(A)v, v〉 < 0.

It remains to show that (i) implies (iii). Assume that (i) holds. Since f + 1
m con-

verges to f in the 1-norm when m →∞, we may assume that f is positive definite
for all n-tuples of self-adjoint contractive operators. Let S := {1−X2

1 , . . . , 1−X2
n}.

By assumption, f is positive definite on KS and MS is archimedean. Thus by
Theorem 1.2, f ∈ MS , i.e., f can be written as

f =
∑

i

g∗i gi +
n∑

j=1

∑
i

g∗ij(1−X2
j )gij

for some gi, gij ∈ k〈X̄〉. Hence it suffices to show that g∗(1−X2)g ∈ M∅ for every
g ∈ k〈X̄〉. Identifying R[Y ] from Lemma 2.4 with R[Xj ] ⊆ k〈X̄〉, we see 1−X2

j ∈
M∅. Noting that the map k〈X̄〉 → k〈X̄〉, p 7→ g∗pg is bounded with respect to the
1-norm (left or right multiplication by any variable is even an isometry), finishes
the proof. �

3. Concluding remarks

In Theorem 1.4, the hypothesis that MS is archimedean cannot be dropped.
Otherwise boundedness of KS would imply that MS is archimedean (contradicting
Example 1.1). In the commutative case, the analogous implication holds often
(see [Mar, JP]), for example when S is a singleton (a quadratic module generated
by one element is a preordering and for preorderings Schmüdgen’s Theorem [S2,
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Corollary 3] holds). In the noncommutative case, the situation is different: In the
next example, S is a singleton, KS = ∅ and yet MS is not archimedean.

3.1. Example. Let n = 2, k = C and write X̄ = (X, Y ), i.e., we consider k〈X̄〉 =
C〈X, Y 〉. Set

S := {−(XY − Y X + i)(XY − Y X + i)∗}.
We claim that KS = ∅ but MS is not archimedean (though S is a singleton).

Assume that there exists (A,B) ∈ KS . Then AB − BA = −i and by induction
AmB − BAm = −imAm−1 for all m ∈ N. Since A is self-adjoint, ‖Am‖ = ‖A‖m

and therefore
m‖A‖m−1 = ‖AmB −BAm‖ ≤ 2‖A‖m‖B‖

for all m ∈ N. Noting that A 6= 0, this yields that m ≤ 2‖A‖‖B‖ for all m ∈ N, a
contradiction. Therefore KS = ∅.

In order to show that MS is not archimedean, we use the Schrödinger represen-
tation (cf. [S2])

π0 : C〈X, Y 〉 → L(S(R))

X 7→ (f 7→ −if ′)

Y 7→ (f 7→ (x 7→ xf(x)))

where S(R) is the dense subspace of L2(R) consisting of all Schwartz (i.e., ‘rapidly
decreasing smooth’) functions R → C, L(S(R)) is the vector space of all C-linear
operators S(R) → S(R) and f ′ denotes the derivative of f ∈ S(R). Note that π0

is a C-algebra homomorphism which respects the involution ∗ since π0(X), π0(Y )
are self-adjoint (for π0(X) this follows from integration by parts). Observing that
π0(XY − Y X + i) = 0, we get that π0 sends every element of MS to a positive
semidefinite operator on S(R). Finally, N − π0(Y 2) 6≥ 0 regardless of N ∈ N.

In spite of the last example, we do not know if the Nirgendsnegativsemidefinit-
heitsstellensatz 1.4 holds for S = ∅ (where MS fails to be archimedean).

3.2. Open Problem. Regard the following conditions for a symmetric polynomial
f ∈ k〈X̄〉.

(i) f(A1, . . . , An) is not negative semidefinite for any k-Hilbert space E 6= {0}
and bounded self-adjoint operators A1, . . . , An on E.

(ii) There are r ∈ N and g1, . . . , gr ∈ k〈X̄〉 such that
∑r

i=1 g∗i fgi ∈ 1 + M∅.
Obviously, (ii) implies (i). Does (i) imply (ii)?

An affirmative answer to this problem would give a noncommutative analog of
Artin’s solution to Hilbert’s 17th problem (see for example [Rez] or [Mar]).

Acknowledgments. We thank Prof. Dr. K. Schmüdgen for bringing Eidelheit’s
separation theorem to our attention. Our sincere thanks also go to Prof. Dr. J.
Cimprič whose talk at the Luminy conference on Positive Polynomials brought up
the idea of investigating nowhere negative semidefinite polynomials.
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