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Abstract

We present a new proof of Schmüdgen’s Positivstellensatz concerning the repre-
sentation of polynomials f ∈ R[X1, ..., Xd] that are strictly positive on a compact
basic closed semialgebraic subset S of Rd. Like the two other existing proofs due
to Schmüdgen and Wörmann, our proof also applies the classical Positivstellensatz
to non–constructively produce an algebraic evidence for the compactness of S. But
in sharp contrast to Schmüdgen and Wörmann we explicitly construct the desired
representation of f from this evidence. Thereby we make essential use of a theorem
of Pólya concerning the representation of homogeneous polynomials that are strictly
positive on an orthant of Rd (minus the origin).
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1 Introduction

By refining the non–constructive methods which in 1923 enabled Artin to
solve Hilbert’s 17th problem, Krivine obtained in 1964 the following result
(see [Kri]) † . (Throughout the paper X̄ abbreviates X1, . . . , Xd.)

Theorem 1.1 (Classical Positivstellensatz) Let R | K be an extension of
ordered fields such that R is real closed. Let p1, . . . , pn ∈ K[X̄] define the set

S := {x ∈ Rd | p1(x) ≥ 0, . . . , pn(x) ≥ 0}.

† Just apply Tarski’s transfer principle to Krivine’s Théorème 7 in exactly the same
manner as Krivine does to his Théorème 8. Then use a little trick (see e.g. [KS], III,
§9, Satz 2) to get a denominator having the shape 1 + · · · . This theorem of Krivine
was later rediscovered independently by Stengle [Ste] and Prestel [Pre].
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Then for every f ∈ K[X̄] we have f > 0 on S if and only if f can be written
in the form

1 +
∑
e∈{0,1}n (

∑
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ei) p

e1
1 · · · penn

1 +
∑
e∈{0,1}n (

∑
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2
ei) p

e1
1 · · · penn

(1.1)

where 0 ≤ aei, bei ∈ K and fei, gei ∈ K[X̄].

In 1990 Schmüdgen (see [Sch]) showed by functional analytic methods that
(1.1) can be replaced by a similar representation without denominator in
the case that K = R = R and S is bounded (and thus compact). In 1998
Wörmann, in his thesis [Wör], gave an algebraic proof of a slight generaliza-
tion of this result (where K may be a proper subfield of R):

Theorem 1.2 (Schmüdgen’s Positivstellensatz) Let K be a subfield of
R. Let p1, . . . , pn ∈ K[X̄] define the compact set

S := {x ∈ Rd | p1(x) ≥ 0, . . . , pn(x) ≥ 0}.

Then for every f ∈ K[X̄] we have f > 0 on S if and only if f can be written
in the form

a+
∑

e∈{0,1}n

(∑
i

aeif
2
ei

)
pe11 · · · penn (1.2)

where 0 < a ∈ K, 0 ≤ aei ∈ K and fei ∈ K[X̄].

We introduce the notation Σ := X2
1 + · · ·+X2

d . The proofs of both Wörmann
and Schmüdgen, apply the classical Positivstellensatz (in the case R = R) to
get a representation (1.1) of the polynomial s− Σ for some 0 ≤ s ∈ K. Note
that this polynomial is strictly positive on S if and only if S is contained in the
open ball of radius

√
s centered at the origin. As S is assumed to be compact

the latter is the case for sufficiently large s.

Using this evidence for S being contained in a ball, Wörmann in the second
step of his proof shows that for every f ∈ K[X̄] there exists 0 ≤ t ∈ K such
that the polynomials t+ f and t− f have a representation

∑
e∈{0,1}n

(∑
i

aeif
2
ei

)
pe11 · · · penn , (1.3)

where 0 ≤ aei ∈ K and fei ∈ K[X̄]. Note that this is a weakening of
Schmüdgen’s theorem because every polynomial is bounded on the compact
set S. By slightly modifying this part of the proof we obtain an effective con-
struction. We will explain this in Section 2.
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The third and last step in Wörmann’s proof is a simple application of a repre-
sentation theorem of Krivine for rings with an archimedean subsemiring. This
theorem goes under the name of Kadison–Dubois theorem (see Remark 5.2).
It’s a broad generalization of the well–known theorem that every archimedean
ordered field can be embedded into R. Instead, we apply a theorem of Pólya
characterizing those homogeneous polynomials that are strictly positive on an
orthant of Rd (minus the origin). Together with several preparatory steps, this
is carried out in Section 3.

In Section 4 we show that our proof actually provides an algorithm doing
the following. Given p1, . . . , pn, f ∈ K[X̄] such that f > 0 on S and a rep-
resentation (1.1) of s − Σ for some 0 ≤ s ∈ K, the algorithm computes a
representation (1.2) of f . We also discuss some properties of this algorithm.

Finally, Section 5 is concerned with the situation where sufficiently many of
the polynomials pi are linear. In this case the algorithm does not require the
input of a representation of s−Σ and even produces a representation of f not
involving sums of squares.

This article elaborates the author’s Diplomarbeit at the Universität Pas-
sau/Germany under the supervision of Volker Weispfenning. The author ac-
knowledges his valuable suggestions. The author wants to thank Matthias As-
chenbrenner, Matthias Franz, Vicki Powers, Alexander Prestel, Bruce Reznick,
Joachim Schmid and an anonymous referee for helping to improve earlier ver-
sions of this paper.

2 Revising Wörmann’s second step

As in the first step of Wörmann’s proof, i.e. the application of the classical
Positivstellensatz 1.1, the assumption K ⊆ R is not needed either for the
second step. In fact we can work over any ordered field K:

Lemma 2.1 Let K be an ordered field and 0 ≤ s ∈ K. Then for every poly-
nomial g ∈ K[X̄] there exists 0 ≤ t ∈ K such that t + g and t − g can be
written in the form

∑
i

aif
2
i +

(∑
i

big
2
i

)
(s− Σ) (2.1)

where 0 ≤ ai, bi ∈ K and fi, gi ∈ K[X̄].
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PROOF. The set of all g for which there exists such a t obviously contains
K and is closed under addition. Because of the two equalities

tu± gh =
1

2
((t± g)(u+ h) + (t∓ g)(u− h))

this set is also closed under multiplication. Finally the two equalities

s+ 1

2
±Xi =

1

2

(Xi ± 1)2 + (s− Σ) +
∑
j 6=i

X2
j


show that this set contains every Xi. Hence it is all of K[X̄]. �

It’s quite obvious that Wörmann could have made his proof of Satz 4.10 in
[Wör] constructive by avoiding to apply his Korollar 3.4:

Theorem 2.2 (Wörmann) Let K be an ordered field and p1, . . . , pn ∈ K[X̄].
Given 0 ≤ s ∈ K and a representation (1.1) of s−Σ, for every f ∈ K[X̄] one
may find 0 ≤ t ∈ K and representations (1.3) of the two polynomials t± f .

PROOF. By Lemma 2.1 applied to f it is enough to show that there is
0 ≤ s′ ∈ K such that s′ − Σ has a representation (1.3).

By assumption there exist polynomials g, h ∈ K[X̄] such that

s− Σ =
1 + g

1 + h
, (2.2)

and g and h can be written in the form (1.3). This implies that (1+h)(s−Σ) has
a representation (1.3) (provided by 1 + g). Since hΣ has also a representation
(1.3), we obtain such a representation of the sum

(1 + h)(s− Σ) + hΣ = s− Σ + sh. (2.3)

If s = 0 we are done by setting s′ = 0. So now assume s > 0. Lemma 2.1 gives
us a representation (2.1) of t − sh for some 0 ≤ t ∈ K. We would be done if
this were a representation (1.3) instead of (2.1). However we can make one out
of it by multiplying with 1+h: We have representations (1.3) of both 1+h and
(by looking at equation (2.2)) (1 + h)(s− Σ). Thus we have a representation
(1.3) of

(1 + h)(t− sh) = t− sh+ th− sh2. (2.4)

Finally adding the representations (1.3) of (2.3), (2.4) and

s
(
t

2s
− h

)2

= s

(
t2

4s2
− th

s
+ h2

)
=
t2

4s
− th+ sh2
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yields a representation (1.3) of(
s+ t+

t2

4s

)
− Σ,

and we are done by setting s′ = s+ t+ t2

4s
. �

3 Applying a theorem of Pólya

Let the conditions of Schmüdgen’s Theorem 1.2 be satisfied. To prove the
non–trivial direction let f ∈ K[X̄] be strictly positive on S.

First we observe that we may always enlarge the set {p1, . . . , pn} of polynomi-
als defining S by finitely many polynomials pn+1, . . . , pm having a representa-
tion (1.3): This does not alter the set S and once we will have obtained a rep-
resentation (1.2) of f with m instead of n we can therein replace pn+1, . . . , pm
by their representations (1.3) to get a representation (1.2) of f .

Thus by Theorem 2.2 for every p ∈ K[X̄] and for sufficiently large 0 ≤ s ∈ K
we can adjoin s + p to p1, . . . , pn. By this means we can reduce to the case
where

K[X̄] = K[p1, . . . , pn], (3.1)

since otherwise we might adjoin s1 +X1, . . . , sd +Xd to p1, . . . , pn for suitable
0 ≤ s1, . . . , sd ∈ K. Moreover we may assume that p1 + · · ·+ pn = s for some
0 < s ∈ K (otherwise we adjoin the polynomial s− (p1 + · · ·+pn) to p1, . . . , pn
for suitable 0 < s ∈ K). After scaling the pi by a positive factor we may also
assume s = 1 and thus attain

p1 + · · ·+ pn = 1. (3.2)

The only purpose of the preceding section was to establish (3.1) and (3.2).
Now that these conditions hold not only do we produce a representation (1.2)
of f , but we will even find a representation

a+
∑
e∈Nn

aep
e1
1 · · · penn (3.3)

where 0 < a ∈ K, 0 ≤ ae ∈ K and almost all ae are zero (see also Theorem
5.1).
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More formally speaking we are looking for a polynomial h ∈ K[Ȳ ] (Ȳ ab-
breviates Y1, . . . , Yn) having non–negative coefficients and a positive constant
coefficient such that it is mapped to f by the K–algebra homomorphism

ϕ : K[Ȳ ]→ K[X̄] : Y1 7→ p1, . . . , Yn 7→ pn.

By (3.1) ϕ is surjective and by (3.2) its kernel I := kerϕ contains the polyno-
mial Y1 + · · ·+Yn− 1. By Hilbert’s Basis Theorem there are r1, . . . , rt ∈ K[Ȳ ]
such that

I = (Y1 + · · ·+ Yn − 1, r1, . . . , rt). (3.4)

We now proceed as follows: We start with any g ∈ K[Ȳ ] such that ϕ(g) = f .
Such g exists as ϕ is surjective. In Subsection 3.1 we will rewrite g by means
of r1, . . . , rt to make it satisfy a geometric positivity condition. Using the
polynomial Y1 + · · ·+Yn−1 we homogenize the obtained polynomial. Then we
are in the position to apply a theorem of Pólya that transforms this geometric
positivity condition into an algebraic positivity condition. In Subsection 3.4
we see that this is almost what we need.

3.1 Lifting

The fact that f is positive on S means that every K–algebra homomorphism
K[X̄] → R mapping p1, . . . , pn to non–negative real numbers maps f to a
positive real number. Using the isomorphism

K[Ȳ ]/I → K[X̄]

induced by ϕ this means that every K–algebra homomorphism K[Ȳ ]/I → R

mapping Y1 + I, . . . , Yn + I to non–negative real numbers maps g + I to a
positive real number. This shows that g is strictly positive on the set

U := Rn≥0 ∩ VR(I) ⊆ Rn

where VR(I) is the set of real zeroes of the ideal I. The closed set U is contained
in the compact set

V := {y ∈ Rn | y1 ≥ 0, . . . , yn ≥ 0, y1 + · · ·+ yn = 1}. (3.5)

Now the conditions of the following lemma are satisfied, setting r = r2
1+· · ·+r2

t :

Lemma 3.1 Let V be a compact topological space and U ⊆ V . Let g and r be
continous functions V → R having the following properties:

g > 0 on U, r ≥ 0 on U and r > 0 on V \ U.

Then g + cr > 0 on V for every sufficiently large c ∈ R.
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PROOF. We may assume that U is open in V because otherwise we can pass
over from U to g−1(R>0). Then V \ U is closed in a compact space and thus
also compact. Assume U 6= V as otherwise we are done. Then r and g take
on a minimum µ > 0 respectively µ′ ∈ R on V \ U . For 0 ≤ c ∈ R we get
g + cr ≥ g > 0 on U and g + cr ≥ µ′ + cµ on V \ U . Now µ > 0 implies
µ′ + cµ > 0 for sufficiently large c. �

Therefore we can choose c ∈ K big enough such that the polynomial

g′ := g + c(r2
1 + · · ·+ r2

t ) (3.6)

is strictly positive on V . Thus we have found g′ strictly positive on V such
that ϕ(g′) = f .

3.2 Homogenization

Now we multiply each monomial in g′ whose degree is lower than the degree
of g′ by an appropriate power of Y1 + · · · + Yn to equal the degrees of all
occuring monomials, i.e. to make the polynomial homogeneous. This neither
varies the values of the polynomial on V nor alters the fact that ϕ maps
the polynomial to f , since Y1 + · · · + Yn ≡ 1 mod I. We call G the resulting
homogeneous polynomial. As homogeneous polynomials have constant sign on
each ray emitted by the origin the positivity of G on V is equivalent to

G > 0 on R
n
≥0 \ {0}. (3.7)

3.3 Pólya’s theorem

Now G meets the conditions of the theorem below discovered by Pólya in
1927. The proof consists only of a pure calculation and elementary analysis
(see [Pól], [HLP] or [PR]).

Theorem 3.2 (Pólya) Let G ∈ R[Ȳ ] be an homogeneous polynomial. Then
G > 0 on Rn≥0 \ {0} if and only if G · (Y1 + · · · + Yn)N has for some N ∈ N
the form ∑

e1+···+en=k

aeY
e1

1 . . . Y en
n (3.8)

where 0 < ae ∈ K for all e ∈ Nd with e1 + · · ·+ en = k.

As ϕ(Y1 + · · ·+Yn) = 1 the above theorem gives us a homogeneous polynomial
G′ of the form (3.8) which is mapped to f by ϕ.
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3.4 Conclusion of the proof

Now we simply choose some sufficiently small 0 < a ∈ K such that the
polynomial h := G′−a(Y1 + · · ·+Yn)k+a ∈ K[Ȳ ] has no negative coefficients.
Then ϕ(h) = f and h has the positive constant coefficient a. Thus h is a
polynomial as desired.

4 The algorithm

4.1 Turning the construction into an algorithm

From our proof of Schmüdgen’s theorem 1.2 we can extract an algorithm
performing the following: Given p1, . . . , pn, f ∈ K[X̄] such that f > 0 on S
and a representation (1.1) of s−Σ for some 0 ≤ s ∈ K, the algorithm computes
a representation (1.2) of f . The only points that have to be examined are the
following:

• How to compute some g ∈ K[Ȳ ] that is mapped to f by ϕ?
• How to compute r1, . . . , rt such that (3.4) holds?
• How to choose the c ∈ K such that g′ > 0 on V (see Subsection 3.1)?

The first two items are standard problems which can be solved using Gröbner
bases: We compute a Gröbner basis G of the ideal in K[X1, . . . , Xd, Y1, . . . , Yn]
generated by the polynomials p1 − Y1, . . . , pn − Yn with respect to some term
order that lets all terms containing some Xi be larger than all other terms (e.g.
with respect to the lexicographical term order given by X1 > · · · > Xd > Y1 >
· · · > Yn). Then the first problem is solved by computing a standard form g
of f modulo G. The fact that the intersection G∩K[Ȳ ] is a Gröbner basis of
I answers the second question. See for example [SS], [GTZ], Proposition 6.44
in [BW].

The third problem is solved by just delaying the choice of c: Instead of (3.6)
we define g′ := g + C(r2

1 + · · · + r2
t ) ∈ K[C, Y1, . . . , Yn]. Then we homogenize

g′ with respect to Y1, . . . , Yn by multiplying each monomial by an appropiate
power of Y1 + · · ·+ Yn. We get a polynomial G of the form∑

e1+···+en=k

(λe + µeC)Y e1
1 · · ·Y en

n (k ∈ N, λe, µe ∈ K). (4.1)

For every polynomial H ∈ K[C, Y1, . . . , Yn] of this form we can quickly decide
if there is c ∈ K such that H(c, Y1, . . . , Yn) ∈ K[Y1, . . . , Yn] is of the form
(3.8), i.e. all λe + µec are positive. In this case we can also compute such a
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c without effort. Now we check successively for N = 0, 1, 2, . . . the existence
of such a c ∈ K for the polynomial G · (Y1 + · · · + Yn)N which is again
of the form (4.1). For N big enough such a c can be computed and G′ :=
G(c, Y1, . . . , Yn) · (Y1 + · · ·+ Yn)N is of the form (3.8).

4.2 The burden of the compactness evidence

Of course the main drawback of the described algorithm is that it requires an
evidence of the fact that S is compact, namely a representation (1.1) of some
s−Σ, guaranteed to exist by the Positivstellensatz 1.1. One observes that our
algorithm basically draws the squares needed for the representation of f from
this evidence. The theorem of Pólya 3.2 has once before been used by Habicht
(see [Hab]) to constructivize a seemingly very general case of Hilbert’s 17th
problem. In a newer variant of this algorithm given by Loera and Santos in [LS]
one sees that Habicht restricts to the case where only ”very special” squares
are needed. So both the author and Habicht fail to address the problem of
“computing the required squares”.

In spite of this drawback one should be aware of the trivial observation that
one can always adjoin t−Σ to p1, . . . , pn for some 0 ≤ t ∈ K large enough to
let the set S unchanged. Then for s := t+1 we have an obvious representation
(1.1) of s − Σ. Furthermore of course if one has found a representation (1.1)
of some s− Σ for certain p1, . . . , pn once, it can be used for all f .

4.3 Complexity issues

For any homogeneous polynomial G ∈ R[Ȳ ] we define the Pólya–exponent of
G to be the smallest N ∈ N such that G · (Y1 + · · ·+ Yn)N has the form (3.8),
if such N exists, and ∞ otherwise. (Thus the theorem of Pólya states that G
has finite Pólya–exponent if and only if G > 0 on Rn≥0 \ {0}.)

Certainly the Pólya–exponent plays a crucial role for the complexity of our
algorithm. In [PR] Powers and Reznick prove the upper bound

l(l − 1)
c

µ
+ 1− l

for a homogeneous polynomial G ∈ R[Ȳ ] of degree l where

• c denotes the maximum absolute value of the coefficients of G and
• µ denotes the (positive) minimum of G on the set V defined by (3.5).

The dependence of this bound on c
µ

is unsatisfactory. However it seems to be
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inherent to the problem as is shown by the following proposition (proved by
model–theoretic reasoning in [Rob]):

Proposition 4.1 Consider the set H of all homogeneous polynomials H ∈
R[Ȳ ] of a certain fixed degree. We endow H with a topology by identifying its
elements with the tuple of their coefficients (in some fixed order). Then as H
tends in H to some G 6= 0 having a zero ξ ∈ Rn>0 the Pólya–exponent of H
tends to ∞.

PROOF. Assume to the contrary that the Pólya exponent of H does not
converge to ∞. Then there exists some sequence (Hi)i∈N converging to G and
some N ∈ N such that the Pólya exponent of Hi does not exceed N for any
i ∈ N. Hence for suitable k ∈ N and for any i ∈ N we can write

Hi · (Y1 + · · ·+ Yn)N =
∑

e1+···+en=k

aeiY
e1

1 . . . Y en
n (4.2)

where 0 < aei ∈ R. We specialize Yj to ξj in this equation and get for all e
and for all i ∈ N

Hi(ξ)(ξ1 + · · ·+ ξn)N

ξe11 · · · ξenn
≥ aei > 0

because all ξj are positive. As limi→∞Hi(ξ) = G(ξ) = 0 this shows

lim
i→∞

aei = 0

for all e. Hence we get G · (Y1 + · · ·+ Yn)N = limi→∞Hi · (Y1 + · · ·+ Yn)N = 0
by taking the limit for i → ∞ in the coefficients of (4.2). This contradicts
G 6= 0. �

As small (positive) values of f on S give rise to small values of the polynomial
G (on which we apply the theorem of Pólya 3.2 in Subsection 3.3) on the set V
the running time of our algorithm depends badly on the minimum of f on S.
But any other algorithm solving the same problem must show the same bad
behaviour: Stengle shows in [Ste’] that under certain circumstances any repre-
sentation 1.2 of f on S must also become arbitrarily large (in some reasonable
sense) if f has sufficiently small values on S (for the simple elaborations left
to the reader in the proof of his Theorem 3 see e.g. the first part of the proof
of Theorem 3.2 on page 191 of [BCR]).
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5 Square–free representations and compact convex polyhedra

The following theorem is just proved by reviewing the beginning of Section
3 (by the way condition (3.1) is already implied by the hypotheses of the
theorem).

Theorem 5.1 Let K be a subfield of R. Let p1, . . . , pn ∈ K[X̄]. Suppose that
for every g ∈ K[X̄] there is some 0 ≤ s ∈ K such that the two polynomials
s± g have a representation ∑

e∈Nn
aep

e1
1 · · · penn (5.1)

where 0 ≤ ae ∈ K and almost all ae are zero. Then for every f ∈ K[X̄] we
have f > 0 on the (compact) set

S := {x ∈ Rd | p1(x) ≥ 0, . . . , pn(x) ≥ 0}

if and only if f can be written in the form (3.3).

Remark 5.2 The above theorem follows from Krivine’s representation theo-
rem (cf. introduction) applied to the ring K[X̄] together with its subsemiring
generated by p1, . . . , pn and the nonnegative elements from K. Krivine’s work
[Kri’] remained unnoticed until recently and therefore this theorem is usually
attributed to Kadison and Dubois (see [Bec],[Dub],[Kad]) and its first alge-
braic proof to Becker and Schwartz (see [BS]). Another proof of Theorem 5.1
is due to Handelman (see [Han]). His methods are similar to those used by
Kadison and Dubois. All these proofs are inherently non–constructive. By a
somewhat more technical but essentially the same process as in Section 3 one
can give a proof of Krivine’s representation theorem (see [Scw]) which is con-
structive to some extent. Furthermore a strong connection between Pólya’s
theorem 3.2 and the theorem of Kadison–Dubois is now revealed: In [Wör]
Wörmann has already shown that the former follows from the latter. We have
now gone the other way round.

Remark 5.3 The identities in the proof of Lemma 2.1 show that the set of all
g for which there exists s as postulated in the above theorem is a subalgebra
of K[X̄]. So the condition has only to be checked for a generating system
g1, . . . , gm of the algebra K[X̄].

Obviously we get an algorithm that computes a representation (3.3) of f from
the following data:

• p1, . . . , pn, f ∈ K[X̄] such that f > 0 on S and
• a generating system g1, . . . , gm of the algebra K[X̄]

11



• together with representations (5.1) of the 2m polynomials si ± gi for some
0 ≤ s1, . . . , sm ∈ K

In a special case we use the following result from the theory of linear inequal-
ities to get a particularly nice result:

Theorem 5.4 Let K be an ordered field. Let p1, . . . , pk ∈ K[X̄] be linear
polynomials (i.e. polynomials of degree ≤ 1) defining the non–empty convex
polyhedron

S ′ := {x ∈ Kd | p1(x) ≥ 0, . . . , pk(x) ≥ 0}.

Then for every linear polynomial f ∈ K[X̄] we have f ≥ 0 on S ′ if and only
if f can be written in the form

a0 + a1p1 + · · ·+ akpk (5.2)

where 0 ≤ a0, . . . , ak ∈ K.

By simple elaborations (see [Scw]) this theorem follows from the well–known
fundamental theorem of linear inequalities as it is stated for example in [Scr].
Moreover the proof in [Scr] gives an algorithm to decide if the representation
(5.2) exists and to compute it in that case. Now we get the following theorem
which was (for a slightly more special case) non–constructively proved by
Handelman in 1988 (see [Han]):

Theorem 5.5 Let K be a subfield of R. Let the linear polynomials p1, . . . , pk ∈
K[X̄] define the non–empty and compact convex polyhedron

S ′ := {x ∈ Rd | p1(x) ≥ 0, . . . , pk(x) ≥ 0}.

Let pk+1, . . . , pn ∈ K[X̄] be arbitrary polynomials and

S := {x ∈ Rd | p1(x) ≥ 0, . . . , pn(x) ≥ 0}.

Then for every f ∈ K[X̄] we have f > 0 on S if and only if f can be written
in the form (3.3).

PROOF. Suppose f > 0 on S. We choose a system g1, . . . , gm of linear
generators of the algebra K[X̄], e.g. m = n, gi = Xi. Because S ′ is compact
we can choose 0 ≤ s1, . . . , sm ∈ K such that the 2m conditions si±gi ≥ 0 hold
on S ′, and so according to Theorem 5.4 have a representation (5.2) which is in
particular a representation (5.1). Now by Remark 5.3 Theorem 5.1 applies. �

Because there is an algorithm for Theorem 5.4 we obviously get an algorithm
which performs the following: Upon input of p1, . . . , pn satisying the conditions
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of the theorem and f ∈ K[X̄] which is strictly positive on S, it computes a
representation (3.3) of f .

Remark 5.6 In 1924 Pólya and Szegö published their book [PS] in which
they constructively prove the above theorem for the special case d = 1, k =
n = 2, p1 = X, p2 = 1 − X (Part VI, Solutions, 49, second solution). Having
a close look at their algorithm one sees that it actually does carry out the
same procedure than our algorithm does in this special case. However as the
theorem of Pólya had not been established yet they use various other results
for their proof.

In the same article [Pól] where Pólya proved his theorem he did also prove
the above theorem for the special case k = n, p1 = X1, . . . , pn−1 = Xn−1, pn =
1− (X1 + · · ·+Xn−1). For this case our proof collapses into his.

Remark 5.7 With easy technical modifications all the results in this paper
carry over to the more general setting where one considers an affine algebra
K[X̄]/I instead of the polynomial algebra K[X̄].
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