Non-forking formulas in Distal NIP theories

Charlotte Kestner joint work with Gareth Boxall

Department of Mathematics Imperial College London South Kensington London, UK c.kestner@imperial.ac.uk

September 2, 2018

.

What properties do definable sets have in a particular structure?

• Structure: ($\mathbb{R}, +, \times, 0, 1$)

A B > A B >

What properties do definable sets have in a particular structure?

- Structure: ($\mathbb{R}, +, \times, 0, 1$)
- Definable sets e.g. x < y defined by ∃z(x + z² = y)

What properties do definable sets have in a particular structure?

- Structure: ($\mathbb{R}, +, \times, 0, 1$)
- Definable sets e.g. x < y defined by ∃z(x + z² = y)
- O-minimal B.C. of intervals and points.

What properties do definable sets have in a particular structure?

• Structure: $(\mathbb{C}, +, \times, 0, 1)$

- Structure: ($\mathbb{R}, +, \times, 0, 1$)
- Definable sets e.g. x < y defined by ∃z(x + z² = y)
- O-minimal B.C. of intervals and points.

What properties do definable sets have in a particular structure?

- Structure: $(\mathbb{R}, +, \times, 0, 1)$
- Definable sets e.g. x < y defined by ∃z(x + z² = y)
- O-minimal B.C. of intervals and points.

- Structure: $(\mathbb{C}, +, \times, 0, 1)$
- Definable sets: B.C. of polynomial equalities.

What properties do definable sets have in a particular structure?

- Structure: ($\mathbb{R}, +, \times, 0, 1$)
- Definable sets e.g. x < y defined by ∃z(x + z² = y)
- O-minimal B.C. of intervals and points.

- Structure: $(\mathbb{C}, +, \times, 0, 1)$
- Definable sets: B.C. of polynomial equalities.
- strongly minimal definable sets in one variable finite or cofinite

O-min

 $egin{aligned} &\cdot (\mathbb{R},+, imes,0,1, ext{exp}) \\ &\cdot (\mathbb{R},+, imes,0,1) \end{aligned}$

Strongly Minimal \cdot Vector spaces $\cdot (\mathbb{C}, +, \times, 0, 1)$

→ 3 → < 3</p>

O-min

$$\cdot (\mathbb{R}, +, \times, 0, 1, exp)$$

 $\cdot (\mathbb{R}, +, \times, 0, 1)$

Stable \cdot Modules \cdot Sep. closed fields Strongly Minimal \cdot Vector spaces $\cdot(\mathbb{C}, +, \times, 0, 1)$

伺 と く ヨ と く ヨ と

Definition

A formula $\phi(x, y)$ is stable if there do not exist $(a_i)_{i \in \omega}$, $(b_i)_{i \in \omega}$ such that

$$M \models \phi(a_i, b_j)$$
 if and only if $i < j$

Given a tuple b and a set A the type of b over A is

 $tp(b/A) = \{\phi(x, a) : M \models \phi(b, a), a \in A\}$

э

Given a tuple b and a set A the type of b over A is

$$tp(b/A) = \{\phi(x, a) : M \models \phi(b, a), a \in A\}$$

Definition

A sequence $(b_i)_{i \in I}$ is indiscernible over A if for every $i_0 < i_1 < ... < i_n$ and $j_0 < j_1 < ... < j_n$ we have:

$$tp(b_{i_1}....b_{i_n}/A) = tp(b_{j_1}....b_{j_n}/A)$$

同 ト イ ヨ ト イ ヨ ト

Given a tuple b and a set A the type of b over A is

$$tp(b/A) = \{\phi(x, a) : M \models \phi(b, a), a \in A\}$$

Definition

A sequence $(b_i)_{i \in I}$ is indiscernible over A if for every $i_0 < i_1 < ... < i_n$ and $j_0 < j_1 < ... < j_n$ we have:

$$tp(b_{i_1}...,b_{i_n}/A) = tp(b_{j_1}...,b_{j_n}/A)$$

Example

In $(\mathbb{Q}, <)$, see blackboard.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A formula $\phi(x, b)$ divides over A if there is an indiscernible sequence $(b_i)_{i \in \omega}$ with $b_o = b$ such that $\{\phi(x, b_i) : i \in \omega\}$ is inconsitent.

向 ト イヨ ト イヨ ト

э

A formula $\phi(x, b)$ divides over A if there is an indiscernible sequence $(b_i)_{i \in \omega}$ with $b_o = b$ such that $\{\phi(x, b_i) : i \in \omega\}$ is inconsitent.

Example			
■ x = b			
$ x \neq b $			

伺 ト く ヨ ト く ヨ ト

э

A formula $\phi(x, b)$ divides over A if there is an indiscernible sequence $(b_i)_{i \in \omega}$ with $b_o = b$ such that $\{\phi(x, b_i) : i \in \omega\}$ is inconsitent.

Example			
$\bullet x = b$			
$ 2 x \neq b $			

Remark

In $(\mathbb{C}, +, \times, 0, 1)$ diving formulas give rise to a notion of rank that corresponds to transcendence degree.

同 ト イ ヨ ト イ ヨ ト

The Universe

Definition

A formula $\phi(x, y)$ is NIP if there is no infinite set A of |x|-tuples such that:

$$(IP)_{\phi,A}$$
 for all $A_0 \subseteq A \exists b_{A_0}$ such that $\phi(A, b_{A_0}) = A_0$.

Fact

Let T be an NIP theory, $M \models T$, $\phi(x, y)$ formula then if $C = \{\phi(x, b) : b \in M^{|y|}\}$, the set system $(M^{|x|}, C)$ has finite (Vapnik – Chervonenkis) VC-dimension.

伺 と く ヨ と く ヨ と

Fact

Let T be an NIP theory, $M \models T$, $\phi(x, y)$ formula then if $C = \{\phi(x, b) : b \in M^{|y|}\}$, the set system $(M^{|x|}, C)$ has finite (Vapnik – Chervonenkis) VC-dimension.

Theorem (**The** (*p*, *q*)-**theorem** (Alon-Kleitman, Matousek))

Let $p \ge q$ be integers. Then there is an $N \in \mathbb{Z}$ such that the following holds: Let (X, S) be set system where every $S \in S$ is non-empty. Assume:

• $VC^*(S) < q;$

• For every p sets of S, some q have non-empty intersection. Then there is a subset of X of size N which intersects every element of S.

伺 ト く ヨ ト く ヨ ト

Definable (p, q)

Question

What nice behaviour of stable theories carries through to NIP?

伺 ト く ヨ ト く ヨ ト

э

Definable (p, q)

Question

What nice behaviour of stable theories carries through to NIP?

Corollary (Chernikov-Simon)

T NIP. Suppose $\phi(x, b)$ does not divide over M then we can find a formula $\psi(y) \in tp(b/M)$ and a finite partition $\{W_j\}_{j=1}^n$ of the set $\psi(M)$ such that $\{\phi(x, b_i) : b_i \in W_i\}$ is consistent.

Conjecture (Definable (p, q) - conjecture)

T NIP. The finite partition is not needed, i.e. Suppose $\phi(x, b) \in tp(b/M)$ does not divide over M then we can find a formula $\psi(y)$ such that $\{\phi(x, b) : b \models \psi(y)\}$ is consistent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definable (p, q)

Question

What nice behaviour of stable theories carries through to NIP?

Corollary (Chernikov-Simon)

T NIP. Suppose $\phi(x, b)$ does not divide over M then we can find a formula $\psi(y) \in tp(b/M)$ and a finite partition $\{W_j\}_{j=1}^n$ of the set $\psi(M)$ such that $\{\phi(x, b_i) : b_i \in W_i\}$ is consistent.

Conjecture (Definable (p, q) - conjecture)

T NIP. The finite partition is not needed, i.e. Suppose $\phi(x, b) \in tp(b/M)$ does not divide over M then we can find a formula $\psi(y)$ such that $\{\phi(x, b) : b \models \psi(y)\}$ is consistent.

Fact

Definable (p, q) - conjecture holds in Stable theories.

The Universe

Definition

A theory T is distal if, for any small indiscernible sequence of the form $I + \{b\} + J$ in M, and any small $A \subseteq M$, if I + J is indiscernible over A then $I + \{b\} + J$ is indiscernible over A.

(E) < E)</p>

Example

 $(\mathbb{Q}, <)$ is Distal: See blackboard.

▲御▶ ▲理▶ ▲理▶

æ

Example

 $(\mathbb{Q}, <)$ is Distal: See blackboard.

Theorem (Chernikov-Starchenko)

Graphs definable in a distal structure have the strong Erdös-Hajnal property.

Definition

Suppose $R \subseteq M^m \times M^n$.

Example

 $(\mathbb{Q}, <)$ is Distal: See blackboard.

Theorem (Chernikov-Starchenko)

Graphs definable in a distal structure have the strong Erdös-Hajnal property.

Definition

Suppose $R \subseteq M^m \times M^n$. A pair of subsets $A \subseteq M^m$, $B \subseteq M^n$ is called R-homogeneous if either $A \times B \subset R$ or $A \times B \cap R = \emptyset$.

Example

 $(\mathbb{Q}, <)$ is Distal: See blackboard.

Theorem (Chernikov-Starchenko)

Graphs definable in a distal structure have the strong Erdös-Hajnal property.

Definition

Suppose $R \subseteq M^m \times M^n$.

A pair of subsets $A \subseteq M^m$, $B \subseteq M^n$ is called R-homogeneous if either $A \times B \subset R$ or $A \times B \cap R = \emptyset$.

We say a relation R satisifies the strong Erdös -Hajnal property if there is a constant $\delta = \delta(R) > 0$ such that for any finite subsets A, B there are $A_0 \subset A$ and $B_0 \subset B$ with $|A_0| > \delta|A| |B_0| > \delta|B|$ such that (A_0, B_0) is R homogeneous.

ヘロト ヘポト ヘヨト ヘヨト

Theorem (Boxall-K)

Definable (p, q) - conjecture holds in Distal theories.

回 と く ヨ と く ヨ と

æ

Theorem (Boxall-K)

Definable (p, q) - conjecture holds in Distal theories.

Question

Does the Definable (p,q) - conjecture holds in NIP theories?

伺 と く き と く き と

3

Remark

Distal theories are not closed under reducts (e.g. (M,=) is not distal).

伺 と く ヨ と く ヨ と

3

Remark

Distal theories are not closed under reducts (e.g. (M,=) is not distal).

Definition

Let $M \models T$ we define the Shelah expansion of M, M^{Sh} to be the expansion to the language $L_{Sh(M)}$ containing for each externally definable (i.e. definable in an elementary extension of M) $D \subset M^k$ a k-ary predicate $R_D(x)$.

Remark

Distal theories are not closed under reducts (e.g. (M,=) is not distal).

Definition

Let $M \models T$ we define the Shelah expansion of M, M^{Sh} to be the expansion to the language $L_{Sh(M)}$ containing for each externally definable (i.e. definable in an elementary extension of M) $D \subset M^k$ a k-ary predicate $R_D(x)$.

Theorem (Boxall-K)

If M^{Sh} is distal if and only if M is distal (and thus any inbetween expansions is distal).

(人間) ト く ヨ ト く ヨ ト

Thank you

æ