APPLICATIONS OF JORDAN FORMS TO SYSTEMS OF
LINEAR ORDINARY DIFFERENTIAL EQUATIONS

SHAUN DEAN

ABsTRACT. The Jordan Canonical Form of a matrix is a very important con-
cept from Linear Algebra. One of its most important applications lies in the
solving systems of ordinary differential equations. The Jordan Form results in
a useful description of the nilpotent part of a matrix and we will discuss its
uses for calculating the matrix exponential. Further we will see how to find a
basis of eigenvectors and their use for solving differential equations.

On the other hand finding the Jordan Form of a matrix does not necessarily
have to be the best way to solve a differential equation, as finding a basis of
eigenvectors, can be very hard.
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1. FUNDAMENTAL THEOREM FOR LINEAR SYSTEMS

Definition 1.1. Let A be a complex quadratic matrix. For ¢ € C we define the
matrix exponential as:

Lemma 1.2. If the matrices A and B commute , i.e. AB = BA,

we get eATB =4 . B

Proof. Let AB = BA.

A+B — (A+ B)

Here we have used the fact that both e? and e” converge absolutely and we can
therefore multiply the two series entry by entry. O

Theorem 1.3. Fundamental Theorem for Linear Symstems
Let A be an n x n matriz with n € N. For xo € C™ the initial value problem

(1.1) z(t) = Ax(t), z(0) = o

A

has a unique solution given by x(t) = etxg.
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Proof. First we prove that z(t) = e4

z is in fact a solution of (1.1).
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and z(0) =1 - z9 = xo

Secondly we have to prove the uniqueness of the solution. So let y be any solution
to (1.1) and let z(t) := e~ Ay(t)

A(t) = —Ae™My(t) + e My (1)
= —Ae My (t) + e M Ay(t)
=0

Therefore z is a constant. We also know z(0) = y(0) = o, so z(t) = xo, so
y(t) = eAxg, so y = x and z is the unique solution of (1.1). O
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2. JORDAN FORMS

Definition 2.1. Jordan Form
Let A be a complex matrix with A € C"*" and n € N, with eigenvalues A;, with

j=1,...,d . Then there exists a basis {vi,...,v,} , where vj, j = 1,...,n are
eigenvectors of A such that the matrix P = (v1,...v,) is an invertible matrix with
Ji
P lAP =] := & A=PJP!
Jq
with
A1 0 0
)‘j d
Jj = SRR G(ijxmj,jzl,...,d,Zm]:n
PV =t
0 Aj
Theorem 2.2. Using the Notation from definition 2.1 we can express the solution
Jit
e
of (1.1) with: z(t) = P Pz
eJdt
and for j =1,...d and eigenvalue A;
t2 tnL i —1
1 t 2! (mj]—l)!
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The question is now what does e’* look like?

eJlt
eIt —
eJdt
0 1
For j € {1,...,d} let N; = —_— € C™i*™i | so defining
1
0
Jj = (Aj - I+ Nj;) and we get
edit — oV THNDE _ A It Nyt _ At Nyt
Further we can calculate e™i't by looking at the exponents of N; and we receive:
Y g p J
00 1 00 -~ 01
0
2 _ m;—1 . . m;
Ny = U ,...,Nj’ = : : ,Nj’—O.
0 0 e 0 0
This means NV; is nilpotent of order m; , hence
t2 tm,j—l
1 t ? (mjfl)!
0 tk m; 1tk
Nt _ U ok U oAk
TEL N N e
k=0 k=0
t
1
and therefore
t2 tnLjfl
1 t 2! (m;—1)!
ert — €>\jt . eth — 6>\jt .2
bl
t
1
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Corollary 2.3. Returning to (1.1) we know that & = Az <= 2/(t) = PJP~1z(t).
If we define z := Py , 2/(t) = Ax(t) is equivalent to

Py'(t) = P71JPP~1y(t) <= y/(t) = Jy(t). Therefore

(2.1) y=Jy

We know that a solution for (1.1) is given by x(t) = Py(t), where y is a solution
for (2.1)

y = Jy can be split up into uncoupled equations v’ = Jju;. Here we know that
each coordinate of the solution is now given by a linear combination of functions of

the form:
th.eNt (j=1,....,d, k=0,...,mj — 1)

Example 2.4. Regard the initial value problem (1.1) with

0 10
A= 0 0 1
-4 -4 1

det(A—X)=—-(A—-1)(A=2)(A+2).
Therefore we have three eigenvalues, each of multiplicity one:
AM=1, =2 A3=-2

-1 1 0 1
ker(A — A1) = ker 0 -1 1 = v =1
—4 4 0 1
-2 1 0 1
ker(A — A2I) = ker 0o -2 1 = v =| 2
—4 4 -1 4
2 1 0 1
ker(A — A\3I) = ker 0 2 1 = U3 = -9
—4 4 3 4
Now we can write A = PJP™ 1,
11 1 10 0 O
withP=| 1 2 -2 JandJ=| 0 2 0 and P! =| -1 1 %
1 4 4 0 0 1

1 1
) —1
et 0 0
Further we know the solution is #(t) = Pe/tP~lzg =P | 0 ¢e?* 0 Pl
0

—3ett48e3t41  ett—1  3ett—4edt41

Ge2t 4e2t 122+t
_ —3ett4aedt—1  e*'41 3e*t—2e3t—1 T
- 3e2t 2e2t Ge2t 0
—6ettraedt4a eft—1 3ett—et41
3€2t e2t 362t
1 et
If for example zp = [ 1 | then z(t) = | €'
1 et

Definition 2.5. Let A be an eigenvalue of the n x n matrix A of multiplicity n.
We define the deficiency indices as

Op := dim(ker(A — AXI)¥) (k=1,...,n)
To find &), we can use the Gaussian reduction on (A — AI)* and §j is the number
of zero rows in the reduced echelon form of (A — AI)*
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Let v, be the number of Jordan blocks of size k x k in the Jordan canonical from
of A.
n
Z v = 01 is the number of Jordan Blocks in A
k=1

With [4] p. 124 we get

n
52=V1—|—221/k

k=2

53:V1—|—2u2+32uk
k=3

dp—1=11+2+3v5+...+(n—1Dvp_1+ (n— v,

5n :ik-uk
k=1

and therefore we get
vy = 251 — 52
v = 20 — 5k+1 — Op_1 (1 <k< TL)
Vn = 0n — 0p_1
In the following we present an algorithm for finding a basis B of eigenvectors such

that the n x n matrix A with the eigenvalue A of multiplicity n assumes its Jordan
Canonical Form J, with respect to the basis B. (cf. [1] p. 43-44 )

Step 1) Find a basis {vﬁl) }?1:1 for ker(A—AI). This means we have to find a linearly
independent set of eigenvectors corresponding to A

Step 2) If 62 > d1, choose a basis {Vj(l)}glz1 for ker(A — AI) such that
2 _ @
(A=Al =V
has §o — §; linearly independent solutions UJ(»Q) for j=1,...,02 — ;. Then
2 1 2 —
{0 h = 0 L o s

is a basis for ker(A — \I)?

Step 3) If 63 > d2 repeat Step 2) such that (A — )\I)’UJ(-S) = Vj(2) has 3 — 02 linearly

independent solutions.
Step 4) Continue process until 0y = n and obtain a basis B = {vj(k)}?zl

P is then obtained by ordering the eigenvectors with e satsfying (A — AT )v(i) =

) i J J
Vj(kl), listed after the entry = Vj(lfl).
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Example 2.6. Let

2 1 0
A= 0 2 0| =det(A-A)=—(A—2)
0 -1 2

Therefore we have the eigenvalue A = 2 of multiplicity three.

0 1 0
01 = dim(ker(A—Al))=dim (ker | O 0 0 =2
0 -1 0
1 0
Here we can easily find two eigenvectors vg) =1 0 | and vél) =10
0 1
As 01 # 3 we have to proceed with step two of the algorithm. For this we have to
0
look at ker(A — AI)? = ker(0), so we can choose v§2) = | 1 |]. Further this choice
0
1
now has to satisfy (A — )\I)Uf) = Vl(l). As (A - /\I)v?) = 0 we have to
-1
1 1
choose Vl(l) = 0 ]. Now we can choose V2(1) =10
-1 0
Therefore we receive
1 00 -1 210
P = 0 1 0 ]JandP'=]10 1 0 andJ = 0 2 0 | and for
-1 0 O 1 0 1 0 0 2

the representation of J we used vy = 261 —ds =1 and vy =209 — 93 — 91 =1
e2t te2t 0

For the solution of (1.1) we get () =P | 0 €* 0 Pl
0 0 e

Example 2.7. Let
0o -2 -1 -1

a=| o 2 1 o | =dea-an=(-12
0 O 0 1
-1 -2 -1 -1
1 1 1 1 . . . .
(A=XI) = O 1 0 o0 and using Gaussian reduction we obtain d; = 2
0o 0 0 O
-1 -1
1 _ 0 (1 _ 0 .
and v; ' = 1 and vy ML which span ker(A — A\I)
0 1

Next d; = dim(ker(A — AI)?) = dim | ker = 3 and we get

o oo
o OO
S O O
S o o
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-1
2 1
2|
0
-1
As(A-ane=| 0 [ =0l we can leave iV = o, so with V) = o we
0

get {Vl(l v§2)7V2(1)} spans ker(I — \I)2.

53 = dim(ker(A — AI)®) = dim(ker(0)) = 4 and we get v\* (
e

@ o O O

If we now multiply (A — )\I)vgs) = 05 ) 50 we can choose V( ) and therefore

{Vl(l), 1/1(2), vf’), 1/2(1)} are a basis of ker(A — \I)3.

Becauseul:251—52:1,1/2:52—53—51:OandV3:2(53—54—(52:1
-1 -1 1 -1 00 1 0 1 1.0 0
_ 0 1 0 0 1[0 1 00 10110
=11 0 o0 o |™P =1 111 |™7=1 0010
0 0 0 1 0 0 01 0 0 01
The solution to the initial value problem (1.1) is then given by
1t £ 0
01 ¢ 0 _
= Pet p-!
=Pt 5 0 1 0 o
00 0 1
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3. FURTHER APPLICATIONS OF JORDAN FORMS

Consider the equation

(3.1) 0=y )+ a1y V) + ...+ a1y (t) + aoy(t)
We can transform this higher order scalar linear equation into an equation of
Yy
y/
order one, using z = . . Now (3.1) is equivalent to & = Az with
y(nfl)
0 1
A= )
0 1
—ap —ap --- —0p-2 —0ap-1

The characteristic polynomial of A is det(A—\) = A" —a,, 1 A" +...+ a1 A +ag
Using this it can be shown that the following functions form a basis of the solutions
for (3.1):

y;k(t) = therit for j = 1...d,0 < k < m; with m; the multiplicity of eigenvalue
Aj.
Proof of the above is given in [4] p. 138-139.
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