APPLICATIONS OF JORDAN FORMS TO SYSTEMS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS

SHAUN DEAN

Abstract. The Jordan Canonical Form of a matrix is a very important concept from Linear Algebra. One of its most important applications lies in the solving systems of ordinary differential equations. The Jordan Form results in a useful description of the nilpotent part of a matrix and we will discuss its uses for calculating the matrix exponential. Further we will see how to find a basis of eigenvectors and their use for solving differential equations.
On the other hand finding the Jordan Form of a matrix does not necessarily have to be the best way to solve a differential equation, as finding a basis of eigenvectors, can be very hard.

Contents

1. Fundamental Theorem for Linear Systems 2
2. Jordan Forms 4
3. Further applications of Jordan forms 10

References 11

1. Fundamental Theorem for Linear Systems

Definition 1.1. Let A be a complex quadratic matrix. For $t \in \mathbb{C}$ we define the matrix exponential as:

$$
e^{A t}:=\sum_{j=0}^{\infty} \frac{t^{j}}{j!} A^{j}
$$

Lemma 1.2. If the matrices A and B commute, i.e. $A B=B A$, we get $e^{A+B}=e^{A} \cdot e^{B}$

Proof. Let $A B=B A$.

$$
\begin{aligned}
e^{A+B} & =\sum_{j=0}^{\infty} \frac{(A+B)^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{j}\binom{j}{k} \frac{A^{k} B^{j-k}}{j!} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{j} \frac{A^{k} B^{j-k}}{k!(j-k)!} \\
& =\sum_{p=0}^{\infty} \frac{A^{p}}{p!} \cdot \sum_{q=0}^{\infty} \frac{B^{q}}{q!} \\
& =e^{A} \cdot e^{B}
\end{aligned}
$$

Here we have used the fact that both e^{A} and e^{B} converge absolutely and we can therefore multiply the two series entry by entry.

Theorem 1.3. Fundamental Theorem for Linear Symstems
Let A be an $n \times n$ matrix with $n \in \mathbb{N}$. For $x_{0} \in \mathbb{C}^{n}$ the initial value problem

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \tag{1.1}
\end{equation*}
$$

has a unique solution given by $x(t)=e^{A t} x_{0}$.

Proof. First we prove that $x(t)=e^{A t} x_{0}$ is in fact a solution of (1.1).

$$
\begin{aligned}
x^{\prime}(t) & =\frac{d}{d t} e^{A t} x_{0} \\
& =\lim _{h \rightarrow 0} \frac{e^{A(t+h)}-e^{A t}}{h} \cdot x_{0} \\
& =\lim _{h \rightarrow 0}\left(\frac{e^{A h}-I}{h}\right) e^{A t} \cdot x_{0} \\
& =\lim _{h \rightarrow 0}\left(\sum_{j=0}^{\infty} \frac{h^{j}}{h \cdot j!} A^{j}-\frac{I}{h}\right) e^{A t} \cdot x_{0} \\
& =\lim _{h \rightarrow 0}\left(\sum_{j=2}^{\infty} \frac{h^{j-1}}{j!} A^{j}+A+\frac{I}{h}-\frac{I}{h}\right) e^{A t} \cdot x_{0} \\
& =\left(\lim _{h \rightarrow 0}\left(\sum_{j=2}^{\infty} \frac{h^{j-1}}{j!} A^{j}\right)+A\right) e^{A t} \cdot x_{0} \\
& =A e^{A t} \cdot x_{0} \\
& =A \cdot x(t)
\end{aligned}
$$

and $x(0)=I \cdot x_{0}=x_{0}$
Secondly we have to prove the uniqueness of the solution. So let y be any solution to (1.1) and let $z(t):=e^{-A t} y(t)$

$$
\begin{aligned}
z^{\prime}(t) & =-A e^{-A t} y(t)+e^{-A t} y^{\prime}(t) \\
& =-A e^{-A t} y(t)+e^{-A t} A y(t) \\
& =0
\end{aligned}
$$

Therefore z is a constant. We also know $z(0)=y(0)=x_{0}$, so $z(t)=x_{0}$, so $y(t)=e^{A t} x_{0}$, so $y=x$ and x is the unique solution of (1.1).

2. Jordan Forms

Definition 2.1. Jordan Form
Let A be a complex matrix with $A \in \mathbb{C}^{n \times n}$ and $n \in \mathbb{N}$, with eigenvalues λ_{j}, with $j=1, \ldots, d$. Then there exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$, where $v_{j}, j=1, \ldots, n$ are eigenvectors of A such that the matrix $P=\left(v_{1}, \ldots v_{n}\right)$ is an invertible matrix with $P^{-1} A P=J:=\left(\begin{array}{ccc}J_{1} & & \\ & \ddots & \\ & & J_{d}\end{array}\right) \Longleftrightarrow A=P J P^{-1}$
with

$$
J_{j}:=\left(\begin{array}{ccccc}
\lambda_{j} & 1 & 0 & \cdots & 0 \\
& \lambda_{j} & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & 0 \\
& & & \lambda_{j} & 1 \\
0 & & & & \lambda_{j}
\end{array}\right) \in \mathbb{C}^{m_{j} \times m_{j}}, j=1, \ldots, d, \sum_{j=1}^{d} m_{j}=n
$$

Theorem 2.2. Using the Notation from definition 2.1 we can express the solution of (1.1) with: $x(t)=P\left(\begin{array}{lll}e^{J_{1} t} & & \\ & \ddots & \\ & & e^{J_{d} t}\end{array}\right) P^{-1} x_{0}$
and for $j=1, \ldots d$ and eigenvalue λ_{j}

$$
e^{J_{j} t}=e^{\lambda_{j} t} \cdot\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{m_{j}-1}}{\left(m_{j}-1\right)!} \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \frac{t^{2}}{2!} \\
& & & \ddots & t \\
& & & & 1
\end{array}\right)
$$

Proof. The solution of (1.1) is given by

$$
\begin{aligned}
x(t) & =e^{A t} x_{0} \\
& =e^{P J P^{-1} t} x_{0} \\
& =\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(P J P^{-1}\right)^{k}\right) x_{0} \\
& =\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} P \cdot J^{k} \cdot P^{-1}\right) x_{0} \\
& =P \cdot\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!} J^{k}\right) \cdot P^{-1} x_{0} \\
& =P e^{J t} P^{-1} x_{0}
\end{aligned}
$$

The question is now what does $e^{J t}$ look like?
$e^{J t}=\left(\begin{array}{lll}e^{J_{1} t} & & \\ & \ddots & \\ & & e^{J_{d} t}\end{array}\right)$
For $j \in\{1, \ldots, d\}$ let $N_{j}=\left(\begin{array}{ccccc}0 & 1 & & & \\ & & \ddots & & \\ & & \ddots & \ddots & \\ & & & 1 \\ & & & & 0\end{array}\right) \in \mathbb{C}^{m_{j} \times m_{j}}$, so defining
$J_{j}=\left(\lambda_{j} \cdot I+N_{j}\right)$ and we get

$$
e^{J_{j} t}=e^{\left(\lambda_{j} \cdot I+N_{j}\right) t}=e^{\lambda_{j} \cdot I \cdot t} \cdot e^{N_{j} \cdot t}=e^{\lambda_{j} \cdot t} \cdot e^{N_{j} \cdot t}
$$

Further we can calculate $e^{N_{j} \cdot t}$ by looking at the exponents of N_{j} and we receive:
$N_{j}^{2}=\left(\begin{array}{ccccc}0 & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & & 0\end{array}\right), \ldots, N_{j}^{m_{j}-1}=\left(\begin{array}{ccccc}0 & 0 & \cdots & 0 & 1 \\ & & & & 0 \\ \vdots & & & \vdots \\ & & & & \\ 0 & & \cdots & 0 & 0\end{array}\right), N_{j}^{m_{j}}=0$.
This means N_{j} is nilpotent of order m_{j}, hence

$$
e^{N_{j} t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \cdot N_{j}^{k}=\sum_{k=0}^{m_{j}-1} \frac{t^{k}}{k!} \cdot N_{j}^{k}=\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{m_{j}-1}}{\left(m_{j}-1\right)!} \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \frac{t^{2}}{2!} \\
& & & \ddots & t \\
& & & & 1
\end{array}\right)
$$

and therefore

$$
e^{J_{j} t}=e^{\lambda_{j} t} \cdot e^{N_{j} t}=e^{\lambda_{j} t} \cdot\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2!} & \cdots & \frac{t^{m_{j}-1}}{\left(m_{j}-1\right)!} \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \frac{t^{2}}{2!} \\
& & & \ddots & t \\
& & & & 1
\end{array}\right)
$$

Corollary 2.3. Returning to (1.1) we know that $\dot{x}=A x \Longleftrightarrow x^{\prime}(t)=P J P^{-1} x(t)$. If we define $x:=P y, x^{\prime}(t)=A x(t)$ is equivalent to
$P y^{\prime}(t)=P^{-1} J P P^{-1} y(t) \Longleftrightarrow y^{\prime}(t)=J y(t)$. Therefore

$$
\begin{equation*}
\dot{y}=J y \tag{2.1}
\end{equation*}
$$

We know that a solution for (1.1) is given by $x(t)=P y(t)$, where y is a solution for (2.1)
$\dot{y}=J y$ can be split up into uncoupled equations $u^{\prime}=J_{j} u_{j}$. Here we know that each coordinate of the solution is now given by a linear combination of functions of the form:
$t^{k} \cdot e^{\lambda_{j} t}, \quad\left(j=1, \ldots, d, k=0, \ldots, m_{j}-1\right)$
Example 2.4. Regard the initial value problem (1.1) with
$A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -4 & 1\end{array}\right)$
$\operatorname{det}(A-\lambda I)=-(\lambda-1)(\lambda-2)(\lambda+2)$.
Therefore we have three eigenvalues, each of multiplicity one:
$\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-2$
$\operatorname{ker}\left(A-\lambda_{1} I\right)=\operatorname{ker}\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ -4 & 4 & 0\end{array}\right) \Longrightarrow v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
$\operatorname{ker}\left(A-\lambda_{2} I\right)=\operatorname{ker}\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -2 & 1 \\ -4 & 4 & -1\end{array}\right) \Longrightarrow v_{2}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$
$\operatorname{ker}\left(A-\lambda_{3} I\right)=\operatorname{ker}\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right) \quad \Longrightarrow v_{3}=\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$
Now we can write $A=P J P^{-1}$,
with $P=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -2 \\ 1 & 4 & 4\end{array}\right)$ and $J=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right)$ and $P^{-1}=\left(\begin{array}{ccc}\frac{4}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & -\frac{1}{4} & \frac{1}{12}\end{array}\right)$ Further we know the solution is $x(t)=P e^{J t} P^{-1} x_{0}=P\left(\begin{array}{ccc}e^{t} & 0 & 0 \\ 0 & e^{2 t} & 0 \\ 0 & 0 & e^{-2 t}\end{array}\right)^{4} P^{-1} x_{0}$ $=\left(\begin{array}{ccc}\frac{-3 e^{4 t}+8 e^{3 t}+1}{6 e^{2 t}} & \frac{e^{4 t}-1}{4 e^{2 t}} & \frac{3 e^{4 t}-4 e^{3 t}+1}{12 e^{2 t t}} \\ \frac{-3 e^{4 t}+4 e^{3 t}-1}{3 e^{2 t}} & \frac{e^{4 t}+1}{2 e^{2 t}} & \frac{3 e^{4 t}-2 e^{3 t}-1}{6 e^{2 t}} \\ \frac{-6 e^{4 t}+4 e^{3 t}+2}{3 e^{2 t}} & \frac{e^{4 t}-1}{e^{2 t}} & \frac{3 e^{4 t}-e^{3 t}+1}{3 e^{2 t}}\end{array}\right) x_{0}$
If for example $x_{0}=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$ then $x(t)=\left(\begin{array}{c}e^{t} \\ e^{t} \\ e^{t}\end{array}\right)$
Definition 2.5. Let λ be an eigenvalue of the $n \times n$ matrix A of multiplicity n. We define the deficiency indices as

$$
\delta_{k}:=\operatorname{dim}\left(\operatorname{ker}(A-\lambda I)^{k}\right) \quad(k=1, \ldots, n)
$$

To find δ_{k} we can use the Gaussian reduction on $(A-\lambda I)^{k}$ and δ_{k} is the number of zero rows in the reduced echelon form of $(A-\lambda I)^{k}$

Let ν_{k} be the number of Jordan blocks of size $k \times k$ in the Jordan canonical from of A.

$$
\sum_{k=1}^{n} \nu_{k}=\delta_{1} \quad \text { is the number of Jordan Blocks in } A
$$

With [4] p. 124 we get

$$
\begin{aligned}
\delta_{2} & =\nu_{1}+2 \sum_{k=2}^{n} \nu_{k} \\
\delta_{3} & =\nu_{1}+2 \nu_{2}+3 \sum_{k=3}^{n} \nu_{k} \\
& \vdots \\
\delta_{n-1} & =\nu_{1}+2 \nu_{2}+3 \nu_{3}+\ldots+(n-1) \nu_{n-1}+(n-1) \nu_{n} \\
\delta_{n} & =\sum_{k=1}^{n} k \cdot \nu_{k}
\end{aligned}
$$

and therefore we get

$$
\begin{aligned}
& \nu_{1}=2 \delta_{1}-\delta_{2} \\
& \nu_{k}=2 \delta_{k}-\delta_{k+1}-\delta_{k-1} \quad(1<k<n) \\
& \nu_{n}=\delta_{n}-\delta_{n-1}
\end{aligned}
$$

In the following we present an algorithm for finding a basis B of eigenvectors such that the $n \times n$ matrix A with the eigenvalue λ of multiplicity n assumes its Jordan Canonical Form J, with respect to the basis B. (cf. [1] p. 43-44)

Step 1) Find a basis $\left\{v_{j}^{(1)}\right\}_{j=1}^{\delta_{1}}$ for $\operatorname{ker}(A-\lambda I)$. This means we have to find a linearly independent set of eigenvectors corresponding to λ
Step 2) If $\delta_{2}>\delta_{1}$, choose a basis $\left\{V_{j}^{(1)}\right\}_{j=1}^{\delta_{1}}$ for $\operatorname{ker}(A-\lambda I)$ such that

$$
(A-\lambda I) v_{j}^{(2)}=V_{j}^{(1)}
$$

has $\delta_{2}-\delta_{1}$ linearly independent solutions $v_{j}^{(2)}$ for $j=1, \ldots, \delta_{2}-\delta_{1}$. Then

$$
\left\{v_{j}^{(2)}\right\}_{j=1}^{\delta_{2}}=\left\{V_{j}^{(1)}\right\}_{j=1}^{\delta_{1}} \cup\left\{v_{j}^{(2)}\right\}_{j=1}^{\delta_{2}-\delta_{1}}
$$

is a basis for $\operatorname{ker}(A-\lambda I)^{2}$
Step 3) If $\delta_{3}>\delta_{2}$ repeat Step 2) such that $(A-\lambda I) v_{j}^{(3)}=V_{j}^{(2)}$ has $\delta_{3}-\delta_{2}$ linearly independent solutions.
Step 4) Continue process until $\delta_{k}=n$ and obtain a basis $B=\left\{v_{j}^{(k)}\right\}_{j=1}^{n}$
P is then obtained by ordering the eigenvectors with $v_{j}^{(i)}$ satsfying $(A-\lambda I) v_{j}^{(i)}=$ $V_{j}^{(i-1)}$, listed after the entry $=V_{j}^{(i-1)}$.

Example 2.6. Let
$A=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 2\end{array}\right) \Longrightarrow \operatorname{det}(A-\lambda I)=-(\lambda-2)^{3}$
Therefore we have the eigenvalue $\lambda=2$ of multiplicity three.

$$
\delta_{1}=\operatorname{dim}(\operatorname{ker}(A-\lambda I))=\operatorname{dim}\left(\operatorname{ker}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)\right)=2
$$

Here we can easily find two eigenvectors $v_{1}^{(1)}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $v_{2}^{(1)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
As $\delta_{1} \neq 3$ we have to proceed with step two of the algorithm. For this we have to look at $\operatorname{ker}(A-\lambda I)^{2}=\operatorname{ker}(0)$, so we can choose $v_{1}^{(2)}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Further this choice now has to satisfy $(A-\lambda I) v_{1}^{(2)}=V_{1}^{(1)}$. As $(A-\lambda I) v_{1}^{(2)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ we have to choose $V_{1}^{(1)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. Now we can choose $V_{2}^{(1)}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
Therefore we receive
$P=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right)$ and $P^{-1}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ and $J=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ and for the representation of J we used $\nu_{1}=2 \delta_{1}-\delta_{2}=1$ and $\nu_{2}=2 \delta_{2}-\delta_{3}-\delta_{1}=1$
For the solution of (1.1) we get $x(t)=P\left(\begin{array}{ccc}e^{2 t} & t e^{2 t} & 0 \\ 0 & e^{2 t} & 0 \\ 0 & 0 & e^{2 t}\end{array}\right) P^{-1} x_{0}$
Example 2.7. Let
$A=\left(\begin{array}{cccc}0 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \Longrightarrow \operatorname{det}(A-\lambda I)=(\lambda-1)^{4}$
$(A-\lambda I)=\left(\begin{array}{cccc}-1 & -2 & -1 & -1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ and using Gaussian reduction we obtain $\delta_{1}=2$
and $v_{1}^{(1)}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $v_{2}^{(1)}=\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$, which span $\operatorname{ker}(A-\lambda I)$
Next $\delta_{2}=\operatorname{dim}\left(\operatorname{ker}(A-\lambda I)^{2}\right)=\operatorname{dim}\left(\operatorname{ker}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\right)=3$ and we get
$v_{1}^{(2)}=\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right)$
As $(A-\lambda I) v_{1}^{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)=v_{1}^{(1)}$ we can leave $V_{1}^{(1)}=v_{1}^{(1)}$, so with $V_{2}^{(1)}=v_{2}^{(1)}$ we get $\left\{V_{1}^{(1)}, v_{1}^{(2)}, V_{2}^{(1)}\right\}$ spans $\operatorname{ker}(I-\lambda I)^{2}$.
$\delta_{3}=\operatorname{dim}\left(\operatorname{ker}(A-\lambda I)^{3}\right)=\operatorname{dim}(\operatorname{ker}(0))=4$ and we get $v_{1}^{(3)}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
If we now multiply $(A-\lambda I) v_{1}^{(3)}=v_{1}^{(2)}$ so we can choose $V_{1}^{(2)}=v_{1}^{(2)}$ and therefore $\left\{V_{1}^{(1)}, V_{1}^{(2)}, v_{1}^{(3)}, V_{2}^{(1)}\right\}$ are a basis of $\operatorname{ker}(A-\lambda I)^{3}$.
Because $\nu_{1}=2 \delta_{1}-\delta_{2}=1, \nu_{2}=\delta_{2}-\delta_{3}-\delta_{1}=0$ and $\nu_{3}=2 \delta_{3}-\delta_{4}-\delta_{2}=1$
$P=\left(\begin{array}{cccc}-1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ and $P^{-1}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$ and $J=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
The solution to the initial value problem (1.1) is then given by
$x(t)=P e^{t}\left(\begin{array}{cccc}1 & t & \frac{t^{2}}{2} & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) P^{-1} x_{0}$

3. Further applications of Jordan forms

Consider the equation

$$
\begin{equation*}
0=y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\ldots+a_{1} y^{\prime}(t)+a_{0} y(t) \tag{3.1}
\end{equation*}
$$

We can transform this higher order scalar linear equation into an equation of order one, using $x=\left(\begin{array}{c}y \\ y^{\prime} \\ \vdots \\ y^{(n-1)}\end{array}\right)$. Now (3.1) is equivalent to $\dot{x}=A x$ with

$$
A=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \ddots & \ddots & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right)
$$

The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=\lambda^{n}-a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}$ Using this it can be shown that the following functions form a basis of the solutions for (3.1):
$y_{j, k}(t)=t^{k} e^{\lambda_{j} t}$ for $j=1 \ldots d, 0 \leq k<m_{j}$ with m_{j} the multiplicity of eigenvalue λ_{j}.
Proof of the above is given in [4] p. 138-139.

References

[1] L. Perko, Differential equations and dynamical systems (3rd ed.), Texts in Applied Mathematics 7, Springer, New York, 2001.
[2] S. Kuhlmann, Gesamtscript zur Vorlesung Lineare Algebra II, Universität Konstanz, 2020.
[3] O. Schnürer, Analysis III ,Universität Konstanz, 2020.
[4] M. Hirsch and S. Small, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York,1974.

