
APPLICATIONS OF JORDAN FORMS TO SYSTEMS OF
LINEAR ORDINARY DIFFERENTIAL EQUATIONS

SHAUN DEAN

Abstract. The Jordan Canonical Form of a matrix is a very important con-
cept from Linear Algebra. One of its most important applications lies in the
solving systems of ordinary differential equations. The Jordan Form results in
a useful description of the nilpotent part of a matrix and we will discuss its
uses for calculating the matrix exponential. Further we will see how to find a
basis of eigenvectors and their use for solving differential equations.
On the other hand finding the Jordan Form of a matrix does not necessarily
have to be the best way to solve a differential equation, as finding a basis of
eigenvectors, can be very hard.
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1. Fundamental Theorem for Linear Systems

Definition 1.1. Let A be a complex quadratic matrix. For t ∈ C we define the
matrix exponential as:

eAt :=

∞∑
j=0

tj

j!
Aj

Lemma 1.2. If the matrices A and B commute , i.e. AB = BA,
we get eA+B = eA · eB

Proof. Let AB = BA.

eA+B =

∞∑
j=0

(A+B)j

j!

=

∞∑
j=0

j∑
k=0

(
j

k

)
AkBj−k

j!

=

∞∑
j=0

j∑
k=0

AkBj−k

k!(j − k)!

=

∞∑
p=0

Ap

p!
·
∞∑
q=0

Bq

q!

= eA · eB

Here we have used the fact that both eA and eB converge absolutely and we can
therefore multiply the two series entry by entry. �

Theorem 1.3. Fundamental Theorem for Linear Symstems
Let A be an n× n matrix with n ∈ N. For x0 ∈ Cn the initial value problem

(1.1) ẋ(t) = Ax(t), x(0) = x0

has a unique solution given by x(t) = eAtx0.
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Proof. First we prove that x(t) = eAtx0 is in fact a solution of (1.1).

x′(t) =
d

dt
eAtx0

= lim
h→0

eA(t+h) − eAt

h
· x0

= lim
h→0

(
eAh − I

h

)
eAt · x0

= lim
h→0

 ∞∑
j=0

hj

h · j!
Aj − I

h

 eAt · x0

= lim
h→0

 ∞∑
j=2

hj−1

j!
Aj +A+

I

h
− I

h

 eAt · x0

=

 lim
h→0

 ∞∑
j=2

hj−1

j!
Aj

+A

 eAt · x0

= AeAt · x0
= A · x(t)

and x(0) = I · x0 = x0
Secondly we have to prove the uniqueness of the solution. So let y be any solution
to (1.1) and let z(t) := e−Aty(t)

z′(t) = −Ae−Aty(t) + e−Aty′(t)

= −Ae−Aty(t) + e−AtAy(t)

= 0

Therefore z is a constant. We also know z(0) = y(0) = x0, so z(t) = x0, so
y(t) = eAtx0, so y = x and x is the unique solution of (1.1). �
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2. Jordan Forms

Definition 2.1. Jordan Form
Let A be a complex matrix with A ∈ Cn×n and n ∈ N, with eigenvalues λj , with
j = 1, . . . , d . Then there exists a basis {v1, . . . , vn} , where vj , j = 1, . . . , n are
eigenvectors of A such that the matrix P = (v1, . . . vn) is an invertible matrix with

P−1AP = J :=


J1

. . .

Jd

 ⇐⇒ A = PJP−1

with

Jj :=



λj 1 0 · · · 0

λj
. . .

. . .
...

. . .
. . . 0
λj 1

0 λj

 ∈ Cmj×mj , j = 1, . . . , d,

d∑
j=1

mj = n

Theorem 2.2. Using the Notation from definition 2.1 we can express the solution

of (1.1) with: x(t) = P


eJ1t

. . .

eJdt

P−1x0

and for j = 1, . . . d and eigenvalue λj

eJjt = eλjt ·



1 t t2

2! · · · tmj−1

(mj−1)!
. . .

. . .
. . .

...
. . .

. . . t2

2!
. . . t

1


Proof. The solution of (1.1) is given by

x(t) = eAtx0

= ePJP
−1tx0

=

( ∞∑
k=0

tk

k!
(PJP−1)k

)
x0

=

( ∞∑
k=0

tk

k!
P · Jk · P−1

)
x0

= P ·

( ∞∑
k=0

tk

k!
Jk

)
· P−1x0

= PeJtP−1x0
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The question is now what does eJt look like?

eJt =


eJ1t

. . .

eJdt



For j ∈ {1, . . . , d} let Nj =



0 1
. . .

. . .
. . .

1
0

 ∈ Cmj×mj , so defining

Jj = (λj · I +Nj) and we get

eJjt = e(λj ·I+Nj)t = eλj ·I·t · eNj ·t = eλj ·t · eNj ·t

Further we can calculate eNj ·t by looking at the exponents of Nj and we receive:

N2
j =



0 0 1
. . .

. . .

. . .
. . . 1

0

 , . . . , N
mj−1
j =


0 0 · · · 0 1

0
...

...

0 · · · 0 0

 , N
mj

j = 0.

This means Nj is nilpotent of order mj , hence

eNjt =

∞∑
k=0

tk

k!
·Nk

j =

mj−1∑
k=0

tk

k!
·Nk

j =



1 t t2

2! · · · tmj−1

(mj−1)!
. . .

. . .
. . .

...
. . .

. . . t2

2!
. . . t

1


and therefore

eJjt = eλjt · eNjt = eλjt ·



1 t t2

2! · · · tmj−1

(mj−1)!
. . .

. . .
. . .

...
. . .

. . . t2

2!
. . . t

1


�
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Corollary 2.3. Returning to (1.1) we know that ẋ = Ax⇐⇒ x′(t) = PJP−1x(t).
If we define x := Py , x′(t) = Ax(t) is equivalent to
Py′(t) = P−1JPP−1y(t)⇐⇒ y′(t) = Jy(t). Therefore

(2.1) ẏ = Jy

We know that a solution for (1.1) is given by x(t) = Py(t), where y is a solution
for (2.1)
ẏ = Jy can be split up into uncoupled equations u′ = Jjuj . Here we know that
each coordinate of the solution is now given by a linear combination of functions of
the form:
tk · eλjt, (j = 1, . . . , d, k = 0, . . . ,mj − 1)

Example 2.4. Regard the initial value problem (1.1) with

A =

 0 1 0
0 0 1
−4 −4 1


det(A− λI) = −(λ− 1)(λ− 2)(λ+ 2).
Therefore we have three eigenvalues, each of multiplicity one:
λ1 = 1, λ2 = 2, λ3 = −2

ker(A− λ1I) = ker

 −1 1 0
0 −1 1
−4 4 0

 =⇒ v1 =

 1
1
1


ker(A− λ2I) = ker

 −2 1 0
0 −2 1
−4 4 −1

 =⇒ v2 =

 1
2
4


ker(A− λ3I) = ker

 2 1 0
0 2 1
−4 4 3

 =⇒ v3 =

 1
−2
4


Now we can write A = PJP−1,

with P =

 1 1 1
1 2 −2
1 4 4

 and J =

 1 0 0
0 2 0
0 0 −2

 and P−1 =

 4
3 0 − 1

3
− 1

2
1
4

1
4

1
6 − 1

4
1
12


Further we know the solution is x(t) = PeJtP−1x0 = P

 et 0 0
0 e2t 0
0 0 e−2t

P−1x0

=


−3e4t+8e3t+1

6e2t
e4t−1
4e2t

3e4t−4e3t+1
12e2∗t

−3e4t+4e3t−1
3e2t

e4t+1
2e2t

3e4t−2e3t−1
6e2t

−6e4t+4e3t+2
3e2t

e4t−1
e2t

3e4t−e3t+1
3e2t

x0

If for example x0 =

 1
1
1

 then x(t) =

 et

et

et


Definition 2.5. Let λ be an eigenvalue of the n × n matrix A of multiplicity n.
We define the deficiency indices as

δk := dim(ker(A− λI)k) (k = 1, . . . , n)

To find δk we can use the Gaussian reduction on (A − λI)k and δk is the number
of zero rows in the reduced echelon form of (A− λI)k
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Let νk be the number of Jordan blocks of size k × k in the Jordan canonical from
of A.

n∑
k=1

νk = δ1 is the number of Jordan Blocks in A

With [4] p. 124 we get

δ2 = ν1 + 2

n∑
k=2

νk

δ3 = ν1 + 2ν2 + 3

n∑
k=3

νk

...

δn−1 = ν1 + 2ν2 + 3ν3 + . . .+ (n− 1)νn−1 + (n− 1)νn

δn =

n∑
k=1

k · νk

and therefore we get

ν1 = 2δ1 − δ2
νk = 2δk − δk+1 − δk−1 (1 < k < n)

νn = δn − δn−1
In the following we present an algorithm for finding a basis B of eigenvectors such
that the n× n matrix A with the eigenvalue λ of multiplicity n assumes its Jordan
Canonical Form J , with respect to the basis B. (cf. [1] p. 43-44 )

Step 1) Find a basis {v(1)j }
δ1
j=1 for ker(A−λI). This means we have to find a linearly

independent set of eigenvectors corresponding to λ
Step 2) If δ2 > δ1, choose a basis {V (1)

j }
δ1
j=1 for ker(A− λI) such that

(A− λI)v(2)j = V
(1)
j

has δ2 − δ1 linearly independent solutions v(2)j for j = 1, . . . , δ2 − δ1. Then

{v(2)j }
δ2
j=1 = {V (1)

j }
δ1
j=1 ∪ {v

(2)
j }

δ2−δ1
j=1

is a basis for ker(A− λI)2

Step 3) If δ3 > δ2 repeat Step 2) such that (A− λI)v(3)j = V
(2)
j has δ3 − δ2 linearly

independent solutions.
Step 4) Continue process until δk = n and obtain a basis B = {v(k)j }nj=1

P is then obtained by ordering the eigenvectors with v(i)j satsfying (A− λI)v(i)j =

V
(i−1)
j , listed after the entry = V

(i−1)
j .
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Example 2.6. Let

A =

 2 1 0
0 2 0
0 −1 2

 =⇒ det(A− λI) = −(λ− 2)3

Therefore we have the eigenvalue λ = 2 of multiplicity three.

δ1 = dim(ker(A− λI)) = dim

ker

 0 1 0
0 0 0
0 −1 0

 = 2

Here we can easily find two eigenvectors v(1)1 =

 1
0
0

 and v(1)2 =

 0
0
1

.

As δ1 6= 3 we have to proceed with step two of the algorithm. For this we have to

look at ker(A−λI)2 = ker(0), so we can choose v(2)1 =

 0
1
0

. Further this choice

now has to satisfy (A − λI)v(2)1 = V
(1)
1 . As (A − λI)v(2)1 =

 1
0
−1

 we have to

choose V (1)
1 =

 1
0
−1

. Now we can choose V (1)
2 =

 1
0
0


Therefore we receive

P =

 1 0 1
0 1 0
−1 0 0

 and P−1 =

 0 0 −1
0 1 0
1 0 1

 and J =

 2 1 0
0 2 0
0 0 2

 and for

the representation of J we used ν1 = 2δ1 − δ2 = 1 and ν2 = 2δ2 − δ3 − δ1 = 1

For the solution of (1.1) we get x(t) = P

 e2t te2t 0
0 e2t 0
0 0 e2t

P−1x0

Example 2.7. Let

A =


0 −2 −1 −1
1 2 1 1
0 1 1 0
0 0 0 1

 =⇒ det(A− λI) = (λ− 1)4

(A−λI) =


−1 −2 −1 −1
1 1 1 1
0 1 0 0
0 0 0 0

 and using Gaussian reduction we obtain δ1 = 2

and v(1)1 =


−1
0
1
0

 and v(1)2 =


−1
0
0
1

, which span ker(A− λI)

Next δ2 = dim(ker(A − λI)2) = dim

ker


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


 = 3 and we get



APPLICATIONS OF JORDAN FORMS 9

v
(2)
1 =


−1
1
0
0


As (A− λI)v21 =


−1
0
1
0

 = v
(1)
1 we can leave V (1)

1 = v
(1)
1 , so with V (1)

2 = v
(1)
2 we

get {V (1)
1 , v

(2)
1 , V

(1)
2 } spans ker(I − λI)2.

δ3 = dim(ker(A− λI)3) = dim(ker(0)) = 4 and we get v(3)1 =

 0
0
0

.

If we now multiply (A− λI)v(3)1 = v
(2)
1 so we can choose V (2)

1 = v
(2)
1 and therefore

{V (1)
1 , V

(2)
1 , v

(3)
1 , V

(1)
2 } are a basis of ker(A− λI)3.

Because ν1 = 2δ1 − δ2 = 1, ν2 = δ2 − δ3 − δ1 = 0 and ν3 = 2δ3 − δ4 − δ2 = 1

P =


−1 −1 1 −1
0 1 0 0
1 0 0 0
0 0 0 1

 and P−1 =


0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 1

 and J =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


The solution to the initial value problem (1.1) is then given by

x(t) = Pet


1 t t2

2 0
0 1 t 0
0 0 1 0
0 0 0 1

P−1x0
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3. Further applications of Jordan forms

Consider the equation

(3.1) 0 = y(n)(t) + an−1y
(n−1)(t) + . . .+ a1y

′(t) + a0y(t)

We can transform this higher order scalar linear equation into an equation of

order one, using x =


y
y′

...
y(n−1)

. Now (3.1) is equivalent to ẋ = Ax with

A =



0 1
. . .

. . .

. . .
. . .

0 1
−a0 −a1 · · · −an−2 −an−1

.

The characteristic polynomial of A is det(A−λI) = λn−an−1λn−1+ . . .+a1λ+a0
Using this it can be shown that the following functions form a basis of the solutions
for (3.1):
yj,k(t) = tkeλjt for j = 1 . . . d, 0 ≤ k < mj with mj the multiplicity of eigenvalue
λj .
Proof of the above is given in [4] p. 138-139.
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