PROSEMINAR ON LINEAR ALGEBRA - WS 2020/2021

List of possible topics

This is just a list of possible topics where you can find some ideas and references for preparing your seminars. Please, feel free to search for other sources and/or to propose to us a completely different topic in linear algebra on which you would like to build your own seminar.

1. Operators on inner product spaces
(a) Forms on inner product spaces and their representations (See e.g. [4, Section 9.2, pp. 320-324].)
(b) Nonnegative and positive forms on inner product spaces (See e.g. [4, Section 9.3, pp. 325-329].)
(c) Relation between positive operators, positive forms and positive matrices (See e.g. [4, Section 9.3, pp. 329-331].)
(d) Forms and projections of vectors spaces
(See e.g. [4, Section 9.4, pp. 332-334].)
2. Applications of the spectral theorem
(a) Functions of diagonalizable normal operators
(See e.g. [4, Section 9.5, pp. 337-340].)
(b) Applications involving nonnegative operators
(See e.g. [4, Section 9.5, pp. 340-343].)
(c) Simultaneous diagonalization of families of normal operators
(See e.g. [4, Section 9.5, pp. 343-347].)
(d) Spectral theorem and primary decomposition
(See e.g. 44, Section 9.6, pp. 349-352].)
(e) Properties of normal operators on real vector spaces (See e.g. 4, Section 9.6, pp. 352-354].)
(f) Unitarily equivalence of normal operators
(See e.g. 4. Section 9.6, pp. 354-358].)
3. Bilinear forms
(a) Bilinear forms on finite-dimensional vector spaces (See e.g. [4, Section 10.1, pp. 360-366].)
(b) Symmetric bilinear forms and their diagonalization
(See e.g. [4, Section 10.2, pp. 367-372].)
(c) Skew-symmetric bilinear forms
(See e.g. [4, Section 10.3, pp. 375-379].)
(d) Group preserving bilinear forms
(See e.g. [4, Section 10.3, pp. 379-383].)

4. Applications of Zorn's Lemma

(a) Zorn's Lemma in the proof that any vector space has a basis (See e.g. [1, Section 14.2].)
(b) Zorn's Lemma in the Hahn-Banach Theorem for linear functionals or in the proof of the existence of maximal ideals (See e.g. [1, Section 14, pp. 235-247].)
(c) Tukey's Lemma: an equivalent version of Zorn's Lemma (See e.g. [1, p. 245].)
5. Applications of Jordan forms
(a) Jordan form of a nilpotent matrix (See e.g. [8, Section 4.2], [3, Section 6.5], [2, Section 57].)
(b) Applications of Jordan forms to systems of linear ordinary differential equations (See e.g. [6, pp. 39-50].)
6. Linear algebraic problems in mathematical physics

Topics connecting linear algebra and mathematical physics can be found for example in [7]. In particular, three mathematical problems appearing in quantum mechanical models are sketched in [7, Volume I, Chapter VIII, Section 11] and deal with:
(a) self-adjoint extensions of symmetric operators
(See e.g. [7, Volume II, Chapter X, Section 1].)
(b) spectral analysis
(See e.g. [7, Volume IV, Chapter XIII].)
(c) scattering theory
(See e.g. [7, Volume III, Chapter XI].)
7. Further references

More interesting topics can be found in [2, [5], [3, Chapter VI].

References

[1] M. Carl, Wie kommt man darauf?, Springer Spektrum, Wiesbaden, 2017.
[2] P. R. Halmos, Finite-dimensional vector spaces. Reprinting of the 1958 second edition. Undergraduate Texts in Mathematics. Springer, New York, 1974.
[3] I. N. Herstein, Topics in Algebra (2nd ed.), John Wiley \& Sons, 1975.
[4] K. Hoffman, R. Kunze, Linear Algebra, Prentice-Hall, Englewood Cliffs, N.J., 1971.
[5] F. Lorenz, Lineare Algebra, vol. I and II, Spektrum Akademischer Verlag, 2008.
[6] L. Perko, Differential equations and dynamical systems (3rd ed.), Texts in Applied Mathematics 7, Springer, New York, 2001.
[7] M. Reed, B. Simon, Functional analysis (2nd ed.), Methods of modern mathematical physics 1, Academic Press, San Diego, 1980.
[8] H. Shapiro, Linear Algebra and Matrices: Topics for a Second Course, American Mathematical Society, Providence, R.I., 2015.

