Universität Konstanz Fachbereich Mathematik und Statistik O. Schnürer, M. Franzen, W. Maurer, M. Sani Sommersemester 2015

Übungen zur Vorlesung Analysis II

Blatt 3

Abgabe: Bis 7. Mai 2015, 9:55 Uhr, in die Briefkästen neben F 411. Bitte verwenden Sie für jede Aufgabe ein eigenes Blatt und schreiben Sie Ihren Namen und Ihre Übungsgruppe auf jedes Blatt.

Webseite: http://www.math.uni-konstanz.de/diffgeom/analysis2-15.html

Aufgabe 3.1 Kettenregel, Extremwertaufgabe

 $(1+3 \ Punkte)$

(a) Sei $g: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion, die nirgends den Wert 0 annimmt. Zeigen Sie mithilfe der Kettenregel, dass

$$\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{g(x)^2}$$

gilt.

(b) Sei $f:(0,\infty)\to\mathbb{R}$ differenzierbar, $f(x)\geq 0$ für alle x>0 und

$$\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f(x) = 0.$$

Schließlich gebe es eine einzige Stelle $x_0 \in (0, \infty)$ mit $f'(x_0) = 0$.

Zeigen Sie: Dann ist x_0 die einzige globale Extremalstelle von f in $(0, \infty)$ und zwar ist $f(x_0) > f(x)$ für alle $0 < x < \infty, x \neq x_0$.

Aufgabe 3.2 Konvexität

 $(2+2 \ Punkte)$

Sei $D \subset \mathbb{R}$ ein (endliches oder unendliches) Intervall. Eine Funktion $f: D \to \mathbb{R}$ heißt konvex, wenn für alle $x_1, x_2 \in D$ und alle λ mit $0 < \lambda < 1$

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

gilt. Die Funktion heißt konkav, wenn -f konvex ist.

Sei $D \subset \mathbb{R}$ ein offenes Intervall und $f:D \to \mathbb{R}$ eine zweimal differenzierbare Funktion.

Zeigen Sie: f ist genau dann konvex, wenn $f''(x) \geq 0$ für alle $x \in D$. (Hinweis zur Rückrichtung: Zeige zunächst mit dem MWS, dass $\frac{f(x)-f(x_1)}{x-x_1} = f'(\xi_1) \leq f'(\xi_2) = \frac{f(x_2)-f(x)}{x_2-x}$ gilt, und anschließend, dass $\frac{f(x)-f(x_1)}{1-\lambda} \leq \frac{f(x_2)-f(x)}{\lambda}$ gilt. Hierbei seien $x_1, x_2 \in D$, $0 < \lambda < 1$ und $x := \lambda x_1 + (1-\lambda)x_2$.)

Aufgabe 3.3 Funktionenfolgen

(2+2 Punkte)

(a) Definiere die Folge von Funktionen (f_n) durch $f_n: \mathbb{R}_{>0} \to \mathbb{R}$,

$$f_n(x) := \begin{cases} x^n & \text{für } 0 \le x \le 1, \\ 1 & \text{für } x > 1. \end{cases}$$

Zeigen Sie: Dann gibt es keine Funktion $f : \mathbb{R} \to \mathbb{R}$, so dass (f_n) gleichmäßig gegen f konvergiert.

(b) Definiere die Folge von Funktionen (f_n) durch $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) := \frac{1}{n} \sin(n^2 x).$$

Zeigen Sie:

- (i) (f_n) konvergiert gleichmäßig gegen 0.
- (ii) Es gibt keine Funktion $g: \mathbb{R} \to \mathbb{R}$, so dass (f'_n) gegen g konvergiert. Hinweis: Sie dürfen verwenden, dass $\sin(\mathbb{R}) = [-1, 1]$ und $\sin'(x) = \cos(x)$.

Aufgabe 3.4 Normtreue Vektorraum-Isomorphismen $(2+1+1 \ Punkte)$ Seien E, F normierte \mathbb{R} -Vektorräume.

Zeigen Sie:

(a) Die Abbildung

$$\Psi: L(\mathbb{R}, F) \to F, \quad A \mapsto A(1)$$

ist ein normtreuer Vektorraum-Isomorphismus. Normtreu bedeutet, dass

$$||A(1)||_F = ||A||_{L(\mathbb{R},F)}$$

für alle $A \in L(\mathbb{R}, F)$ gilt.

(b) Die Abbildung

$$\Phi: L(E, L(E, F)) \to L_2(E, F),$$

$$A = (x \mapsto (y \mapsto A(x)(y))) \mapsto \Phi(A) = ((x, y) \mapsto A(x)(y))$$

ist ein Vektorraum-Isomorphismus. Hierbei ist $L_2(E,F)$ der Raum der stetigen bilinearen Abbildungen.

(c) Die Abbildung Φ ist normtreu.

Aufgabe 3.5 Freiwillige Zusatzaufgabe

 $(1+1+1+1 \ Punkte)$

Bestimmen Sie mithilfe der Regeln von de l'Hospital die folgenden Grenzwerte:

- (a) $\lim_{x \to 1^{-}} \frac{\frac{\pi}{2} \arcsin(x)}{(1-x)^{1/2}}$
- (b) $\lim_{x \to \infty} \frac{\ln(x^m + 1)}{\ln x^n} \quad m, n \in \mathbb{N},$ (c) $\lim_{x \to 1} \sin(\pi x) \ln|1 x|,$
- (d) $\lim_{x\to 0} \left(\frac{1}{\sin(x)} \frac{1}{x}\right)$.

Hinweis: Sie dürfen verwenden, dass $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}, \log'(x) = \frac{1}{x}, \cos'(x) = \frac{1}{x}$ $-\sin(x), \sin'(x) = \cos(x).$