Universität Konstanz Fachbereich Mathematik und Statistik O. Schnürer, M. Franzen, W. Maurer, M. Sani Sommersemester 2015

Übungen zur Vorlesung Analysis II

Blatt 4

Abgabe: Bis **Mittwoch, 13. Mai** 2015, 9:55 Uhr, in die Briefkästen neben F 411. Bitte verwenden Sie für jede Aufgabe ein eigenes Blatt und schreiben Sie Ihren Namen und Ihre Übungsgruppe auf jedes Blatt.

Webseite: http://www.math.uni-konstanz.de/diffgeom/analysis2-15.html

Aufgabe 4.1 Vektorwertiger Mittelwertsatz, Regeln von de l'Hospital $(2+2 \ Punkte)$

(a) Zeigen Sie, dass es eine Funktion $f:\mathbb{R}\to\mathbb{R}^2$ und Punkte $a< b\in\mathbb{R}$ gibt, so dass

$$f(a) - f(b) = f'(t)(a - b)$$
 für kein $t \in (a, b)$

gilt. Hierbei dürfen Sie keine Funktionen verwenden, deren Komponenten $\sin(x)$ oder $\cos(x)$ enthalten.

(b) Seien $f(x) := \sin(x) + 2x$ und $g(x) := \cos(x) + 2x$. Berechnen Sie den Grenzwert

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}.$$

Warum ist die Regel von de l'Hospital in der Form $\frac{\infty}{\infty}$ hier nicht anwendbar?

Aufgabe 4.2 Potenzreihen in \mathbb{C}

4 Punkte

Zeigen Sie: Sei $((a_n x^n))_{n \in \mathbb{N}}$ eine Potenzreihe in \mathbb{C} mit Konvergenzradius r > 0. Dann ist die Funktion

$$f: B_r(0) \to \mathbb{C},$$

$$f(x) := \sum_{n=0}^{\infty} a_n x^n$$

in $B_r(0)$ stetig differenzierbar und es gilt für $x \in B_r(0)$

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Aufgabe 4.3 Potenzreihen in \mathbb{R}

(4 Punkte)

(a) Ist die reelle Potenzreihe $\sum_{k=0}^{\infty} a_k x^k$ für $x=x_1\neq 0$ konvergent, so konvergiert sie im Bereich

$${x : |x| < r := |x_1|}$$

kompakt und absolut. Insbesondere ist also der Konvergenzradius $\rho \geq |x_1|$.

(b) Sei $\sum_{k=0}^{\infty} a_k x^k$ eine in ganz \mathbb{R} konvergente Potenzreihe mit $a_k \neq 0$ für unendlich viele $k \in \mathbb{N}$. Dann konvergiert diese Reihe in $(0, \infty)$ nicht gleichmäßig.

(a) Sei $A \in L(\mathbb{R}^n)$ und $x_0 \in \mathbb{R}^n$. Zeigen Sie, dass dann das Anfangswertproblem

$$\begin{cases} \dot{x} = Ax, \\ x(0) = x_0, \end{cases}$$

die folgende Lösung besitzt:

$$x(t) = e^{tA}x_0,$$

wobei wir e^{tA} durch

$$e^{tA} = \sum_{n=0}^{\infty} \frac{t^n A^n}{n!}$$

definieren.

Zeigen Sie außerdem, dass die Reihe und ihre gliedweise Ableitung in $L(\mathbb{R}^n)$ gleichmäßig absolut konvergieren, wenn t sich in kompakten Teilmengen von \mathbb{R} bewegt.

(b) Berechnen Sie e^{tA} für

$$A = \frac{1}{2} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$

und lösen Sie das Anfangswertproblem

$$\begin{cases} \dot{u} &= \frac{3}{2}u - \frac{1}{2}v, \\ \dot{v} &= -\frac{1}{2}u + \frac{3}{2}v, \end{cases}$$

mit Anfangswerten $(u(0), v(0)) = (u_0, v_0)$.

Hinweis: Diagonalisieren Sie A unter Benutzung von Eigenvektoren v_1, v_2 mit $\langle v_1, v_2 \rangle = 0$ und $\|v_1\| = \|v_2\| = 1$.