Universität Konstanz Fachbereich Mathematik und Statistik O. Schnürer, W. Maurer, M. Sani Wintersemester 2015/16

Übungen zur Vorlesung Analysis III

Blatt 5

Abgabe: Bis Donnerstag 26. November 2015, 9:55 Uhr, in die Briefkästen neben F 411. Bitte verwenden Sie für jede Aufgabe ein eigenes Blatt und schreiben Sie Ihren Namen und Ihre Übungsgruppe auf jedes Blatt.

Webseite: http://www.math.uni-konstanz.de/diffgeom/analysis3-1516.html

Aufgabe 5.1 (8+1 Punkte)

Sei $x_0 \in \mathbb{R}^n$. Sei $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ stetig und beschränkt. Sei $f_i : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $i \in \mathbb{N}$, lokal Lipschitzstetig mit $f_i \rightrightarrows f$ auf jeder kompakten Menge $K \subset \mathbb{R} \times \mathbb{R}^n$. Definiere $\alpha_i : \mathbb{R} \to \mathbb{R}^n$ als Lösung des Anfangswertproblems

$$\begin{cases} \dot{\alpha}_i(t) = f_i(t, \alpha_i(t)), \\ \alpha_i(0) = x_0. \end{cases}$$

Zeigen Sie:

(i) Eine solche Folge $(f_i)_{i\in\mathbb{N}}$ existiert im Falle n=1.

Hinweis: Unterteilen Sie jedes der Quadrate

$$\frac{1}{i} \left\{ (t, x) \in \mathbb{R} \times \mathbb{R} : a \le t \le a + 1, b \le x \le b + 1 \right\},\,$$

 $a, b \in \mathbb{Z}$, in zwei Dreiecke und definieren Sie f_i , so dass f_i und f in den Eckpunkten der Dreiecke übereinstimmen und f_i , eingeschränkt auf jedes der Dreiecke, affin linear ist.

Bemerkung: Im Falle $n \geq 2$ fordern wir die Existenz der Folge $(f_i)_{i \in \mathbb{N}}$ ohne Beweis.

Zeigen Sie:

- (ii) α_i kann auf ganz \mathbb{R} definiert werden.
- (iii) Die Folge $(\alpha_i)_{i \in \mathbb{N}}$ besitzt eine Teilfolge, ohne Einschränkung $(\alpha_i)_{i \in \mathbb{N}}$, mit $\alpha_i \rightrightarrows \alpha$ auf jedem Intervall der Form [-R, R], R > 0, für ein $\alpha \in C^0(\mathbb{R}, \mathbb{R}^n)$.

Hinweis: Betrachten Sie eine Diagonalfolge.

(iv) Es gilt $\alpha \in C^1(\mathbb{R},\mathbb{R}^n)$ und α löst das Anfangswertproblem

$$\begin{cases} \dot{\alpha}(t) = f(t, \alpha(t)), & t \in \mathbb{R}, \\ \alpha(0) = x_0. \end{cases}$$

 ${\it Hinweis:}$ Benutzen Sie die lokal gleichmäßige Stetigkeit von f.

Bemerkung: Für die folgende Variante können Sie bereits 8 Punkte erhalten: f erfüllt zusätzlich die folgende Periodizitätsbedingung: Es gibt ein $L \in \mathbb{N}_{>0}$, so dass

$$f(t,x) = f(t + L\tau, x + Ly)$$

für alle $\tau \in \mathbb{Z}$ und alle $y \in \mathbb{Z}^n$ gilt. Dann konvergiert $f_i \rightrightarrows f$ auf ganz $\mathbb{R} \times \mathbb{R}^n$.

Aufgabe 5.2 (4 Punkte)

Sei $u \in C^1(\mathbb{R}^n, \mathbb{R})$. Wir definieren $M := u^{-1}(\{0\}) = \{x \in \mathbb{R}^n : u(x) = 0\}$. Für $x \in M$ gelte $\nabla u(x) \neq 0$. Sei $V \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ mit $\langle V(x), \nabla u(x) \rangle = 0$ für alle $x \in M$. Seien $\varepsilon > 0$ und $I = (-\varepsilon, \varepsilon)$. Zeigen Sie, dass jede Lösung $\alpha \in C^1(I, \mathbb{R}^n)$ der Differentialgleichung $\dot{\alpha}(t) = V(\alpha(t))$ mit $\alpha(0) = x_0 \in M$ auch $\alpha(t) \in M$ für alle $t \in I$ erfüllt.

Hinweis: Betrachten Sie zunächst $x\mapsto \tilde{V}(x):=V(x)-\left\langle V(x),\frac{\nabla u(x)}{|\nabla u(x)|^2}\right\rangle \nabla u(x)$ in einer Umgebung von M. Zeigen Sie, dass in dieser Umgebung $\langle \tilde{V}(x),\nabla u(x)\rangle=0$ gilt.

Bestimmen Sie die Lösung von

$$\begin{cases} \frac{dy}{dx}(x) = x(y(x)^2 - 1), \\ y(0) = 2. \end{cases}$$

und ihr maximales Existenzintervall.

Hinweis: Separation der Variablen, siehe Abschnitt 8.6 im Skript.