Exercises for
 Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 11

Deadline: Thursday, 02/02, 3:30pm

Exercise 10.1 (Matlab)
(10 points)
Please follow the programming guidelines that can be download under the above url.
Using Matlab PDE Toolbox, solve the following Parabolic Problem:

$$
\left\{\begin{array}{l}
y_{t}(t, x)-\Delta y(t, x)=f(x) \text { for all } x \in \Omega \tag{1}\\
\eta \frac{\partial y(t, x)}{\partial n}+\alpha y(t, x)=0 \quad \text { for all } x \in \partial \Omega \\
y(0, x)=y_{0}(x)
\end{array}\right.
$$

which depends on $\alpha, \eta \in \mathbb{R}, \eta \neq 0$, and where $t \in[0,1], f: \Omega \rightarrow \mathbb{R}$ is a continous function and $\Omega \subset \mathbb{R}^{2}$ is given by the interior of the blue line, that depends on the parameter $a>0$ in \mathbb{R} as shown in figure:

As in the previous Sheet, declare a as global parameter in your main script and make it available in each function. In order to solve the problem follow these steps:

1. Geometry Implementation: Write a function geometryFunction.m to describe the geometry of Ω by using a suitable analytical boundary representation. Especially focus on the various way that this function will be called by the PDE toolbox ($0,1,2$ inputs, bs scalar or a vector,...) Then use the command pdegplot('geometryFunction') to test your results.

The following two points should be solved in a script.
 Do not use point-and-click for these!

2. PDE specification: Specify the PDE coefficients in (1) and generate a mesh with maximum element size 0.05 . Visualize the mesh.
3. PDE solving: Solve the problem for different choices of the parameters η and α^{1} and for the following choices of $f(x)$ and $y_{0}(x)$:
(a) $f(x)=0, y_{0}(x)=x_{1}+x_{2}$ with $x=\left(x_{1}, x_{2}\right) \in \Omega$;
(b) $f(x)=a, y_{0}(x)=x_{1}+x_{2}$;
(c) $f(x)=\frac{1}{4} a^{2}-\left(x_{1}-\frac{1}{2} a\right)^{2}-\left(x_{2}-\frac{1}{2} a\right)^{2}, y_{0}(x)=a$;

In particular, try the choice $(\eta, \alpha)=\left(1,10^{7}\right)$, which kind of boundary condition does it imitate? Write a function solve_parabolic_problem, which solves the problem by assembling the Finite Element matrices with the command assembleFEMatrices and use implicit Euler ${ }^{2}$ scheme in time to get the solution ${ }^{3}$ $y\left(t_{s}, \cdot\right)$ at every time step $t_{s} .{ }^{4}$ The function should also plot the time evolution of the solution $y(t, x)$ with $t \in[0,1]$ and $x \in \Omega$.

Write a thorough report documenting how the variation of η, α and N_{t}, the number of time steps used for the time discretization, affects the solution.

Exercise 10.2 (Theory)

(10 points)
Let $T>0$ be a final time and V, H Hilbert spaces such that $V \hookrightarrow H=H^{\prime} \hookrightarrow V^{\prime}$ is a Gelfand triple ${ }^{5}$. Let further $A \in L\left(V, V^{\prime}\right)$ and $f \in L^{\infty}\left(0, T, V^{\prime}\right)$ as well as $y_{0} \in H$. If A is coercive, meaning that there are $\alpha>0$, $\beta \geq 0$ with

$$
\langle A \varphi, \varphi\rangle_{V^{\prime} \times V} \geq \alpha\|\varphi\|_{V}^{2}-\beta\|\varphi\|_{H}^{2} \quad \forall \varphi \in V
$$

then the following is known as an abstract parabolic evolution equation:

$$
\begin{align*}
y_{t}(t)+A y(t) & =f(t) & & \text { in } V^{\prime} \text { for almost all } t \in(0, T) \tag{PB}\\
y(0) & =y_{0} & & \text { in } H
\end{align*}
$$

It can be shown that a unique solution of (PB) exists with

$$
y \in W(0, T):=L^{2}(0, T ; V) \cap H^{1}\left(0, T ; V^{\prime}\right) \hookrightarrow C([0, T] ; H)
$$

where the last embedding is a well-known property of the space $W(0, T)$. Your task is to prove the following Theorem which estimates the energy of the solution y against the energy of the initial data f and y_{0} :

Theorem 1. For all solutions $y \in W(0, T)$ of (PB), it holds

$$
\|y(T)\|_{H}^{2}+\alpha\|y\|_{L^{2}(0, T ; V)}^{2} \leq e^{2 \beta T}\left(\left\|y_{0}\right\|_{H}^{2}+\frac{1}{\alpha}\|f\|_{L^{2}\left(0, T ; V^{\prime}\right)}^{2}\right)
$$

Do this by the following steps:

1. Derive an estimate (1) for the term $\|y(t)\|_{H}^{2}$. In order to do this, you may use the fact that $\left\langle y_{t}(t), y(t)\right\rangle_{V^{\prime} \times V}=$ $\frac{1}{2} \frac{d}{d t}\|y(t)\|_{H}^{2}$. Young's inequality is also helpful.
2. Use Gronwall's Lemma ${ }^{6}$ to derive from 1. an estimate (2) for the term $\|y(t)\|_{H}^{2}$.
3. Integrate your original estimate (1) over $(0, T)$ and use your estimate (2) to derive (PB).
[^0]
[^0]: ${ }^{1}$ Matlab let you set only the α coefficient in a simple way, so we suggest to divide the boundary equation by η to obtain the new equation $\frac{\partial y(t, x)}{\partial n}+\frac{\alpha}{\eta} y(t, x)=0$. Notice, also, that as in the previous sheet for some combination of parameter, the solution is really 'ugly'.
 ${ }^{2}$ Note well: this scheme is stable for every choice of time discretization.
 ${ }^{3}$ Use the \backslash command to solve the linear systems.
 ${ }^{4}$ There are several ways to solve (1) in Matlab, but, in order to let you learn something, we recommend this procedure. For assembleFEMatrices look at this link: https://de.mathworks.com/help/pde/ug/assemblefematrices.html
 ${ }^{5}$ This means that V is densely embedded in H and H^{\prime} is densely embedded in $V^{\prime} . H$ is identified with H^{\prime} by the Riesz isomorphism.
 ${ }^{6}$ See https://www.math.uni-bielefeld.de/~rkruse/files/gronwall.pdf

