Exercises for

Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/beermann/en/teaching

Sheet 11

Deadline: Thursday, 02/02, 3:30pm

Exercise 10.1 (Matlab)

(10 points)

Please follow the programming guidelines that can be download under the above url.

Using Matlab *PDE Toolbox*, solve the following Parabolic Problem:

$$\begin{cases} y_t(t,x) - \Delta y(t,x) = f(x) \text{ for all } x \in \Omega \\ \eta \frac{\partial y(t,x)}{\partial n} + \alpha y(t,x) = 0 \text{ for all } x \in \partial \Omega \\ y(0,x) = y_0(x) \end{cases}$$
 (1)

which depends on $\alpha, \eta \in \mathbb{R}$, $\eta \neq 0$, and where $t \in [0, 1]$, $f : \Omega \to \mathbb{R}$ is a continous function and $\Omega \subset \mathbb{R}^2$ is given by the interior of the blue line, that depends on the parameter a > 0 in \mathbb{R} as shown in figure:

As in the previous Sheet, declare a as global parameter in your main script and make it available in each function. In order to solve the problem follow these steps:

1. Geometry Implementation: Write a function geometryFunction.m to describe the geometry of Ω by using a suitable analytical boundary representation. Especially focus on the various way that this function will be called by the PDE toolbox (0,1,2 inputs, bs scalar or a vector,...) Then use the command pdegplot('geometryFunction') to test your results.

The following two points should be solved in a script.

Do not use point-and-click for these!

2. **PDE specification:** Specify the PDE coefficients in (1) and generate a mesh with maximum element size 0.05. Visualize the mesh.

- 3. **PDE solving:** Solve the problem for different choices of the parameters η and α^1 and for the following choices of f(x) and $y_0(x)$:
 - (a) f(x) = 0, $y_0(x) = x_1 + x_2$ with $x = (x_1, x_2) \in \Omega$;
 - (b) f(x) = a, $y_0(x) = x_1 + x_2$;

(c)
$$f(x) = \frac{1}{4}a^2 - (x_1 - \frac{1}{2}a)^2 - (x_2 - \frac{1}{2}a)^2$$
, $y_0(x) = a$;

In particular, try the choice $(\eta, \alpha) = (1, 10^7)$, which kind of boundary condition does it imitate? Write a function solve_parabolic_problem, which solves the problem by assembling the Finite Element matrices with the command assembleFEMatrices and use *implicit Euler*² scheme in time to get the solution³ $y(t_s, \cdot)$ at every time step t_s .⁴ The function should also plot the time evolution of the solution y(t, x) with $t \in [0, 1]$ and $x \in \Omega$.

Write a thorough report documenting how the variation of η , α and N_t , the number of time steps used for the time discretization, affects the solution.

Exercise 10.2 (Theory) (10 points)

Let T > 0 be a final time and V, H Hilbert spaces such that $V \hookrightarrow H = H' \hookrightarrow V'$ is a Gelfand triple⁵. Let further $A \in L(V, V')$ and $f \in L^{\infty}(0, T, V')$ as well as $y_0 \in H$. If A is coercive, meaning that there are $\alpha > 0$, $\beta \geq 0$ with

$$\langle A\varphi, \varphi \rangle_{V' \times V} \ge \alpha \|\varphi\|_V^2 - \beta \|\varphi\|_H^2 \quad \forall \varphi \in V$$

then the following is known as an abstract parabolic evolution equation:

$$y_t(t) + Ay(t) = f(t)$$
 in V' for almost all $t \in (0, T)$
 $y(0) = y_0$ in H (PB)

It can be shown that a unique solution of (PB) exists with

$$y \in W(0,T) := L^2(0,T;V) \cap H^1(0,T;V') \hookrightarrow C([0,T];H)$$

where the last embedding is a well-known property of the space W(0,T). Your task is to prove the following Theorem which estimates the energy of the solution y against the energy of the initial data f and y_0 :

Theorem 1. For all solutions $y \in W(0,T)$ of (PB), it holds

$$||y(T)||_H^2 + \alpha ||y||_{L^2(0,T;V)}^2 \le e^{2\beta T} \left(||y_0||_H^2 + \frac{1}{\alpha} ||f||_{L^2(0,T;V')}^2 \right)$$

Do this by the following steps:

- 1. Derive an estimate (1) for the term $||y(t)||_H^2$. In order to do this, you may use the fact that $\langle y_t(t), y(t) \rangle_{V' \times V} = \frac{1}{2} \frac{d}{dt} ||y(t)||_H^2$. Young's inequality is also helpful.
- 2. Use Gronwall's Lemma⁶ to derive from 1. an estimate (2) for the term $||y(t)||_H^2$.
- 3. Integrate your original estimate (1) over (0,T) and use your estimate (2) to derive (PB).

¹Matlab let you set only the α coefficient in a simple way, so we suggest to divide the boundary equation by η to obtain the new equation $\frac{\partial y(t,x)}{\partial n} + \frac{\alpha}{\eta}y(t,x) = 0$. Notice, also, that as in the previous sheet for some combination of parameter, the solution is really 'ugly'.

²Note well: this scheme is stable for every choice of time discretization.

 $^{^3\}overline{\text{Use the}}\setminus \text{command to solve the linear systems.}$

⁴There are several ways to solve (1) in MATLAB, but, in order to let you learn something, we <u>recommend</u> this procedure. For assembleFEMatrices look at this link: https://de.mathworks.com/help/pde/ug/assemblefematrices.html

⁵This means that V is densely embedded in H and H' is densely embedded in V'. H is identified with H' by the Riesz isomorphism.

 $^{^6\}mathrm{See}$ https://www.math.uni-bielefeld.de/~rkruse/files/gronwall.pdf