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Exercise 8.1 (Matlab) (8 points)

Assorted files: main81.m and plot grid.m

Please follow the programming guidelines that can be downloaded under the above url.

In this exercise, you are supposed to refine the function compute fd grid from Exercise 7.1 to include some
indexing which will become important in later programs. This means that your function should after this
exercise return some lists in addition to the ones it has computed in Exercise 7.1. In order to illustrate the
procedure in detail, consider the following simple grid as an example:

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3

12 13

9 10 11

6 7 8

3 4 5

1 2

Table 1: Example grid with rectangle point indices (left) and domain point indices (right). This example is
constructed in the main81.m file by the name grid0

1. After the computation of X1, X2 and p for the rectangle [x1, x1]× [x2, x2] in Exercise 7.1, create two lists
listX2P and listP2X mapping the indices of the rectangle grid points between the X1&X2-indexing and
the p-indexing. For the example grid above, this would look like this:

listX2P =

 1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

 listP2X =

[
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

]
2. Using the above list, create a list neighbours such that neighbours(:,i) contains the rectangle indices

of the neighbours of the i-th rectangle point in the order west, east, north and south. If the neighbour
does not exist, fill in 0. In the above example, this would yield

neighbours =


0 1 2 0 4 5 0 7 8 0 10 11 0 13 14
2 3 0 5 6 0 8 9 0 11 12 0 14 15 0
4 5 6 7 8 9 10 11 12 13 14 15 0 0 0
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12


3. During the elimination phase (part 2.) of Exercise 7.1, transform the above neighbour list to accomodate

the now-changed indexing (compare black rectangle point indexing and blue domain indexing in Table 1).
In the above example, this should result in

neighbours =


0 0 0 3 4 0 6 7 0 9 10 0 0
0 0 4 5 0 7 8 0 10 11 0 0 0
3 5 6 7 8 9 10 11 12 0 13 0 0
0 0 1 0 2 3 4 5 6 7 8 9 11
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Also update the lists listX2P and listP2X in the process accordingly.

4. Identify the boundary points in the grid. A boundary point is defined as a point that does not have all
four neighbours. Store the information again in two lists listB2P and listP2B which would take the
following form in the above example:

listB2P =
[
1 2 3 4 5 6 8 9 10 11 12 13

]
, listP2B =

[
1 1 1 1 1 1 0 1 1 1 1 1 1

]
After this exercise, your function compute fd grid should add the following fields to the output variable grid:
listX2P, listP2X, neighbours, listP2B and listB2P. Test your function by calling the script main81.m.

Exercise 8.2 (Theory) (6 points)
Let [x, x] ⊂ R be an interval which is dicretized in an equidistant manner, i.e. we have a grid

[x, x]h = [x, x] ∩ hZ = {x0, x1, ..., xN−1, xN+1} xi = x + ih (i = 0, ..., N + 1), x = xN+1

where h > 0 is a step size and N ∈ N. Let us define the Banach spaces

X :=
{
f : [x, x]→ R, f is continuous

}
= C0([x, x]) ‖f‖X := max

x∈[x,x]
|f(x)|

Xh :=
{
fh : [x, x]h → R

}
‖fh‖Xh

:= max
i=0,...,N+1

|fh(xi)|

For a function fh ∈ Xh, we define ‖fh‖h := max
i=1,...,N

|fh(xi)|

1. Prove that ‖·‖h : Xh → R is a seminorm on Xh.

2. We define the canonical embedding

Dh : X → Xh, (Dhf)(xi) := f(xi) (i = 0, ..., N + 1)

Show that Dh ∈ L(X,Xh) with ‖Dh‖L(X,Xh) = 1

3. Computing the derivative of a function f ∈ C1([x, x]) can be thought of as applying an operator

Λ : C1([x, x])→ C([x, x]), (Λf)(x) := f ′(x) for all x ∈ [x, x]

You have already heard of methods for numerical derivatives which we can formulate in a similar way.
Take for example the Forward Euler method :

Λ+
h : Xh → Xh, (Λ+

h fh)(xi) =
1

h
(fh(xi+1)− fh(xi)) , i = 0, ..., N, (Λ+

h fh)(xN+1) = 0

We are now interested in computing the consistency error of this approximation. Prove that it holds

‖DhΛf − Λ+
hDhf‖h ≤ Cfh for all f ∈ C2([x, x]) (1)

with a constant Cf > 0 depending on f .1.

4. At last, we consider second derivatives as described by the operator

∆ : C2([x, x])→ C([x, x]), (∆f)(x) := f ′′(x) for all x ∈ [x, x]

The standard numerical approximation of this is called the Discrete Laplacian

∆h : Xh → Xh, (∆hfh)(xi) =

{
1
h2 (f(xi−1)− 2f(xi) + f(xi+1)) , (i = 1, ..., N)

0, (i = 0, N + 1)

Prove that the consistency error of this approximation is of quadratic order:

‖Dh∆f −∆hDhf‖h ≤ Cfh
2 for all f ∈ C4([x, x]) (2)

with a constant Cf > 0 depending on f .

1Another way to write this would to use the Landau symbol: ‖DhΛf − Λ+
h Dhf‖h = O(h), implying linear convergence as

h → 0. One can also show that the implicit Euler method is likewise linear and the central difference scheme (Λc
hfh)(xi) =

1
2h

(fh(xi+1)− fh(xi−1)) is of quadratic convergence for three times differentiable functions.

2



Exercise 8.3 (Theory) (6 points)
We consider a one-dimensional stationary advection-diffusion-reaction equation:

− u′′(x)︸ ︷︷ ︸
Diffusion

+ b(x)u′(x)︸ ︷︷ ︸
Advection

+ c(x)u(x)︸ ︷︷ ︸
Reaction

= f(x)︸︷︷︸
Source term

for all x ∈ (0, 1)

u(0) = u(1) = 0

(3)

u describes the steady state of a substance contained in a flowing medium. The diffusion term describes the local
spreading of the substance, the advection term represents the transport from the medium flow, the reaction term
accounts for the reaction between substance and medium, leading to an increase or a decrease of the substance
and the source term allows for external injection or extraction of the substance.

1. Discretize (3) by introducing an equidistant grid as described in Exercise 8.2. Use the Discrete Laplacian
for the diffusion term and the central difference scheme for the advection term. Write the grid function
uh ∈ Xh as 

uh(x0)
uh(x1)

...
uh(xN )

uh(xN+1)

 =


0
y1

...
yN
0


and write the discretized version of (3) as a linear problem Ay = r.

2. A matrix B = (Bij)i,j=1,...,N ∈ RN×N is called strictly diagonally dominant if |Bii| >
N∑
i=1
i 6=j

|Bij |. It can be

shown that a strictly diagonally dominant matrix is always regular. When is the matrix A from above
strictly diagonally dominant and thus the discretization performed in 1. well-defined?

3. In 2., you should have realized that the advection coefficient b in (3) may cause problems for the discretiza-
tion. Now, repeat 1. by using - instead of the central difference scheme - a so-called streamline-upwind
difference scheme for the discretization of the advection part:

ΛSU
h : Xh → Xh, (ΛSU

h uh)(xi) =

{ 1
h (u(xi+1)− u(xi)) , i = 1, ..., N, if b(xi) < 0
1
h (u(xi)− u(xi−1)) , i = 1, ..., N, if b(xi) ≥ 0

0, i = 0, N + 1

4. If we denote the problem resulting from 3. by ASUy = rSU , check again for diagonal dominance as in 2.
What do you observe?
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