Universität Konstanz

Mathematik I

für Chemie, Life Science und Nanoscience

Vorlesung 21: Taylor-Entwicklung

Dr. Stefan Frei, 06.02.20

Taylorpolynome

Ziel: Lokale Approximation von Funktionen durch Polynome

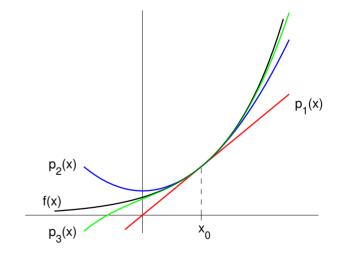
• Taylorpolynom 1. Ordnung um x_0 (Tangente an x_0)

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

Taylorpolynom 2. Ordnung um x₀

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

Taylor-Polynome zur Exponentialfunktion



Taylorpolynome

Ziel: Lokale Approximation von Funktionen durch Polynome

• Taylorpolynom 1. Ordnung um x_0 (Tangente an x_0)

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

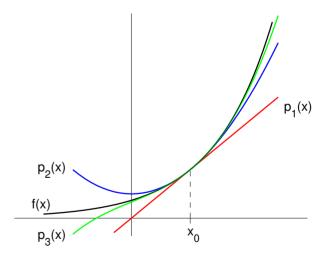
Taylorpolynom 2. Ordnung um x₀

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

• Taylorpolynom n-ter Ordnung um x_0

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

Taylor-Polynome zur Exponentialfunktion



Taylorpolynome

Ziel: Lokale Approximation von Funktionen durch Polynome

Taylorpolynom 1. Ordnung um x_0 (Tangente an x_0)

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

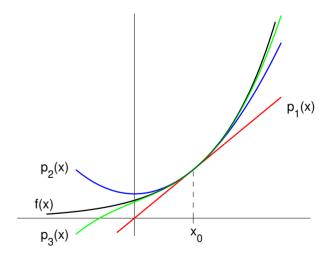
Taylorpolynom 2. Ordnung um x_0

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$$

Taylorpolynom n-ter Ordnung um x_0

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

Taylor-Polynome zur Exponentialfunktion



Anwendung: Ableitungen und Funktionswerte von f in x_0 bekannt, aber nicht für $x \neq x_0$

Taylorreihe

Taylorpolynom n-ter Ordnung um x₀

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

• Konvergiert der Wert $p_n(x)$ für $n \to \infty$, dann können wir die (unendliche) Taylorreihe definieren

Taylorreihe

Taylorpolynom n-ter Ordnung um x_0

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

Konvergiert der Wert $p_n(x)$ für $n \to \infty$, dann können wir die (unendliche) Taylorreihe definieren

$$Tf_{x_0}(x) := \lim_{n \to \infty} p_n(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

Taylorreihe

• Taylorpolynom n-ter Ordnung um x_0

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

• Konvergiert der Wert $p_n(x)$ für $n \to \infty$, dann können wir die (unendliche) Taylorreihe definieren

$$Tf_{x_0}(x) := \lim_{n \to \infty} p_n(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

In der Regel gilt bei Konvergenz (bis auf Spezialfälle)

$$T f_{x_0}(x) = f(x)$$

d.h. die Taylorpolynome nähern sich f an und die (unendliche) Taylorreihe ist gleich f

Sei
$$f(x) = \exp(x)$$
. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 1: Taylorreihe zum Entwicklungspunkt $x_0 = 0$: Es gilt

$$f^{(k)}(0) = \exp(0) = 1$$

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 1: Taylorreihe zum Entwicklungspunkt $x_0 = 0$: Es gilt

$$f^{(k)}(0) = \exp(0) = 1$$
 $\Rightarrow Tf_0(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{1}{k!} x^k$

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 1: Taylorreihe zum Entwicklungspunkt $x_0 = 0$: Es gilt

$$f^{(k)}(0) = \exp(0) = 1$$
 $\Rightarrow Tf_0(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{1}{k!} x^k$

Diese Taylorreihe haben wir zur Definition von exp verwendet! Sie konvergiert für alle $x \in \mathbb{R}$ und stimmt mit $f(x) = \exp(x)$ überein

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 2: Taylorreihe zum Entwicklungspunkt $x_0 = 1$:

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 2: Taylorreihe zum Entwicklungspunkt $x_0 = 1$: Es gilt

$$f^{(k)}(1) = \exp(1) = e$$

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 2: Taylorreihe zum Entwicklungspunkt $x_0 = 1$: Es gilt

$$f^{(k)}(1) = \exp(1) = e$$
 $\Rightarrow Tf_1(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^{\infty} \frac{e}{k!} (x-1)^k$

Sei $f(x) = \exp(x)$. Es gilt für alle Ableitungen $k \in \mathbb{N}$

$$f^{(k)}(x_0) = \exp(x_0)$$

• Bsp. 2: Taylorreihe zum Entwicklungspunkt $x_0 = 1$: Es gilt

$$f^{(k)}(1) = \exp(1) = e$$
 $\Rightarrow Tf_1(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^{\infty} \frac{e}{k!} (x-1)^k$

Man kann zeigen, dass auch diese Reihe für alle $x \in \mathbb{R}$ konvergiert und mit f(x) übereinstimmt.

Konvergenz der Taylorreihe

Allgemein gilt: Die Taylorreihe

$$T f_{x_0}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

konvergiert für alle x, die genügend nahe an x_0 liegen

$$|x - x_0| < r$$

(für ein r) und divergiert für alle x, die weiter weg liegen

$$|x - x_0| > r$$
.

Konvergenz der Taylorreihe

Allgemein gilt: Die Taylorreihe

$$Tf_{x_0}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k} (x - x_0)^k$$

konvergiert für alle x, die genügend nahe an x_0 liegen

$$|x - x_0| < r$$

(für ein r) und divergiert für alle x, die weiter weg liegen

$$|x - x_0| > r$$
.

r heißt Konvergenzradius und kann berechnet werden durch

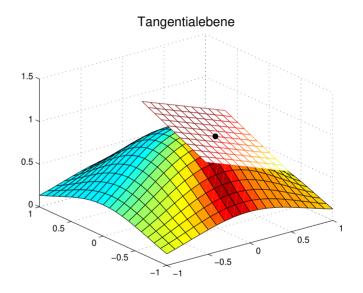
$$r = \lim_{k \to \infty} \left| \frac{f^{(k)}(x_0)}{f^{(k+1)}(x_0)} \right| = \lim_{k \to \infty} \left(\sqrt[k]{|f^{(k)}(x_0)|} \right)^{-1}$$

Taylorentwicklung im \mathbb{R}^2

Sei $f: \mathbb{R}^2 \to \mathbb{R}$.

• Taylorpolynom erster Ordnung um (x_0, y_0) (Tangentialebene in (x_0, y_0))

$$p_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

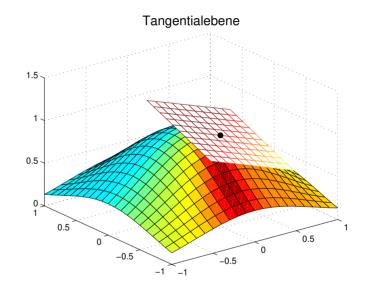


Taylorentwicklung im \mathbb{R}^2

Sei $f: \mathbb{R}^2 \to \mathbb{R}$.

Taylorpolynom erster Ordnung um
 (x₀, y₀) (Tangentialebene in (x₀, y₀))

$$p_1(x,y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$



Taylorpolynom zweiter Ordnung um (x₀, y₀)

$$p_2(x,y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0) + \frac{1}{2} \partial_{xx} f(x_0, y_0)(x - x_0)^2 + \partial_{xy} f(x_0, y_0)(x - x_0)(y - y_0) + \frac{1}{2} \partial_{yy} f(x_0, y_0)(y - y_0)^2$$

Sie $f(x, y) = \exp(x^2 + y)$.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$p_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

Sie
$$f(x, y) = \exp(x^2 + y)$$
.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$\rho_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0)
+ \partial_y f(x_0, y_0)(y - y_0)$$

Ableitungen

$$f(1,0) = \exp(1) = e$$

Sie
$$f(x, y) = \exp(x^2 + y)$$
.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$\rho_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0)
+ \partial_y f(x_0, y_0)(y - y_0)$$

Ableitungen

$$f(1,0) = \exp(1) = e$$

$$\partial_x f(x,y) = 2x \exp(x^2 + y) \qquad \Rightarrow \partial_x f(1,0) = 2 \exp(1) = 2e$$

Sie
$$f(x, y) = \exp(x^2 + y)$$
.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$p_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

Ableitungen

$$f(1,0) = \exp(1) = e$$

$$\partial_x f(x,y) = 2x \exp(x^2 + y) \qquad \Rightarrow \partial_x f(1,0) = 2 \exp(1) = 2e$$

$$\partial_y f(x,y) = \exp(x^2 + y) \qquad \Rightarrow \partial_y f(1,0) = \exp(1) = e.$$

Sie
$$f(x, y) = \exp(x^2 + y)$$
.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$p_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

Ableitungen

$$f(1,0) = \exp(1) = e$$

$$\partial_x f(x,y) = 2x \exp(x^2 + y) \qquad \Rightarrow \partial_x f(1,0) = 2 \exp(1) = 2e$$

$$\partial_y f(x,y) = \exp(x^2 + y) \qquad \Rightarrow \partial_y f(1,0) = \exp(1) = e.$$

Taylorpolynom erster Ordnung

$$p_1(x, y) = e + 2e(x - x_0) + e(y - y_0)$$

Sie
$$f(x, y) = \exp(x^2 + y)$$
.

• Gesucht: Taylorpolynom erster Ordnung um $(x_0, y_0) = (1, 0)$

$$p_1(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0)(x - x_0) + \partial_y f(x_0, y_0)(y - y_0)$$

Ableitungen

$$f(1,0) = \exp(1) = e$$

$$\partial_x f(x,y) = 2x \exp(x^2 + y) \qquad \Rightarrow \partial_x f(1,0) = 2 \exp(1) = 2e$$

$$\partial_y f(x,y) = \exp(x^2 + y) \qquad \Rightarrow \partial_y f(1,0) = \exp(1) = e.$$

Taylorpolynom erster Ordnung

$$p_1(x, y) = e + 2e(x - x_0) + e(y - y_0) = e + 2e(x - 1) + ey$$