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Proper Orthogonal Decomposition [V

POD-Galerkin ansatz

MOTIVATION:

Find finite elements {uy, ..., u;} which reflect the dynamics of the evolution equation

{ () = Ay(1) f@)

)

¥(0) Yo

!
i.e. y/(t) := " y,(t)u; determined by solving the reduced Galerkin system

i=1

{M(M)Y(t)—A(u)Y(f) = F)()
M@)y(0) = yolu)

is a good approximation for y where / is quite small.
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Decomposition Singular value decomposition

Singular value decomposition

Letyy,...,y, € R™ the columns of a matrix ¥ € R™*" of rank d.

Then there are oy > 0, > ... > 04 > 0 and orthogonal matrices U € R™*™ and
V € R™" guch that

U'yv = ( g 8 ) =N eR™" D =diag(o) € R

o The columns uy, ..., u, of U are the eigenvectors of YY"’ corresponding to the
eigenvalues o7, ..., 53,0, ..., 0.

@ Analogously, the columns vy, ..., v, of V are the eigenvectors of Y'Y
corresponding to the eigenvalues o7, ..., 03,0, ..., 0.

@ The columns of Y can be represented by

d

yi = Z<yj’ ui>ui_ Universitat # £
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Proper Orthogonal Decomposition Singular value decomposition

Singular value decomposition

Letyy,...,y, € R™ the columns of a matrix ¥ € R™*" of rank d.

Then there are oy > 0, > ... > 04 > 0 and orthogonal matrices U € R™*™ and
V € R™" guch that

U'yv = < 10) 8 ) =Y cR™" D =diag(o) € R,

o The representation
Y =UxV'
is called the Proper Orthogonal Decomposition (POD) of Y.

@ The orthogonal subbasis U’ := {uy, ..., u;} of the image Im(Y) is called the
POD-basis of rank [ (I < d).

@ The optimal representation of y as a linear combination with / vectors is

1

y Z@, ul> Ui Universitat #M
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IRUUNIISTIGE The POD method in R

POD as best-approximation

THEOREM. The minimization problem

1

= > )i

i=1

n 2

min
(l]],...,ﬁ/)

=1
subject to (i;, it;) = d;

is solved by the POD-basis (uy, ..., u;).

The Pythagoras theorem states that this optimization problem is equivalent to

n 1
max Y|y, i)
oseitn) S
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IRUUNIISTIGE The POD method in R

POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function
ozp . Rmxl X Rl x1

by

ZZ‘ (yj, e +ZZ)‘U i — (i, 1))

j=1 i=1 j=1 i=1

The first-order optimality conditions

0 -
can be transformed into
n 1 1
Z(yja J Z \ji + )\zj
J=1 , j:1 Universitat $§J
—YVE; Konstanz

Martin Gubisch (University of Konstanz) PhD Summer School RBM, Ulm October 27 6/20




IRUUNIISTIGE The POD method in R

POD as best-approximation

Together with the remaining first-order optimality conditions

0

8)\U$(U’ A) = 51:/ - <ui7uj> =0,

we get \;j = A;0; which implies

YY'i; = Al

Hence, U* = U and A* = diag(o?, ..., 012) solves the optimization problem and

n ! !

A SO =" of.
T =1 i=1 i=1
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RSBV RO RN  The weighted POD method in R

Approximation of £2(£2)

Let Q:= (a,b) CR', me N, h:= 224 x:= (x;,....x,) €ER", x;:= (i — 1)h € Q.

We approximate the infinte-dimensional Lebesgue space

£2Q) = {p: QR | (p.o)e <00}y (pb)es = / PP() dr
Q

by ¢ — @, = p(x) € R™,

m—1

m h i h m, | m
L;(Q) :=R", (P> n) 2 = 580}1.7»/1;1; + ;h¢h7/’h T 5% Vi
the trapezoidal rule for numerical integration.

Let W := diag(4, &, ..., h, &) € R™" (symmetric & positive definite). Then (-, )2
can be considered as the weighted R™-scalar product

-
Universitat ERN
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IRUWNIISTINE  The weighted POD method in R

The weighted POD method in R™

THEOREM. Let Y € R™*"  rank(Y) = d, and W € R™*" symmetric & positive
definite, (-, )y := (-, W-).

Let Y := /WY and Y = USV' the SVD of Y.
Then the solution to the minimization problem

I 2

/e Z<ij i) wili
w

i=1

n

min
()
j_

1

subject to (i, it;) w = 0;;

is given by u; = VW .

|
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IRUWNIISTINE  The weighted POD method in R

Method of snapshots

If n < m, it is more efficient to solve the lower-dimensional eigenvalue problem
YfYV,' = )\ivi
and to calculate the POD basis elements by the transformation

1 1
u; = 7YV,’ = *YV,’.
\/)\i g;

In the case of weighted POD, we solve
Y'Y, = Y'WYv; = \v;

and define
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Application on parabolic evolution equations Finite differences for the one-dimensional heat equation

Finite differenced for the one-dimensional heat equation

Let T > 0 and O := (0, 7). We transform the one-dimensional heat equation

§(60) = Ay(tx) = f(x) on©xQ
»(t,x) = 0 on © x 9N (pde)
y©0) = on

via

By(e. ) 2 YO =240 170

y(t,-) =~ yp(r) € R, 2

into a system of ordinary differential equations

{5’11(’)_Ath(f) = fu(t) on®
ya(0) = You
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Application on parabolic evolution equations Finite differences for the one-dimensional heat equation

Finite differenced for the one-dimensional heat equation

with
-2 2
: 1 -2 1
Ap = o)
1 -2 1
2 =2

and

S(tx1) yo(x1)

f(t,x2) Yo(x2)

fh(t) = ; Yo,n =
f(t, xm—1) Yo(Xm—1)

F(txm) yo(%m)
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Application on parabolic evolution equations  [EEERISTHGIES el pRT K]

The continuous POD method

THEOREM: Let y, € C'(©,R™) N C°%(©,R™) the solution to (pdey,).
Consider the operator ), € £,(£?(0,R), R™) and the corresponding adjoint
operator Vi € L,(R™ £*(0,R)), given by

W = /cp(t)yh(t) dr € R™, Viu:= {u,yn())w € Ez(@,R).
(]

Let U' = (uy, ..., u;) a POD-basis of rank [ to the operator J,); : R™ — R™.

Then U’ solves the minimization problem

N 2
_min )= > ow(t), i) wits|| - dt
Uyy... Uy i—1 w
subject to <17t” 17{ >W Universitat
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Application on parabolic evolution equations [ENSINENESESRY NS

The Reduced Order Model

To solve (pde;,) approximatively with little numerical effort, we make the
POD-Galerkin ansatz

)
Y(t) = Z yi(t)u; = yu(t).

The desired vector of the time-dependent coefficients, y/(f) € R™, is given as the
solution to the Reduced-Order Model (ROM)

{M(u)yl(t)A(u)Y’(t) = F@)(@) on®

Mu)y'(0) = yo(u) (pdel,)

where M(u) := ((u;, uj)w) = 1d(1), A(u) := ((Apui, wj)w), F(u) := ({fu(1), u;)w) and
Yo(u) = ({yon, ui)w)-
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Application on parabolic evolution equations Error analysis for the continuous Reduced Order Model

Error analysis for continuous ROM

There exists some C > 0 such that
/Hyh |\Wdt<cZA+cZ/|yh )yl dr
i=Il+1 i= l+1®

To avoid the last term, a POD basis which also respects the time derivative of y can be
determined as the solution to

!
_min, / E S Ui wiki
Upy.nylly

i=1

1

dl‘-f—/H Z '2 Wul

i=1

2

dr
w

subject to (i, ij)w = 0j

which is given as the set of eigenvectors to the / largest eigenvalues of )V, V) + yhy;f )

Vg [eonn e RY Viu= i e COR), B
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Application on parabolic evolution equations  [EEEIIERIISZe)pRuRTIN]

Time discretization for the heat equation

Letn € N, k:= L 1;:= (j— 1)k € © and ¥; = y,(1).

We transform (pdey,) via

mxn . Y, — Y
yn() =Y € R™, Yh(tj)%%
into a linear system of equations,
Y, — Y
—— —A)Y;, = F
k hi (pdep )
Yio =Y

where F = (f,(t;)) and Yy = yo .

Hence, we have y(t;, x;) = yni(tj) = Y.
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Application on parabolic evolution equations  [EEEIIERIISZe)pRuRTIN]

The discrete POD method

THEOREM: Let o = (%, k... k, %) € R” the corresponding trapezoidal weights.

Let U' = (uy, ..., u;) a POD basis to the operator

Ydiag(a)Y" : u Z a; (Y, uywY, /(yh( ), wwyn(t) dt = Y Vyu

Jj=1 =)

Then U’ solves the minimization problem

n 1 2
~IIlil'l~ Q; Yj — Z<YJ’ l:t»wljl,'
(dy,...,1) = p w
subject to (i, it;) w = 0;;
o oE
— . _ n—00 Universitat =N
In general we have ||Ydiag(o)Y' — V3 Vil z, (&nrm)y — O. Konstanz i
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Numerical example The homogenous one-dimensional heat equation

The homogenous one-dimensional heat equation

Let Q = (0,2), © = (0,3), m = 2500 the number of time discretization points and
n = 7500 the number of spatial gridpoints.

y € R™ "y & y(t;, x;) denotes the approximative solution to

y(t,x) — Ay(t,x) = 0 on © x Q
y(it,x) = 0 on O x 0f
y(0,x) = yo(x):=—x*+2x onQ

calculated by central differences for A and the implicit Euler method for % in 4.45
sec.

The calculation of the first 10 pod elements takes 19.88 sec.
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Numerical example ROM with different number of pod elements

The homogenous one-dimensional heat equation

1 eigval.
1 2.16e-01
2 2.16e-05
3 1.20e-07
4 2.51e-09
5 1.05e-10
6 6.63e-12
7 4.74e-13
8 3.10e-14
9 1.77e-15
10 8.8le-17

O O O OO OO o oo

Martin Gubisch
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.51sec
.50sec
.55sec
.58sec
.59sec
.58sec
.58sec
.59sec
.58sec
.60sec
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time absol.

N N N N

/ relat.

11.

11

66%

.25%
12.
13.
13.
13.
13.
13.
13.
13.

49%
06%
47%
06%
04%
31%
10%
61%

L"2 error

R W oo JoRENDEDN

.17e-05
.25e-07
.80e-09
.29%9e-10
.23e-12
.38e-13
.17e-14
.15e-15
.98e-15
.65e-15

inform.

96.52%
99.39%
99.83%
99.94%
99.98%
99.99%
99.99%
99.99%
99.99%
99.99%
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Numerical example ROM with different number of pod elements

The homogenous one-dimensional heat equation

10 T T

the first | squared singular values

L2-errors
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ROM with different number of pod elements
The homogenous one-dimensional heat equation

FDM solution ROM solution with one pod element

I

Difference betwoen FOM and ROM Difference between FOM and ROM
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