Model Reduction using Proper Orthogonal Decomposition

PhD Summer School on Reduced Basis Methods, Ulm

Martin Gubisch
University of Konstanz

October 27
(1) Proper Orthogonal Decomposition

- Motivation
- Singular value decomposition
- The POD method in \mathbb{R}^{m}
- The weighted POD method in \mathbb{R}^{m}
(2) Application on parabolic evolution equations
- Finite differences for the one-dimensional heat equation
- The continuous POD method
- Reduced Order Model
- Error analysis for the continuous Reduced Order Model
- The discrete POD method
(3) Numerical example
- The homogenous one-dimensional heat equation
- ROM with different number of pod elements

POD-Galerkin ansatz

Motivation:

Find finite elements $\left\{u_{1}, \ldots, u_{l}\right\}$ which reflect the dynamics of the evolution equation

$$
\left\{\begin{array}{rll}
\dot{y}(t)-A y(t) & = & f(t) \\
y(0) & = & y_{0}
\end{array},\right.
$$

i.e. $y^{l}(t):=\sum_{i=1}^{l} \mathrm{y}_{i}(t) u_{i}$ determined by solving the reduced Galerkin system

$$
\left\{\begin{array}{rl}
\mathrm{M}(u) \dot{\mathrm{y}}(t)-\mathrm{A}(u) \mathrm{y}(t) & =\mathrm{F}(u)(t) \\
\mathrm{M}(u) \mathrm{y}(0) & =\mathrm{y}_{0}(u)
\end{array},\right.
$$

is a good approximation for y where l is quite small.

Singular value decomposition

Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ the columns of a matrix $Y \in \mathbb{R}^{m \times n}$ of rank d.
Then there are $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{t} Y V=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}, \quad D=\operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d} .
$$

- The columns u_{1}, \ldots, u_{m} of U are the eigenvectors of $Y Y^{t}$ corresponding to the eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, 0, \ldots, 0$.
- Analogously, the columns v_{1}, \ldots, v_{n} of V are the eigenvectors of $Y^{t} Y$ corresponding to the eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, 0, \ldots, 0$.
- The columns of Y can be represented by

$$
y_{j}=\sum_{i=1}^{d}\left\langle y_{j}, u_{i}\right\rangle u_{i}
$$

Singular value decomposition

Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ the columns of a matrix $Y \in \mathbb{R}^{m \times n}$ of rank d.
Then there are $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{t} Y V=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}, \quad D=\operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d} .
$$

- The representation

$$
Y=U \Sigma V^{t}
$$

is called the Proper Orthogonal Decomposition (POD) of Y.

- The orthogonal subbasis $U^{l}:=\left\{u_{1}, \ldots, u_{l}\right\}$ of the image $\operatorname{Im}(Y)$ is called the POD-basis of rank $l(l \leq d)$.
- The optimal representation of y as a linear combination with l vectors is

$$
y \approx \sum_{i=1}^{l}\left\langle y, u_{i}\right\rangle u_{i}:
$$

POD as best-approximation

Theorem. The minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{l}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{l}\left\langle y_{j}, \tilde{u}_{i}\right\rangle \tilde{u}_{i}\right\|^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=\delta_{i j}
\end{array}\right.
$$

is solved by the POD-basis $\left(u_{1}, \ldots, u_{l}\right)$.

The Pythagoras theorem states that this optimization problem is equivalent to

$$
\left\{\begin{array}{l}
\max _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=\delta_{i j}
\end{array}\right.
$$

POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function

$$
\mathscr{L}: \mathbb{R}^{m \times l} \times \mathbb{R}^{l \times l}
$$

by

$$
\mathscr{L}(\tilde{U}, \Lambda):=\sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2}+\sum_{j=1}^{l} \sum_{i=1}^{l} \lambda_{i j}\left(\delta_{i j}-\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle\right) .
$$

The first-order optimality conditions

$$
\frac{\partial}{\partial \tilde{u}_{i}} \mathscr{L}(\tilde{U}, \Lambda)=0
$$

can be transformed into

$$
\underbrace{\sum_{j=1}^{n}\left\langle y_{j}, \tilde{u}_{i}\right\rangle y_{j}}_{=Y Y^{\prime} \tilde{u}_{i}}=\frac{1}{2} \sum_{j=1}^{l}\left(\lambda_{j i}+\lambda_{i j}\right) \tilde{u}_{i}
$$

POD as best-approximation

Together with the remaining first-order optimality conditions

$$
\frac{\partial}{\partial \lambda_{i j}} \mathscr{L}(\tilde{U}, \Lambda)=\delta_{i j}-\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=0,
$$

we get $\lambda_{i j}=\lambda_{i i} \delta_{i j}$ which implies

$$
Y Y^{t} \tilde{u}_{i}=\lambda_{i i} \tilde{u}_{i} .
$$

Hence, $\tilde{U}^{*}=U$ and $\Lambda^{*}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{l}^{2}\right)$ solves the optimization problem and

$$
\max _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2}=\sum_{i=1}^{l} \sigma_{i}^{2} .
$$

Approximation of $\mathcal{L}^{2}(\Omega)$

Let $\Omega:=(a, b) \subseteq \mathbb{R}^{1}, m \in \mathbb{N}, h:=\frac{b-a}{m-1}, x:=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}, x_{i}:=(i-1) h \in \bar{\Omega}$.
We approximate the infinte-dimensional Lebesgue space

$$
\mathcal{L}^{2}(\Omega):=\left\{\varphi: \Omega \rightarrow \mathbb{R} \mid\langle\varphi, \varphi\rangle_{\mathcal{L}^{2}}<\infty\right\}, \quad\langle\varphi, \psi\rangle_{\mathcal{L}^{2}}:=\int_{\Omega} \varphi(x) \psi(x) \mathrm{d} x
$$

by $\varphi \mapsto \varphi_{h}:=\varphi(x) \in \mathbb{R}^{m}$,

$$
\mathcal{L}_{h}^{2}(\Omega):=\mathbb{R}^{m}, \quad\left\langle\varphi_{h}, \psi_{h}\right\rangle_{\mathcal{L}_{h}^{2}}:=\frac{h}{2} \varphi_{h}^{1} \psi_{h}^{1}+\sum_{i=2}^{m-1} h \varphi_{h}^{i} \psi_{h}^{i}+\frac{h}{2} \varphi_{h}^{m} \psi_{h}^{m},
$$

the trapezoidal rule for numerical integration.
Let $W:=\operatorname{diag}\left(\frac{h}{2}, h, \ldots, h, \frac{h}{2}\right) \in \mathbb{R}^{m \times m}$ (symmetric \& positive definite). Then $\langle\cdot, \cdot\rangle_{\mathcal{L}_{h}^{2}}$ can be considered as the weighted \mathbb{R}^{m}-scalar product

$$
\left\langle\varphi_{h}, \psi_{h}\right\rangle_{\mathcal{L}_{h}^{2}}=\left\langle\varphi_{h}, W \psi_{h}\right\rangle \approx\langle\varphi, \psi\rangle_{\mathcal{L}^{2}} .
$$

Universität Konstanz

The weighted POD method in \mathbb{R}^{m}

TheOrem. Let $Y \in \mathbb{R}^{m \times n}, \operatorname{rank}(Y)=d$, and $W \in \mathbb{R}^{m \times m}$ symmetric \& positive definite, $\langle\cdot, \cdot\rangle_{W}:=\langle\cdot, W \cdot\rangle$.

Let $\bar{Y}:=\sqrt{W} Y$ and $\bar{Y}=\bar{U} \Sigma \bar{V}^{t}$ the SVD of \bar{Y}.
Then the solution to the minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{l}\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

is given by $u_{i}=\sqrt{W}^{-1} \bar{u}_{i}$.

Method of snapshots

If $n \ll m$, it is more efficient to solve the lower-dimensional eigenvalue problem

$$
Y^{t} Y v_{i}=\lambda_{i} v_{i}
$$

and to calculate the POD basis elements by the transformation

$$
u_{i}=\frac{1}{\sqrt{\lambda_{i}}} Y v_{i}=\frac{1}{\sigma_{i}} Y v_{i}
$$

In the case of weighted POD, we solve

$$
\bar{Y}^{t} \bar{Y} \bar{v}_{i}=Y^{t} W Y \bar{v}_{i}=\lambda_{i} \bar{v}_{i}
$$

and define

$$
u_{i}=\frac{1}{\sqrt{\lambda}_{i}} \sqrt{W}^{-1}\left(\bar{Y} \bar{v}_{i}\right)=\frac{1}{\sqrt{\lambda}_{i}} Y \bar{v}_{i} ;
$$

in this case, we do not have to calculate \sqrt{W} or \sqrt{W}^{-1}.

Finite differenced for the one-dimensional heat equation

Let $T>0$ and $\Theta:=(0, T)$. We transform the one-dimensional heat equation

$$
\left\{\begin{align*}
\dot{y}(t, x)-\Delta y(t, x) & =f(t, x) & & \text { on } \Theta \times \Omega \tag{pde}\\
y_{x}(t, x) & =0 & & \text { on } \Theta \times \partial \Omega \\
y(0) & =y_{0} & & \text { on } \Omega
\end{align*}\right.
$$

via

$$
y(t, \cdot) \approx y_{h}(t) \in \mathbb{R}^{m}, \quad \Delta y\left(t, x_{i}\right) \approx \frac{y_{h}^{i-1}(t)-2 y_{h}^{i}(t)+y_{h}^{i+1}(t)}{h^{2}}
$$

into a system of ordinary differential equations

$$
\left\{\begin{align*}
\dot{y}_{h}(t)-A_{h} y_{h}(t) & =f_{h}(t) \quad \text { on } \Theta \tag{h}\\
y_{h}(0) & =y_{0, h}
\end{align*}\right.
$$

Finite differenced for the one-dimensional heat equation

with

$$
A_{h}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
-2 & 2 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 2 & -2
\end{array}\right)
$$

and

$$
f_{h}(t)=\left(\begin{array}{c}
f\left(t, x_{1}\right) \\
f\left(t, x_{2}\right) \\
\vdots \\
f\left(t, x_{m-1}\right) \\
f\left(t, x_{m}\right)
\end{array}\right), \quad y_{0, h}=\left(\begin{array}{c}
y_{0}\left(x_{1}\right) \\
y_{0}\left(x_{2}\right) \\
\vdots \\
y_{0}\left(x_{m-1}\right) \\
y_{0}\left(x_{m}\right)
\end{array}\right) .
$$

The continuous POD method

Theorem: Let $y_{h} \in \mathcal{C}^{1}\left(\Theta, \mathbb{R}^{m}\right) \cap \mathcal{C}^{0}\left(\bar{\Theta}, \mathbb{R}^{m}\right)$ the solution to $\left(\right.$ pde $\left._{h}\right)$.
Consider the operator $\mathcal{Y}_{h} \in \mathcal{L}_{b}\left(\mathcal{L}^{2}(\Theta, \mathbb{R}), \mathbb{R}^{m}\right)$ and the corresponding adjoint operator $\mathcal{Y}_{h}^{*} \in \mathcal{L}_{b}\left(\mathbb{R}^{m}, \mathcal{L}^{2}(\Theta, \mathbb{R})\right)$, given by

$$
\mathcal{Y}_{h} \varphi:=\int_{\Theta} \varphi(t) y_{h}(t) \mathrm{d} t \in \mathbb{R}^{m}, \quad \mathcal{Y}_{h}^{*} u:=\left\langle u, y_{h}(\cdot)\right\rangle_{W} \in \mathcal{L}^{2}(\Theta, \mathbb{R}) .
$$

Let $U^{l}=\left(u_{1}, \ldots, u_{l}\right)$ a POD-basis of rank l to the operator $\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.
Then U^{l} solves the minimization problem

$$
\left\{\begin{array}{l}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{l}} \int_{\Theta}\left\|y_{h}(t)-\sum_{i=1}^{N}\left\langle y_{h}(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
\text { subject to } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

The Reduced Order Model

To solve (pde_{h}) approximatively with little numerical effort, we make the POD-Galerkin ansatz

$$
y^{l}(t):=\sum_{i=1}^{l} \mathrm{y}_{i}^{l}(t) u_{i} \approx y_{h}(t)
$$

The desired vector of the time-dependent coefficients, $\mathrm{y}^{l}(t) \in \mathbb{R}^{m}$, is given as the solution to the Reduced-Order Model (ROM)

$$
\left\{\begin{aligned}
\mathrm{M}(u) \dot{\mathrm{y}}^{l}(t)-\mathrm{A}(u) \mathrm{y}^{l}(t) & =\mathrm{F}(u)(t) \quad \text { on } \Theta \\
\mathrm{M}(u) \mathrm{y}^{l}(0) & =\mathrm{y}_{0}(u)
\end{aligned}\right.
$$

where $\mathrm{M}(u):=\left(\left\langle u_{i}, u_{j}\right\rangle_{W}\right)=\operatorname{Id}(l), \mathrm{A}(u):=\left(\left\langle A_{h} u_{i}, u_{j}\right\rangle_{W}\right), \mathrm{F}(u):=\left(\left\langle f_{h}(t), u_{i}\right\rangle_{W}\right)$ and $\mathrm{y}_{0}(u)=\left(\left\langle y_{0, h}, u_{i}\right\rangle_{W}\right)$.

Error analysis for continuous ROM

There exists some $C>0$ such that

$$
\int_{\Theta}\left\|y_{h}(t)-y^{l}(t)\right\|_{W}^{2} \mathrm{~d} t \leq C \sum_{i=l+1}^{d} \lambda_{i}+C \sum_{i=l+1}^{m} \int_{\Theta}\left|\left\langle\dot{y}_{h}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t .
$$

To avoid the last term, a POD basis which also respects the time derivative of y can be determined as the solution to

$$
\left\{\begin{array}{l}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{l}} \int_{\Theta}\left\|y(t)-\sum_{i=1}^{l}\left\langle y(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t+\int_{\Theta}\left\|\dot{y}(t)-\sum_{i=1}^{l}\left\langle\dot{y}(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

which is given as the set of eigenvectors to the l largest eigenvalues of $\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}+\dot{\mathcal{Y}}_{h} \dot{\mathcal{Y}}_{h}^{*}$,

$$
\dot{\mathcal{Y}}_{h} \varphi:=\int_{\Theta} \varphi(t) \dot{y}_{h}(t) \mathrm{d} t \in \mathbb{R}^{m}, \quad \dot{\mathcal{Y}}_{h}^{*} u:=\left\langle u, \dot{y}_{h}(\cdot)\right\rangle_{W} \in \mathcal{L}^{2}\left(\Theta_{\substack{\text { Univevisitat } \\ \text { Konstanz }}}^{\mathbb{R})^{2}}\right.
$$

Time discretization for the heat equation

Let $n \in \mathbb{N}, k:=\frac{T}{n-1}, t_{j}:=(j-1) k \in \Theta$ and $Y_{j} \approx y_{h}\left(t_{j}\right)$.
We transform $\left(\right.$ pde $\left._{h}\right)$ via

$$
y_{h}(\cdot) \approx Y \in \mathbb{R}^{m \times n}, \quad \dot{y}_{h}\left(t_{j}\right) \approx \frac{Y_{j}-Y_{j-1}}{k}
$$

into a linear system of equations,

$$
\left\{\begin{aligned}
\frac{Y_{j}-Y_{j-1}}{k}-A_{h} Y_{j} & =F \\
Y_{1} & =Y_{0}
\end{aligned}\right.
$$

where $F=\left(f_{h}\left(t_{j}\right)\right)$ and $Y_{0}=y_{0, h}$.
Hence, we have $y\left(t_{j}, x_{i}\right) \approx y_{h, i}\left(t_{j}\right) \approx Y_{i j}$.

The discrete POD method

Theorem: Let $\alpha=\left(\frac{k}{2}, k, \ldots, k, \frac{k}{2}\right) \in \mathbb{R}^{n}$ the corresponding trapezoidal weights.
Let $U^{l}=\left(u_{1}, \ldots, u_{l}\right)$ a POD basis to the operator

$$
\bar{Y} \operatorname{diag}(\alpha) \bar{Y}^{t}: u \mapsto \sum_{j=1}^{n} \alpha_{j}\left\langle Y_{j}, u\right\rangle_{W} Y_{j} \approx \int_{\Theta}\left\langle y_{h}(t), u\right\rangle_{W} y_{h}(t) \mathrm{d} t=\mathcal{Y}_{h} \mathcal{Y}_{h}^{*} u .
$$

Then U^{l} solves the minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \alpha_{j}\left\|Y_{j}-\sum_{i=1}^{l}\left\langle Y_{j}, \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

In general we have $\left\|\bar{Y} \operatorname{diag}(\alpha) \bar{Y}^{t}-\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}\right\|_{\mathcal{L}_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)} \xrightarrow{n \rightarrow \infty} 0$.

The homogenous one-dimensional heat equation

Let $\Omega=(0,2), \Theta=(0,3), m=2500$ the number of time discretization points and $n=7500$ the number of spatial gridpoints.
$y \in \mathbb{R}^{m \times n}, y_{i j} \approx y\left(t_{i}, x_{j}\right)$ denotes the approximative solution to

$$
\left\{\begin{aligned}
\dot{y}(t, x)-\Delta y(t, x) & =0 & & \text { on } \Theta \times \Omega \\
y(t, x) & =0 & & \text { on } \Theta \times \partial \Omega \\
y(0, x) & =y_{0}(x):=-x^{2}+2 x & & \text { on } \Omega
\end{aligned}\right.
$$

calculated by central differences for Δ and the implicit Euler method for $\frac{\mathrm{d}}{\mathrm{d} t}$ in $\mathbf{4 . 4 5}$ sec.

The calculation of the first 10 pod elements takes $\mathbf{1 9 . 8 8} \mathbf{~ s e c}$.

The homogenous one-dimensional heat equation

1	eigval.	time absol. / relat.	L^2 error	inform.
1	$2.16 e-01$	$0.51 \mathrm{sec} / 11.66 \%$	$2.17 e-05$	96.52\%
2	$2.16 e-05$	$0.50 \mathrm{sec} / 11.25 \%$	$1.25 e-07$	99.39\%
3	$1.20 \mathrm{e}-07$	$0.55 \mathrm{sec} / 12.49 \%$	$2.80 \mathrm{e}-09$	99.83\%
4	$2.51 \mathrm{e}-09$	$0.58 \mathrm{sec} / 13.06 \%$	$1.29 \mathrm{e}-10$	99.94\%
5	$1.05 \mathrm{e}-10$	$0.59 \mathrm{sec} / 13.47 \%$	$9.23 \mathrm{e}-12$	99.98\%
6	$6.63 \mathrm{e}-12$	$0.58 \mathrm{sec} / 13.06 \%$	$7.38 \mathrm{e}-13$	99.99\%
7	$4.74 \mathrm{e}-13$	$0.58 \mathrm{sec} / 13.04 \%$	$5.17 e-14$	99.99\%
8	$3.10 \mathrm{e}-14$	$0.59 \mathrm{sec} / 13.31 \%$	$3.15 e-15$	99.99\%
9	$1.77 \mathrm{e}-15$	$0.58 \mathrm{sec} / 13.10 \%$	$1.98 \mathrm{e}-15$	99.99\%
10	$8.81 e-17$	$0.60 \mathrm{sec} / 13.61 \%$	1.65e-15	99.99\%
				Universität Konstanz

The homogenous one-dimensional heat equation

The homogenous one-dimensional heat equation

FDM solution

Difference between FDM and ROM

ROM solution with one pod element

Difference between FDM and ROM

References

Hinze, M. \& Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition.
Comput. Optim. Appl. 39, pp. 319-345, 2008.
Kunisch, K. \& Volkwein, S.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition.
J. Optim. Theor. Appl. 102, pp. 345-371, 1999.

Kunisch, K. \& Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems.
Numer. Math. 90, pp. 117-148, 2001.

Kunisch, K. \& Volkwein, S.: Proper Orthogonal Decomposition for Optimality Systems. ESAIM: M2AN, Vol. 42, No. 1, pp. 1-23, 2008.

Tröltzsch, F. \& Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems.
Comput. Optim. Appl. 39, pp. 319-345, 2008.

Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition.
Vorlesungsskript Universität Konstanz, p. 42, 2010.

Universität
Konstanz

っの

