# Model Reduction using Proper Orthogonal Decomposition

PhD Summer School on Reduced Basis Methods, Ulm

Martin Gubisch

University of Konstanz

October 27

Universität Konstanz

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

- Proper Orthogonal Decomposition
  - Motivation
  - Singular value decomposition
  - The POD method in  $\mathbb{R}^m$
  - The weighted POD method in  $\mathbb{R}^m$
- Application on parabolic evolution equations
  - Finite differences for the one-dimensional heat equation
  - The continuous POD method
  - Reduced Order Model
  - Error analysis for the continuous Reduced Order Model
  - The discrete POD method
- Numerical example
  - The homogenous one-dimensional heat equation
  - ROM with different number of pod elements
- References

#### POD-Galerkin ansatz

#### MOTIVATION:

Find finite elements  $\{u_1, ..., u_l\}$  which reflect the dynamics of the evolution equation

$$\begin{cases} \dot{y}(t) - Ay(t) &= f(t) \\ y(0) &= y_0 \end{cases},$$

i.e.  $y^l(t) := \sum_{i=1}^l y_i(t)u_i$  determined by solving the reduced Galerkin system

$$\begin{cases} M(u)\dot{y}(t) - A(u)y(t) &= F(u)(t) \\ M(u)y(0) &= y_0(u) \end{cases},$$

is a good approximation for y where l is quite small.



## Singular value decomposition

Let  $y_1, ..., y_n \in \mathbb{R}^m$  the columns of a matrix  $Y \in \mathbb{R}^{m \times n}$  of rank d.

Then there are  $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_d > 0$  and orthogonal matrices  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  such that

$$U^t YV = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} =: \Sigma \in \mathbb{R}^{m \times n}, \qquad D = \operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d}.$$

- The columns  $u_1, ..., u_m$  of U are the eigenvectors of  $YY^t$  corresponding to the eigenvalues  $\sigma_1^2, ..., \sigma_d^2, 0, ..., 0$ .
- Analogously, the columns  $v_1, ..., v_n$  of V are the eigenvectors of  $Y^tY$  corresponding to the eigenvalues  $\sigma_1^2, ..., \sigma_d^2, 0, ..., 0$ .
- The columns of Y can be represented by

$$y_j = \sum_{i=1}^d \langle y_j, u_i \rangle u_i.$$





## Singular value decomposition

Let  $y_1, ..., y_n \in \mathbb{R}^m$  the columns of a matrix  $Y \in \mathbb{R}^{m \times n}$  of rank d.

Then there are  $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_d > 0$  and orthogonal matrices  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  such that

$$U^t YV = \left( egin{array}{cc} D & 0 \ 0 & 0 \end{array} 
ight) =: \Sigma \in \mathbb{R}^{m \times n}, \qquad D = \mathrm{diag}(\sigma) \in \mathbb{R}^{d \times d}.$$

• The representation

$$Y = U\Sigma V^t$$

is called the Proper Orthogonal Decomposition (POD) of Y.

- The orthogonal subbasis  $U^l := \{u_1, ..., u_l\}$  of the image Im(Y) is called the POD-basis of rank l (l < d).
- $\bullet$  The optimal representation of y as a linear combination with l vectors is

$$y \approx \sum_{i=1}^{l} \langle y, u_i \rangle u_i$$
:





# POD as best-approximation

#### **THEOREM.** The minimization problem

$$\begin{cases} \min_{(\tilde{u}_1, \dots, \tilde{u}_l)} \sum_{j=1}^n \left\| y_j - \sum_{i=1}^l \langle y_j, \tilde{u}_i \rangle \tilde{u}_i \right\|^2 \\ \text{subject to } \langle \tilde{u}_i, \tilde{u}_j \rangle = \delta_{ij} \end{cases}$$

is solved by the POD-basis  $(u_1, ..., u_l)$ .

#### The Pythagoras theorem states that this optimization problem is equivalent to

$$\begin{cases} \max_{(\tilde{u}_1,...,\tilde{u}_l)} \sum_{j=1}^n \sum_{i=1}^l |\langle y_j, \tilde{u}_i \rangle|^2 \\ \text{subject to } \langle \tilde{u}_i, \tilde{u}_j \rangle = \delta_{ij} \end{cases}$$

# POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function

$$\mathscr{L}: \mathbb{R}^{m \times l} \times \mathbb{R}^{l \times l}$$

by

$$\mathscr{L}(\tilde{U},\Lambda) := \sum_{j=1}^n \sum_{i=1}^l |\langle y_j, \tilde{u}_i \rangle|^2 + \sum_{j=1}^l \sum_{i=1}^l \lambda_{ij} (\delta_{ij} - \langle \tilde{u}_i, \tilde{u}_j \rangle).$$

The first-order optimality conditions

$$\frac{\partial}{\partial \tilde{u}_i} \mathcal{L}(\tilde{U}, \Lambda) = 0$$

can be transformed into

$$\underbrace{\sum_{j=1}^{n} \langle y_j, \tilde{u}_i \rangle y_j}_{=YY^t \tilde{u}_t} = \frac{1}{2} \sum_{j=1}^{l} (\lambda_{ji} + \lambda_{ij}) \tilde{u}_i.$$

Universität Konstanz



# POD as best-approximation

Together with the remaining first-order optimality conditions

$$\frac{\partial}{\partial \lambda_{ij}} \mathscr{L}(\tilde{U}, \Lambda) = \delta_{ij} - \langle \tilde{u}_i, \tilde{u}_j \rangle = 0,$$

we get  $\lambda_{ij} = \lambda_{ii}\delta_{ij}$  which implies

$$YY^t\tilde{u}_i=\lambda_{ii}\tilde{u}_i.$$

Hence,  $\tilde{U}^*=U$  and  $\Lambda^*=\mathrm{diag}(\sigma_1^2,...,\sigma_l^2)$  solves the optimization problem and

$$\max_{(\tilde{u}_1,\ldots,\tilde{u}_l)} \sum_{j=1}^n \sum_{i=1}^l |\langle y_j, \tilde{u}_i \rangle|^2 = \sum_{i=1}^l \sigma_i^2.$$

Universität Konstanz

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶



# Approximation of $\mathcal{L}^2(\Omega)$

Let 
$$\Omega := (a,b) \subseteq \mathbb{R}^1, \ m \in \mathbb{N}, \ h := \frac{b-a}{m-1}, x := (x_1,...,x_m) \in \mathbb{R}^m, \ x_i := (i-1)h \in \overline{\Omega}.$$

We approximate the infinte-dimensional Lebesgue space

$$\mathcal{L}^{2}(\Omega) := \{ \varphi : \Omega \to \mathbb{R} \mid \langle \varphi, \varphi \rangle_{\mathcal{L}^{2}} < \infty \}, \qquad \langle \varphi, \psi \rangle_{\mathcal{L}^{2}} := \int_{\Omega} \varphi(x) \psi(x) \, dx$$

by  $\varphi \mapsto \varphi_h := \varphi(x) \in \mathbb{R}^m$ ,

$$\mathcal{L}_h^2(\Omega) := \mathbb{R}^m, \qquad \langle \varphi_h, \psi_h \rangle_{\mathcal{L}_h^2} := \frac{h}{2} \varphi_h^1 \psi_h^1 + \sum_{i=2}^{m-1} h \varphi_h^i \psi_h^i + \frac{h}{2} \varphi_h^m \psi_h^m,$$

the trapezoidal rule for numerical integration.

Let  $W:=\mathrm{diag}(\frac{h}{2},h,...,h,\frac{h}{2})\in\mathbb{R}^{m\times m}$  (symmetric & positive definite). Then  $\langle\cdot,\cdot\rangle_{\mathcal{L}^2_h}$  can be considered as the weighted  $\mathbb{R}^m$ -scalar product

$$\langle \varphi_h, \psi_h \rangle_{\mathcal{L}_h^2} = \langle \varphi_h, W \psi_h \rangle \approx \langle \varphi, \psi \rangle_{\mathcal{L}^2}.$$



### The weighted POD method in $\mathbb{R}^m$

**THEOREM.** Let  $Y \in \mathbb{R}^{m \times n}$ , rank(Y) = d, and  $W \in \mathbb{R}^{m \times m}$  symmetric & positive definite,  $\langle \cdot, \cdot \rangle_W := \langle \cdot, W \cdot \rangle$ .

Let  $\bar{Y} := \sqrt{W}Y$  and  $\bar{Y} = \bar{U}\Sigma\bar{V}^t$  the SVD of  $\bar{Y}$ .

Then the solution to the minimization problem

$$\begin{cases} \min_{(\tilde{u}_1, \dots, \tilde{u}_l)} \sum_{j=1}^n \left\| y_j - \sum_{i=1}^l \langle y_j, \tilde{u}_i \rangle_W \tilde{u}_i \right\|_W^2 \\ \text{subject to } \langle \tilde{u}_i, \tilde{u}_j \rangle_W = \delta_{ij} \end{cases}$$

is given by  $u_i = \sqrt{W}^{-1} \bar{u}_i$ .

Universität Konstanz

## Method of snapshots

If  $n \ll m$ , it is more efficient to solve the lower-dimensional eigenvalue problem

$$Y^t Y v_i = \lambda_i v_i$$

and to calculate the POD basis elements by the transformation

$$u_i = \frac{1}{\sqrt{\lambda_i}} Y v_i = \frac{1}{\sigma_i} Y v_i.$$

In the case of weighted POD, we solve

$$\bar{Y}^t \bar{Y} \bar{v}_i = Y^t W Y \bar{v}_i = \lambda_i \bar{v}_i$$

and define

$$u_i = \frac{1}{\sqrt{\lambda_i}} \sqrt{W}^{-1}(\bar{Y}\bar{v}_i) = \frac{1}{\sqrt{\lambda_i}} Y\bar{v}_i;$$

in this case, we do not have to calculate  $\sqrt{W}$  or  $\sqrt{W}^{-1}$ .



### Finite differenced for the one-dimensional heat equation

Let T > 0 and  $\Theta := (0, T)$ . We transform the one-dimensional heat equation

$$\begin{cases} \dot{y}(t,x) - \Delta y(t,x) &= f(t,x) & \text{on } \Theta \times \Omega \\ y_x(t,x) &= 0 & \text{on } \Theta \times \partial \Omega \\ y(0) &= y_0 & \text{on } \Omega \end{cases}$$
 (pde)

via

$$y(t,\cdot) \approx y_h(t) \in \mathbb{R}^m, \qquad \Delta y(t,x_i) \approx \frac{y_h^{i-1}(t) - 2y_h^i(t) + y_h^{i+1}(t)}{h^2}$$

into a system of ordinary differential equations

$$\begin{cases} \dot{y}_h(t) - A_h y_h(t) &= f_h(t) \text{ on } \Theta \\ y_h(0) &= y_{0,h} \end{cases}$$
 (pde<sub>h</sub>)

Universität Konstanz



## Finite differenced for the one-dimensional heat equation

with

$$A_h = \frac{1}{h^2} \begin{pmatrix} -2 & 2 & & & \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 2 & -2 \end{pmatrix}$$

and

$$f_h(t) = \begin{pmatrix} f(t, x_1) \\ f(t, x_2) \\ \vdots \\ f(t, x_{m-1}) \\ f(t, x_m) \end{pmatrix}, \qquad y_{0,h} = \begin{pmatrix} y_0(x_1) \\ y_0(x_2) \\ \vdots \\ y_0(x_{m-1}) \\ y_0(x_m) \end{pmatrix}.$$



#### The continuous POD method

**THEOREM:** Let  $y_h \in \mathcal{C}^1(\Theta, \mathbb{R}^m) \cap \mathcal{C}^0(\overline{\Theta}, \mathbb{R}^m)$  the solution to  $(pde_h)$ .

Consider the operator  $\mathcal{Y}_h \in \mathcal{L}_b(\mathcal{L}^2(\Theta, \mathbb{R}), \mathbb{R}^m)$  and the corresponding adjoint operator  $\mathcal{Y}_h^* \in \mathcal{L}_b(\mathbb{R}^m, \mathcal{L}^2(\Theta, \mathbb{R}))$ , given by

$$\mathcal{Y}_h \varphi := \int\limits_{\Theta} \varphi(t) y_h(t) \, \mathrm{d}t \in \mathbb{R}^m, \qquad \mathcal{Y}_h^* u := \langle u, y_h(\cdot) \rangle_W \in \mathcal{L}^2(\Theta, \mathbb{R}).$$

Let  $U^l = (u_1, ..., u_l)$  a POD-basis of rank l to the operator  $\mathcal{Y}_h \mathcal{Y}_h^* : \mathbb{R}^m \to \mathbb{R}^m$ .

Then  $U^l$  solves the minimization problem

$$\begin{cases} \min_{\tilde{u}_1, \dots, \tilde{u}_l} \int\limits_{\Theta} \left\| y_h(t) - \sum_{i=1}^N \langle y_h(t), \tilde{u}_i \rangle_W \tilde{u}_i \right\|_W^2 dt \\ \text{subject to} \qquad \langle \tilde{u}_i, \tilde{u}_j \rangle_W = \delta_{ij} \end{cases}$$

#### The Reduced Order Model

To solve (pde $_h$ ) approximatively with little numerical effort, we make the POD-Galerkin ansatz

$$y^{l}(t) := \sum_{i=1}^{l} y_{i}^{l}(t)u_{i} \approx y_{h}(t).$$

The desired vector of the time-dependent coefficients,  $y^l(t) \in \mathbb{R}^m$ , is given as the solution to the Reduced-Order Model (ROM)

$$\left\{ \begin{array}{rcl} \mathbf{M}(u)\dot{\mathbf{y}}^l(t) - \mathbf{A}(u)\mathbf{y}^l(t) & = & \mathbf{F}(u)(t) & \text{on } \Theta \\ \mathbf{M}(u)\mathbf{y}^l(0) & = & \mathbf{y}_0(u) \end{array} \right. \tag{pde}_h^l)$$

where 
$$M(u) := (\langle u_i, u_j \rangle_W) = Id(l)$$
,  $A(u) := (\langle A_h u_i, u_j \rangle_W)$ ,  $F(u) := (\langle f_h(t), u_i \rangle_W)$  and  $y_0(u) = (\langle y_{0,h}, u_i \rangle_W)$ .



## Error analysis for continuous ROM

There exists some C > 0 such that

$$\int\limits_{\Theta} ||y_h(t) - y^l(t)||_W^2 dt \le C \sum_{i=l+1}^d \lambda_i + C \sum_{i=l+1}^m \int\limits_{\Theta} |\langle \dot{y}_h(t), u_i \rangle_W|^2 dt.$$

To avoid the last term, a POD basis which also respects the time derivative of y can be determined as the solution to

$$\begin{cases} \min_{\tilde{u}_1,...,\tilde{u}_l} \int\limits_{\Theta} \left\| y(t) - \sum_{i=1}^l \langle y(t), \tilde{u}_i \rangle_W \tilde{u}_i \right\|_W^2 dt + \int\limits_{\Theta} \left\| \dot{y}(t) - \sum_{i=1}^l \langle \dot{y}(t), \tilde{u}_i \rangle_W \tilde{u}_i \right\|_W^2 dt \\ \text{subject to } \langle \tilde{u}_i, \tilde{u}_j \rangle_W = \delta_{ij} \end{cases}$$

which is given as the set of eigenvectors to the l largest eigenvalues of  $\mathcal{Y}_h \mathcal{Y}_h^* + \dot{\mathcal{Y}}_h \dot{\mathcal{Y}}_h^*$ ,

$$\dot{\mathcal{Y}}_h\varphi:=\int\limits_{\Theta}\varphi(t)\dot{y}_h(t)\;\mathrm{d}t\in\mathbb{R}^m,\qquad \dot{\mathcal{Y}}_h^*u:=\langle u,\dot{y}_h(\cdot)\rangle_W\in\mathcal{L}^2(\Theta,\mathbb{R}).$$



### Time discretization for the heat equation

Let 
$$n \in \mathbb{N}$$
,  $k := \frac{T}{n-1}$ ,  $t_j := (j-1)k \in \Theta$  and  $Y_j \approx y_h(t_j)$ .

We transform  $(pde_h)$  via

$$y_h(\cdot) \approx Y \in \mathbb{R}^{m \times n}, \qquad \dot{y}_h(t_j) \approx \frac{Y_j - Y_{j-1}}{k}$$

into a linear system of equations,

$$\begin{cases}
\frac{Y_j - Y_{j-1}}{k} - A_h Y_j &= F \\
Y_1 &= Y_0
\end{cases}$$
(pde<sub>h,k</sub>)

where  $F = (f_h(t_j))$  and  $Y_0 = y_{0,h}$ .

Hence, we have  $y(t_j, x_i) \approx y_{h,i}(t_j) \approx Y_{ij}$ .

#### The discrete POD method

**THEOREM:** Let  $\alpha = (\frac{k}{2}, k, ..., k, \frac{k}{2}) \in \mathbb{R}^n$  the corresponding trapezoidal weights.

Let  $U^l = (u_1, ..., u_l)$  a POD basis to the operator

$$\bar{Y} \operatorname{diag}(\alpha) \bar{Y}^t : u \mapsto \sum_{j=1}^n \alpha_j \langle Y_j, u \rangle_W Y_j \approx \int\limits_{\Theta} \langle y_h(t), u \rangle_W y_h(t) dt = \mathcal{Y}_h \mathcal{Y}_h^* u.$$

Then  $U^l$  solves the minimization problem

$$\begin{cases} \min_{(\tilde{u}_1, \dots, \tilde{u}_l)} \sum_{j=1}^n \alpha_j \left\| Y_j - \sum_{i=1}^l \langle Y_j, \tilde{u}_i \rangle_W \tilde{u}_i \right\|_W^2 \\ \text{subject to } \langle \tilde{u}_i, \tilde{u}_j \rangle_W = \delta_{ij} \end{cases}$$

In general we have  $||\bar{Y}\operatorname{diag}(\alpha)\bar{Y}^t - \mathcal{Y}_h\mathcal{Y}_h^*||_{\mathcal{L}_{\kappa}(\mathbb{R}^m,\mathbb{R}^m)} \stackrel{n\to\infty}{\longrightarrow} 0.$ 

Let  $\Omega = (0,2), \ \Theta = (0,3), m = 2500$  the number of time discretization points and n = 7500 the number of spatial gridpoints.

 $y \in \mathbb{R}^{m \times n}$ ,  $y_{ij} \approx y(t_i, x_j)$  denotes the approximative solution to

$$\left\{ \begin{array}{rcl} \dot{y}(t,x) - \Delta y(t,x) & = & 0 & \text{on } \Theta \times \Omega \\ y(t,x) & = & 0 & \text{on } \Theta \times \partial \Omega \\ y(0,x) & = & y_0(x) := -x^2 + 2x & \text{on } \Omega \end{array} \right.$$

calculated by central differences for  $\Delta$  and the implicit Euler method for  $\frac{d}{dt}$  in **4.45** sec.

The calculation of the first 10 pod elements takes 19.88 sec.

```
eigval.
              time absol. / relat. L^2 error
                                                     inform.
      2.16e-01
                   0.51sec / 11.66%
                                        2.17e-05
                                                     96.52%
     2.16e-05
                                        1.25e-07
                                                     99.39%
                   0.50sec / 11.25%
      1.20e-07
                                        2.80e-09
                                                     99.83%
                   0.55sec / 12.49%
      2.51e-09
                   0.58sec / 13.06%
                                        1.29e-10
                                                     99.94%
      1.05e-10
                   0.59sec / 13.47%
                                        9.23e-12
                                                     99.98%
      6.63e-12
                   0.58sec / 13.06%
                                        7.38e-13
                                                     99.99%
      4.74e-13
                   0.58sec / 13.04%
                                        5.17e-14
                                                     99.99%
 8
      3.10e-14
                   0.59 \text{sec} / 13.31\%
                                        3.15e-15
                                                     99.99%
 9
      1.77e-15
                   0.58sec / 13.10%
                                        1.98e-15
                                                     99.99%
10
      8.81e-17
                   0.60sec / 13.61%
                                        1.65e-15
                                                     99.99%
```

Universität Konstanz

<ロト <部ト < 差ト < 差ト

















#### References



Hinze, M. & Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition.

Comput. Optim. Appl. **39**, pp. 319–345, 2008.



Kunisch, K. & Volkwein, S.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition.

J. Optim. Theor. Appl. 102, pp. 345–371, 1999.



Kunisch, K. & Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems.

Numer. Math. 90, pp. 117-148, 2001.



Kunisch, K. & Volkwein, S.: Proper Orthogonal Decomposition for Optimality Systems.

ESAIM: M2AN, Vol. 42, No. 1, pp. 1-23, 2008.



Tröltzsch, F. & Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems.

Comput. Optim. Appl. 39, pp. 319-345, 2008.



Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition.

Vorlesungsskript Universität Konstanz, p. 42, 2010.

Universität Konstanz

4 日 5 4 周 5 4 3 5 4 3 5

