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Proper Orthogonal Decomposition Motivation

POD-Galerkin ansatz

MOTIVATION:

Find finite elements {u1, ..., ul} which reflect the dynamics of the evolution equation{
ẏ(t)− Ay(t) = f (t)

y(0) = y0
,

i.e. yl(t) :=
l∑

i=1
yi(t)ui determined by solving the reduced Galerkin system

{
M(u)ẏ(t)− A(u)y(t) = F(u)(t)

M(u)y(0) = y0(u)
,

is a good approximation for y where l is quite small.
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Proper Orthogonal Decomposition Singular value decomposition

Singular value decomposition

Let y1, ..., yn ∈ Rm the columns of a matrix Y ∈ Rm×n of rank d.

Then there are σ1 ≥ σ2 ≥ ... ≥ σd > 0 and orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that

UtYV =

(
D 0
0 0

)
=: Σ ∈ Rm×n, D = diag(σ) ∈ Rd×d.

The columns u1, ..., um of U are the eigenvectors of YY t corresponding to the
eigenvalues σ2

1 , ..., σ
2
d , 0, ..., 0.

Analogously, the columns v1, ..., vn of V are the eigenvectors of Y tY
corresponding to the eigenvalues σ2

1 , ..., σ
2
d , 0, ..., 0.

The columns of Y can be represented by

yj =

d∑
i=1

〈yj, ui〉ui.
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Proper Orthogonal Decomposition Singular value decomposition

Singular value decomposition

Let y1, ..., yn ∈ Rm the columns of a matrix Y ∈ Rm×n of rank d.

Then there are σ1 ≥ σ2 ≥ ... ≥ σd > 0 and orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that

UtYV =

(
D 0
0 0

)
=: Σ ∈ Rm×n, D = diag(σ) ∈ Rd×d.

The representation
Y = UΣV t

is called the Proper Orthogonal Decomposition (POD) of Y .
The orthogonal subbasis Ul := {u1, ..., ul} of the image Im(Y) is called the
POD-basis of rank l (l ≤ d).
The optimal representation of y as a linear combination with l vectors is

y ≈
l∑

i=1

〈y, ui〉ui :
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Proper Orthogonal Decomposition The POD method in Rm

POD as best-approximation

THEOREM. The minimization problem
min

(ũ1,...,ũl)

n∑
j=1

∥∥∥∥yj −
l∑

i=1

〈yj, ũi〉ũi

∥∥∥∥2

subject to 〈ũi, ũj〉 = δij

is solved by the POD-basis (u1, ..., ul).

The Pythagoras theorem states that this optimization problem is equivalent to
max

(ũ1,...,ũl)

n∑
j=1

l∑
i=1

|〈yj, ũi〉|2

subject to 〈ũi, ũj〉 = δij
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Proper Orthogonal Decomposition The POD method in Rm

POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function

L : Rm×l × Rl×l

by

L (Ũ,Λ) :=

n∑
j=1

l∑
i=1

|〈yj, ũi〉|2 +

l∑
j=1

l∑
i=1

λij(δij − 〈ũi, ũj〉).

The first-order optimality conditions

∂

∂ũi
L (Ũ,Λ) = 0

can be transformed into

n∑
j=1

〈yj, ũi〉yj︸ ︷︷ ︸
=YY t ũi

=
1
2

l∑
j=1

(λji + λij)ũi.
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Proper Orthogonal Decomposition The POD method in Rm

POD as best-approximation

Together with the remaining first-order optimality conditions

∂

∂λij
L (Ũ,Λ) = δij − 〈ũi, ũj〉 = 0,

we get λij = λiiδij which implies

YY tũi = λiiũi.

Hence, Ũ∗ = U and Λ∗ = diag(σ2
1 , ..., σ

2
l ) solves the optimization problem and

max
(ũ1,...,ũl)

n∑
j=1

l∑
i=1

|〈yj, ũi〉|2 =

l∑
i=1

σ2
i .
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Proper Orthogonal Decomposition The weighted POD method in Rm

Approximation of L2(Ω)

Let Ω := (a, b) ⊆ R1, m ∈ N, h := b−a
m−1 , x := (x1, ..., xm) ∈ Rm, xi := (i− 1)h ∈ Ω.

We approximate the infinte-dimensional Lebesgue space

L2(Ω) := {ϕ : Ω→ R | 〈ϕ,ϕ〉L2 <∞}, 〈ϕ,ψ〉L2 :=

∫
Ω

ϕ(x)ψ(x) dx

by ϕ 7→ ϕh := ϕ(x) ∈ Rm,

L2
h(Ω) := Rm, 〈ϕh, ψh〉L2

h
:=

h
2
ϕ1

hψ
1
h +

m−1∑
i=2

hϕi
hψ

i
h +

h
2
ϕm

h ψ
m
h ,

the trapezoidal rule for numerical integration.

Let W := diag( h
2 , h, ..., h,

h
2 ) ∈ Rm×m (symmetric & positive definite). Then 〈·, ·〉L2

h
can be considered as the weighted Rm-scalar product

〈ϕh, ψh〉L2
h

= 〈ϕh,Wψh〉 ≈ 〈ϕ,ψ〉L2 .
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Proper Orthogonal Decomposition The weighted POD method in Rm

The weighted POD method in Rm

THEOREM. Let Y ∈ Rm×n, rank(Y) = d, and W ∈ Rm×m symmetric & positive
definite, 〈·, ·〉W := 〈·,W·〉.

Let Ȳ :=
√

WY and Ȳ = ŪΣV̄ t the SVD of Ȳ .

Then the solution to the minimization problem
min

(ũ1,...,ũl)

n∑
j=1

∥∥∥∥yj −
l∑

i=1

〈yj, ũi〉W ũi

∥∥∥∥2

W

subject to 〈ũi, ũj〉W = δij

is given by ui =
√

W
−1

ūi.
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Application on parabolic evolution equations Finite differences for the one-dimensional heat equation

Finite differences for the one-dimensional heat equation

Let T > 0 and Θ := (0,T). We transform the one-dimensional heat equation ẏ(t, x)−∆y(t, x) = f (t, x) on Θ× Ω
yx(t, x) = 0 on Θ× ∂Ω

y(0) = y0 on Ω
(pde)

via

y(t, ·) ≈ yh(t) ∈ Rm, ∆y(t, xi) ≈
yi−1

h (t)− 2yi
h(t) + yi+1

h (t)
h2

into a system of ordinary differential equations{
ẏh(t)− Ahyh(t) = fh(t) on Θ

yh(0) = y0,h
(pdeh)
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Application on parabolic evolution equations Finite differences for the one-dimensional heat equation

Finite differences for the one-dimensional heat equation

with

Ah =
1
h2


−2 2
1 −2 1

. . . . . . . . .
1 −2 1

2 −2


and

fh(t) =


f (t, x1)
f (t, x2)

...
f (t, xm−1)
f (t, xm)

 , y0,h =


y0(x1)
y0(x2)

...
y0(xm−1)
y0(xm)

 .
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Application on parabolic evolution equations The continuous POD method

The continuous POD method

THEOREM: Let yh ∈ C1(Θ,Rm) ∩ C0(Θ,Rm) the solution to (pdeh).

Consider the operator Yh ∈ Lb(L2(Θ,R),Rm) and the corresponding adjoint
operator Y∗h ∈ Lb(Rm,L2(Θ,R)), given by

Yhϕ :=

∫
Θ

ϕ(t)yh(t) dt ∈ Rm, Y∗h u := 〈u, yh(·)〉W ∈ L2(Θ,R).

Let Ul = (u1, ..., ul) a POD-basis of rank l to the operator YhY∗h : Rm → Rm.

Then Ul solves the minimization problem min
ũ1,...,ũl

∫
Θ

∥∥∥∥yh(t)−
N∑

i=1

〈yh(t), ũi〉W ũi

∥∥∥∥2

W
dt

subject to 〈ũi, ũj〉W = δij
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Application on parabolic evolution equations Reduced Order Model

The Reduced Order Model

To solve (pdeh) approximatively with little numerical effort, we make the
POD-Galerkin ansatz

yl(t) :=

l∑
i=1

yl
i(t)ui ≈ yh(t).

The desired vector of the time-dependent coefficients, yl(t) ∈ Rm, is given as the
solution to the Reduced-Order Model (ROM){

M(u)ẏl(t)− A(u)yl(t) = F(u)(t) on Θ
M(u)yl(0) = y0(u)

(pdel
h)

where M(u) := (〈ui, uj〉W) = Id(l), A(u) := (〈Ahui, uj〉W), F(u) := (〈fh(t), ui〉W) and
y0(u) = (〈y0,h, ui〉W).
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Application on parabolic evolution equations Error analysis for the continuous Reduced Order Model

Error analysis for continuous ROM

There exists some C > 0 such that∫
Θ

||yh(t)− yl(t)||2W dt ≤ C
d∑

i=l+1

λi + C
m∑

i=l+1

∫
Θ

|〈ẏh(t), ui〉W |2 dt.

To avoid the last term, a POD basis which also respects the time derivative of y can be
determined as the solution to min

ũ1,...,ũl

∫
Θ

∥∥∥∥y(t)−
l∑

i=1

〈y(t), ũi〉W ũi

∥∥∥∥2

W
dt +

∫
Θ

∥∥∥∥ẏ(t)−
l∑

i=1

〈ẏ(t), ũi〉W ũi

∥∥∥∥2

W
dt

subject to 〈ũi, ũj〉W = δij

which is given as the set of eigenvectors to the l largest eigenvalues of YhY∗h + ẎhẎ∗h ,

Ẏhϕ :=

∫
Θ

ϕ(t)ẏh(t) dt ∈ Rm, Ẏ∗h u := 〈u, ẏh(·)〉W ∈ L2(Θ,R).
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Application on parabolic evolution equations The discrete POD method

Time discretization for the heat equation

Let n ∈ N, k := T
n−1 , tj := (j− 1)k ∈ Θ and Yj ≈ yh(tj).

We transform (pdeh) via

yh(·) ≈ Y ∈ Rm×n, ẏh(tj) ≈
Yj − Yj−1

k

into a linear system of equations,{ Yj − Yj−1

k
− AhYj = F

Y1 = Y0

(pdeh,k)

where F = (fh(tj)) and Y0 = y0,h.

Hence, we have y(tj, xi) ≈ yh,i(tj) ≈ Yij.
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Application on parabolic evolution equations The discrete POD method

The discrete POD method

THEOREM: Let α = ( k
2 , k, ..., k,

k
2 ) ∈ Rn the corresponding trapezoidal weights.

Let Ul = (u1, ..., ul) a POD basis to the operator

Ȳdiag(α)Ȳ t : u 7→
n∑

j=1

αj〈Yj, u〉WYj ≈
∫
Θ

〈yh(t), u〉Wyh(t) dt = YhY∗h u.

Then Ul solves the minimization problem
min

(ũ1,...,ũl)

n∑
j=1

αj

∥∥∥∥Yj −
l∑

i=1

〈Yj, ũi〉W ũi

∥∥∥∥2

W

subject to 〈ũi, ũj〉W = δij

In general we have ||Ȳdiag(α)Ȳ t − YhY∗h ||Lb(Rm,Rm)
n→∞−→ 0.
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Numerical example The homogenous one-dimensional heat equation

The homogenous one-dimensional heat equation

Let Ω = (0, 2), Θ = (0, 3), m = 2500 the number of time discretization points and
n = 7500 the number of spatial gridpoints.

y ∈ Rm×n, yij ≈ y(ti, xj) denotes the approximative solution to ẏ(t, x)−∆y(t, x) = 0 on Θ× Ω
y(t, x) = 0 on Θ× ∂Ω
y(0, x) = y0(x) := −x2 + 2x on Ω

calculated by central differences for ∆ and the implicit Euler method for d
dt in 4.45

sec.

The calculation of the first 10 pod elements takes 19.88 sec.
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Numerical example ROM with different number of pod elements

The homogenous one-dimensional heat equation

l eigval. time absol. / relat. L^2 error inform.

1 2.16e-01 0.51sec / 11.66% 2.17e-05 96.52%
2 2.16e-05 0.50sec / 11.25% 1.25e-07 99.39%
3 1.20e-07 0.55sec / 12.49% 2.80e-09 99.83%
4 2.51e-09 0.58sec / 13.06% 1.29e-10 99.94%
5 1.05e-10 0.59sec / 13.47% 9.23e-12 99.98%
6 6.63e-12 0.58sec / 13.06% 7.38e-13 99.99%
7 4.74e-13 0.58sec / 13.04% 5.17e-14 99.99%
8 3.10e-14 0.59sec / 13.31% 3.15e-15 99.99%
9 1.77e-15 0.58sec / 13.10% 1.98e-15 99.99%
10 8.81e-17 0.60sec / 13.61% 1.65e-15 99.99%
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Numerical example ROM with different number of pod elements

The homogenous one-dimensional heat equation
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Numerical example ROM with different number of pod elements

The homogenous one-dimensional heat equation
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Application in optimal control The controlled one-dimensional heat equation

The controlled one-dimensional heat equation

Consider the optimization problem

min
(y,u)∈Y×U

J(y, u) =
1
2
||y||2L2(Θ×Ω) +

1
2
||u||2L2(Θ)

subject to ẏ(t, y)−∆y(t, x) = f (t, x) + u(t)χ(x) for (t, x) ∈ Θ× Ω
y(t, x) = 0 for (t, x) ∈ Θ× ∂Ω
y(0, x) = y0(x) for x ∈ Ω

. (pdeu)

f ∈ L2(Θ× Ω) and y0, χ ∈ L2(Ω) are given data.
The state-control pair (y, u) ∈ Y × U is desired.
U = L2(Θ) and Y = L2(Θ,H1

0(Ω)) ∩H1(Θ,H1
0(Ω)∗).

(pdeu) admits an affin linear and bounded solution operator S : U → Y .
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Application in optimal control Optimality condition and numerical strategy

Optimality condition and numerical strategy

We consider the equivalent unconstraint optimization problem

min
u∈U

Ĵ(u) =
1
2
||Su||2L2(Θ×Ω) +

1
2
||u||2L2(Θ).

which admits a unique solution u∗ ∈ U.

The first-order optimality condition is

∇Ĵ(u) = S∗Su + u = 0

where S∗ : Y → U can be considered as the adjoint operator of S.
Let un ∈ U some suboptimal control, then the direction that guarantees maximal
local decay of Ĵ in un is dn = −∇Ĵ(un) and there is some stepsize sn > 0 such
that un+1 = un + sndn satisfies Ĵ(un+1)� Ĵ(un).
� is interpreted in the sence that a sequence (un)n∈N created in this way
converges at least linearily towards u∗.
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Application of model reduction with POD

We can determine dn = −(S∗Sun + un) by solving (pdeu) and the corresponding
adjoint equation (pde∗Su).

sn can be received by testing if sn = 1, 1
2 ,

1
4 ,

1
8 , ... lead to a sufficient decay of Ĵ.

But: To check if Ĵ(un+1)� Ĵ(un) requires to calculate S(un + sndn), i.e. to solve
(pdeu) again and again.

To accelerate the algorithm, we determine a rank-l POD basis of yn = Sun and
solve y(sn) = S(un + sndn) by the cheep POD-Galerkin ansatz.

To summerize: The effort of POD model order reduction is justified if the POD
basis is used during an iteration that requires many evaluations of partial
differential equations, i.e. if the same POD basis is used for multiple Galerkin
ansätze.
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