Model Reduction using
 Proper Orthogonal Decomposition and Applications in Optimization

Workshop on RB and POD Model-Order Reduction, Konstanz

Martin Gubisch

University of Konstanz

November 21

POD-Galerkin ansatz

Motivation:

Find finite elements $\left\{u_{1}, \ldots, u_{l}\right\}$ which reflect the dynamics of the evolution equation

$$
\left\{\begin{array}{rll}
\dot{y}(t)-A y(t) & = & f(t) \\
y(0) & = & y_{0}
\end{array},\right.
$$

i.e. $y^{l}(t):=\sum_{i=1}^{l} \mathrm{y}_{i}(t) u_{i}$ determined by solving the reduced Galerkin system

$$
\left\{\begin{array}{rl}
\mathrm{M}(u) \dot{\mathrm{y}}(t)-\mathrm{A}(u) \mathrm{y}(t) & =\mathrm{F}(u)(t) \\
\mathrm{M}(u) \mathrm{y}(0) & =\mathrm{y}_{0}(u)
\end{array},\right.
$$

is a good approximation for y where l is quite small.

Singular value decomposition

Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ the columns of a matrix $Y \in \mathbb{R}^{m \times n}$ of rank d.
Then there are $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{t} Y V=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}, \quad D=\operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d} .
$$

Singular value decomposition

Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ the columns of a matrix $Y \in \mathbb{R}^{m \times n}$ of rank d.
Then there are $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{t} Y V=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}, \quad D=\operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d} .
$$

- The columns u_{1}, \ldots, u_{m} of U are the eigenvectors of $Y Y^{t}$ corresponding to the eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, 0, \ldots, 0$.
- Analogously, the columns v_{1}, \ldots, v_{n} of V are the eigenvectors of $Y^{t} Y$ corresponding to the eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{d}^{2}, 0, \ldots, 0$.
- The columns of Y can be represented by

$$
y_{j}=\sum_{i=1}^{d}\left\langle y_{j}, u_{i}\right\rangle u_{i}
$$

Universität
Konstanz

Singular value decomposition

Let $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$ the columns of a matrix $Y \in \mathbb{R}^{m \times n}$ of rank d.
Then there are $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{d}>0$ and orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
U^{t} Y V=\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right)=: \Sigma \in \mathbb{R}^{m \times n}, \quad D=\operatorname{diag}(\sigma) \in \mathbb{R}^{d \times d} .
$$

- The representation

$$
Y=U \Sigma V^{t}
$$

is called the Proper Orthogonal Decomposition (POD) of Y.

- The orthogonal subbasis $U^{l}:=\left\{u_{1}, \ldots, u_{l}\right\}$ of the image $\operatorname{Im}(Y)$ is called the POD-basis of rank $l(l \leq d)$.
- The optimal representation of y as a linear combination with l vectors is

$$
y \approx \sum_{i=1}^{l}\left\langle y, u_{i}\right\rangle u_{i}:
$$

POD as best-approximation

Theorem. The minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{l}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{l}\left\langle y_{j}, \tilde{u}_{i}\right\rangle \tilde{u}_{i}\right\|^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=\delta_{i j}
\end{array}\right.
$$

is solved by the POD-basis $\left(u_{1}, \ldots, u_{l}\right)$.

POD as best-approximation

Theorem. The minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{l}\left\langle y_{j}, \tilde{u}_{i}\right\rangle \tilde{u}_{i}\right\|^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=\delta_{i j}
\end{array}\right.
$$

is solved by the POD-basis $\left(u_{1}, \ldots, u_{l}\right)$.

The Pythagoras theorem states that this optimization problem is equivalent to

$$
\left\{\begin{array}{l}
\max _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=\delta_{i j}
\end{array}\right.
$$

POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function

$$
\mathscr{L}: \mathbb{R}^{m \times l} \times \mathbb{R}^{l \times l}
$$

by

$$
\mathscr{L}(\tilde{U}, \Lambda):=\sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2}+\sum_{j=1}^{l} \sum_{i=1}^{l} \lambda_{i j}\left(\delta_{i j}-\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle\right) .
$$

POD as best-approximation

To solve the constraint maximization problem, we introduce the Lagrange function

$$
\mathscr{L}: \mathbb{R}^{m \times l} \times \mathbb{R}^{l \times l}
$$

by

$$
\mathscr{L}(\tilde{U}, \Lambda):=\sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2}+\sum_{j=1}^{l} \sum_{i=1}^{l} \lambda_{i j}\left(\delta_{i j}-\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle\right) .
$$

The first-order optimality conditions

$$
\frac{\partial}{\partial \tilde{u}_{i}} \mathscr{L}(\tilde{U}, \Lambda)=0
$$

can be transformed into

$$
\underbrace{\sum_{j=1}^{n}\left\langle y_{j}, \tilde{u}_{i}\right\rangle y_{j}}_{=Y Y^{\prime} \tilde{u}_{i}}=\frac{1}{2} \sum_{j=1}^{l}\left(\lambda_{j i}+\lambda_{i j}\right) \tilde{u}_{i}
$$

POD as best-approximation

Together with the remaining first-order optimality conditions

$$
\frac{\partial}{\partial \lambda_{i j}} \mathscr{L}(\tilde{U}, \Lambda)=\delta_{i j}-\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle=0
$$

we get $\lambda_{i j}=\lambda_{i i} \delta_{i j}$ which implies

$$
Y Y^{t} \tilde{u}_{i}=\lambda_{i i} \tilde{u}_{i} .
$$

Hence, $\tilde{U}^{*}=U$ and $\Lambda^{*}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{l}^{2}\right)$ solves the optimization problem and

$$
\max _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \sum_{i=1}^{l}\left|\left\langle y_{j}, \tilde{u}_{i}\right\rangle\right|^{2}=\sum_{i=1}^{l} \sigma_{i}^{2} .
$$

Approximation of $\mathcal{L}^{2}(\Omega)$

Let $\Omega:=(a, b) \subseteq \mathbb{R}^{1}, m \in \mathbb{N}, h:=\frac{b-a}{m-1}, x:=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}, x_{i}:=(i-1) h \in \bar{\Omega}$.
We approximate the infinte-dimensional Lebesgue space

$$
\mathcal{L}^{2}(\Omega):=\left\{\varphi: \Omega \rightarrow \mathbb{R} \mid\langle\varphi, \varphi\rangle_{\mathcal{L}^{2}}<\infty\right\}, \quad\langle\varphi, \psi\rangle_{\mathcal{L}^{2}}:=\int_{\Omega} \varphi(x) \psi(x) \mathrm{d} x
$$

by $\varphi \mapsto \varphi_{h}:=\varphi(x) \in \mathbb{R}^{m}$,

$$
\mathcal{L}_{h}^{2}(\Omega):=\mathbb{R}^{m}, \quad\left\langle\varphi_{h}, \psi_{h}\right\rangle_{\mathcal{L}_{h}^{2}}:=\frac{h}{2} \varphi_{h}^{1} \psi_{h}^{1}+\sum_{i=2}^{m-1} h \varphi_{h}^{i} \psi_{h}^{i}+\frac{h}{2} \varphi_{h}^{m} \psi_{h}^{m},
$$

the trapezoidal rule for numerical integration.
Let $W:=\operatorname{diag}\left(\frac{h}{2}, h, \ldots, h, \frac{h}{2}\right) \in \mathbb{R}^{m \times m}$ (symmetric \& positive definite). Then $\langle\cdot, \cdot\rangle_{\mathcal{L}_{h}^{2}}$ can be considered as the weighted \mathbb{R}^{m}-scalar product

$$
\left\langle\varphi_{h}, \psi_{h}\right\rangle_{\mathcal{L}_{h}^{2}}=\left\langle\varphi_{h}, W \psi_{h}\right\rangle \approx\langle\varphi, \psi\rangle_{\mathcal{L}^{2}} .
$$

The weighted POD method in \mathbb{R}^{m}

TheOrem. Let $Y \in \mathbb{R}^{m \times n}, \operatorname{rank}(Y)=d$, and $W \in \mathbb{R}^{m \times m}$ symmetric \& positive definite, $\langle\cdot, \cdot\rangle_{W}:=\langle\cdot, W \cdot\rangle$.

Let $\bar{Y}:=\sqrt{W} Y$ and $\bar{Y}=\bar{U} \Sigma \bar{V}^{t}$ the SVD of \bar{Y}.
Then the solution to the minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{l}\left\langle y_{j}, \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

is given by $u_{i}=\sqrt{W}^{-1} \bar{u}_{i}$.

Finite differences for the one-dimensional heat equation

Let $T>0$ and $\Theta:=(0, T)$. We transform the one-dimensional heat equation

$$
\left\{\begin{align*}
\dot{y}(t, x)-\Delta y(t, x) & =f(t, x) & & \text { on } \Theta \times \Omega \tag{pde}\\
y_{x}(t, x) & =0 & & \text { on } \Theta \times \partial \Omega \\
y(0) & =y_{0} & & \text { on } \Omega
\end{align*}\right.
$$

via

$$
y(t, \cdot) \approx y_{h}(t) \in \mathbb{R}^{m}, \quad \Delta y\left(t, x_{i}\right) \approx \frac{y_{h}^{i-1}(t)-2 y_{h}^{i}(t)+y_{h}^{i+1}(t)}{h^{2}}
$$

into a system of ordinary differential equations

$$
\left\{\begin{align*}
\dot{y}_{h}(t)-A_{h} y_{h}(t) & =f_{h}(t) \quad \text { on } \Theta \tag{h}\\
y_{h}(0) & =y_{0, h}
\end{align*}\right.
$$

Finite differences for the one-dimensional heat equation

with

$$
A_{h}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
-2 & 2 & & & \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
& & & 2 & -2
\end{array}\right)
$$

and

$$
f_{h}(t)=\left(\begin{array}{c}
f\left(t, x_{1}\right) \\
f\left(t, x_{2}\right) \\
\vdots \\
f\left(t, x_{m-1}\right) \\
f\left(t, x_{m}\right)
\end{array}\right), \quad y_{0, h}=\left(\begin{array}{c}
y_{0}\left(x_{1}\right) \\
y_{0}\left(x_{2}\right) \\
\vdots \\
y_{0}\left(x_{m-1}\right) \\
y_{0}\left(x_{m}\right)
\end{array}\right) .
$$

The continuous POD method

Theorem: Let $y_{h} \in \mathcal{C}^{1}\left(\Theta, \mathbb{R}^{m}\right) \cap \mathcal{C}^{0}\left(\bar{\Theta}, \mathbb{R}^{m}\right)$ the solution to $\left(\right.$ pde $\left._{h}\right)$.
Consider the operator $\mathcal{Y}_{h} \in \mathcal{L}_{b}\left(\mathcal{L}^{2}(\Theta, \mathbb{R}), \mathbb{R}^{m}\right)$ and the corresponding adjoint operator $\mathcal{Y}_{h}^{*} \in \mathcal{L}_{b}\left(\mathbb{R}^{m}, \mathcal{L}^{2}(\Theta, \mathbb{R})\right)$, given by

$$
\mathcal{Y}_{h} \varphi:=\int_{\Theta} \varphi(t) y_{h}(t) \mathrm{d} t \in \mathbb{R}^{m}, \quad \mathcal{Y}_{h}^{*} u:=\left\langle u, y_{h}(\cdot)\right\rangle_{W} \in \mathcal{L}^{2}(\Theta, \mathbb{R}) .
$$

Let $U^{l}=\left(u_{1}, \ldots, u_{l}\right)$ a POD-basis of rank l to the operator $\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then U^{l} solves the minimization problem

$$
\left\{\begin{array}{l}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{l}} \int_{\Theta}\left\|y_{h}(t)-\sum_{i=1}^{N}\left\langle y_{h}(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
\text { subject to } \quad\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

The Reduced Order Model

To solve (pde_{h}) approximatively with little numerical effort, we make the POD-Galerkin ansatz

$$
y^{l}(t):=\sum_{i=1}^{l} \mathrm{y}_{i}^{l}(t) u_{i} \approx y_{h}(t)
$$

The desired vector of the time-dependent coefficients, $\mathrm{y}^{l}(t) \in \mathbb{R}^{m}$, is given as the solution to the Reduced-Order Model (ROM)

$$
\left\{\begin{aligned}
\mathrm{M}(u) \dot{\mathrm{y}}^{l}(t)-\mathrm{A}(u) \mathrm{y}^{l}(t) & =\mathrm{F}(u)(t) \quad \text { on } \Theta \\
\mathrm{M}(u) \mathrm{y}^{l}(0) & =\mathrm{y}_{0}(u)
\end{aligned}\right.
$$

where $\mathrm{M}(u):=\left(\left\langle u_{i}, u_{j}\right\rangle_{W}\right)=\operatorname{Id}(l), \mathrm{A}(u):=\left(\left\langle A_{h} u_{i}, u_{j}\right\rangle_{W}\right), \mathrm{F}(u):=\left(\left\langle f_{h}(t), u_{i}\right\rangle_{W}\right)$ and $\mathrm{y}_{0}(u)=\left(\left\langle y_{0, h}, u_{i}\right\rangle_{W}\right)$.

Error analysis for continuous ROM

There exists some $C>0$ such that

$$
\int_{\Theta}\left\|y_{h}(t)-y^{l}(t)\right\|_{W}^{2} \mathrm{~d} t \leq C \sum_{i=l+1}^{d} \lambda_{i}+C \sum_{i=l+1}^{m} \int_{\Theta}\left|\left\langle\dot{y}_{h}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t
$$

Error analysis for continuous ROM

There exists some $C>0$ such that

$$
\int_{\Theta}\left\|y_{h}(t)-y^{l}(t)\right\|_{W}^{2} \mathrm{~d} t \leq C \sum_{i=l+1}^{d} \lambda_{i}+C \sum_{i=l+1}^{m} \int_{\Theta}\left|\left\langle\dot{y}_{h}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t
$$

To avoid the last term, a POD basis which also respects the time derivative of y can be determined as the solution to

$$
\left\{\begin{array}{l}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{l}} \int_{\Theta}\left\|y(t)-\sum_{i=1}^{l}\left\langle y(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t+\int_{\Theta}\left\|\dot{y}(t)-\sum_{i=1}^{l}\left\langle\dot{y}(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

Error analysis for continuous ROM

There exists some $C>0$ such that

$$
\int_{\Theta}\left\|y_{h}(t)-y^{l}(t)\right\|_{W}^{2} \mathrm{~d} t \leq C \sum_{i=l+1}^{d} \lambda_{i}+C \sum_{i=l+1}^{m} \int_{\Theta}\left|\left\langle\dot{y}_{h}(t), u_{i}\right\rangle_{W}\right|^{2} \mathrm{~d} t .
$$

To avoid the last term, a POD basis which also respects the time derivative of y can be determined as the solution to

$$
\left\{\begin{array}{l}
\min _{\tilde{u}_{1}, \ldots, \tilde{u}_{l}} \int_{\Theta}\left\|y(t)-\sum_{i=1}^{l}\left\langle y(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t+\int_{\Theta}\left\|\dot{y}(t)-\sum_{i=1}^{l}\left\langle\dot{y}(t), \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \mathrm{~d} t \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

which is given as the set of eigenvectors to the l largest eigenvalues of $\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}+\dot{\mathcal{Y}}_{h} \dot{\mathcal{Y}}_{h}^{*}$,

$$
\dot{\mathcal{Y}}_{h} \varphi:=\int_{\Theta} \varphi(t) \dot{y}_{h}(t) \mathrm{d} t \in \mathbb{R}^{m}, \quad \dot{\mathcal{Y}}_{h}^{*} u:=\left\langle u, \dot{y}_{h}(\cdot)\right\rangle_{W} \in \mathcal{L}^{2}(\Theta \underset{\substack{\text { Universität } \\ \text { Konstanz }}}{\mathbb{R}) .}
$$

Time discretization for the heat equation

Let $n \in \mathbb{N}, k:=\frac{T}{n-1}, t_{j}:=(j-1) k \in \Theta$ and $Y_{j} \approx y_{h}\left(t_{j}\right)$.
We transform $\left(\right.$ pde $\left._{h}\right)$ via

$$
y_{h}(\cdot) \approx Y \in \mathbb{R}^{m \times n}, \quad \dot{y}_{h}\left(t_{j}\right) \approx \frac{Y_{j}-Y_{j-1}}{k}
$$

into a linear system of equations,

$$
\left\{\begin{aligned}
\frac{Y_{j}-Y_{j-1}}{k}-A_{h} Y_{j} & =F \\
Y_{1} & =Y_{0}
\end{aligned}\right.
$$

where $F=\left(f_{h}\left(t_{j}\right)\right)$ and $Y_{0}=y_{0, h}$.
Hence, we have $y\left(t_{j}, x_{i}\right) \approx y_{h, i}\left(t_{j}\right) \approx Y_{i j}$.

The discrete POD method

Theorem: Let $\alpha=\left(\frac{k}{2}, k, \ldots, k, \frac{k}{2}\right) \in \mathbb{R}^{n}$ the corresponding trapezoidal weights.
Let $U^{l}=\left(u_{1}, \ldots, u_{l}\right)$ a POD basis to the operator

$$
\bar{Y} \operatorname{diag}(\alpha) \bar{Y}^{t}: u \mapsto \sum_{j=1}^{n} \alpha_{j}\left\langle Y_{j}, u\right\rangle_{W} Y_{j} \approx \int_{\Theta}\left\langle y_{h}(t), u\right\rangle_{W} y_{h}(t) \mathrm{d} t=\mathcal{Y}_{h} \mathcal{Y}_{h}^{*} u .
$$

Then U^{l} solves the minimization problem

$$
\left\{\begin{array}{l}
\min _{\left(\tilde{u}_{1}, \ldots, \tilde{u}_{l}\right)} \sum_{j=1}^{n} \alpha_{j}\left\|Y_{j}-\sum_{i=1}^{l}\left\langle Y_{j}, \tilde{u}_{i}\right\rangle_{W} \tilde{u}_{i}\right\|_{W}^{2} \\
\text { subject to }\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle_{W}=\delta_{i j}
\end{array}\right.
$$

In general we have $\left\|\bar{Y} \operatorname{diag}(\alpha) \bar{Y}^{t}-\mathcal{Y}_{h} \mathcal{Y}_{h}^{*}\right\|_{\mathcal{L}_{b}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)} \xrightarrow{n \rightarrow \infty} 0$.

The homogenous one-dimensional heat equation

Let $\Omega=(0,2), \Theta=(0,3), m=2500$ the number of time discretization points and $n=7500$ the number of spatial gridpoints.
$y \in \mathbb{R}^{m \times n}, y_{i j} \approx y\left(t_{i}, x_{j}\right)$ denotes the approximative solution to

$$
\left\{\begin{aligned}
\dot{y}(t, x)-\Delta y(t, x) & =0 & & \text { on } \Theta \times \Omega \\
y(t, x) & =0 & & \text { on } \Theta \times \partial \Omega \\
y(0, x) & =y_{0}(x):=-x^{2}+2 x & & \text { on } \Omega
\end{aligned}\right.
$$

calculated by central differences for Δ and the implicit Euler method for $\frac{\mathrm{d}}{\mathrm{d} t}$ in $\mathbf{4 . 4 5}$ sec.

The calculation of the first 10 pod elements takes $\mathbf{1 9 . 8 8} \mathbf{~ s e c}$.

The homogenous one-dimensional heat equation

1	eigval.	time absol. / relat.	L^2 error	inform.
1	$2.16 e-01$	$0.51 \mathrm{sec} / 11.66 \%$	$2.17 e-05$	96.52\%
2	$2.16 e-05$	$0.50 \mathrm{sec} / 11.25 \%$	$1.25 e-07$	99.39\%
3	$1.20 \mathrm{e}-07$	$0.55 \mathrm{sec} / 12.49 \%$	$2.80 \mathrm{e}-09$	99.83\%
4	$2.51 \mathrm{e}-09$	$0.58 \mathrm{sec} / 13.06 \%$	$1.29 \mathrm{e}-10$	99.94\%
5	$1.05 \mathrm{e}-10$	$0.59 \mathrm{sec} / 13.47 \%$	$9.23 \mathrm{e}-12$	99.98\%
6	$6.63 \mathrm{e}-12$	$0.58 \mathrm{sec} / 13.06 \%$	$7.38 \mathrm{e}-13$	99.99\%
7	$4.74 \mathrm{e}-13$	$0.58 \mathrm{sec} / 13.04 \%$	$5.17 e-14$	99.99\%
8	$3.10 \mathrm{e}-14$	$0.59 \mathrm{sec} / 13.31 \%$	$3.15 e-15$	99.99\%
9	$1.77 \mathrm{e}-15$	$0.58 \mathrm{sec} / 13.10 \%$	$1.98 \mathrm{e}-15$	99.99\%
10	$8.81 e-17$	$0.60 \mathrm{sec} / 13.61 \%$	$1.65 e-15$	99.99\%
				ersität $\frac{1}{2}$

The homogenous one-dimensional heat equation

The homogenous one-dimensional heat equation

ROM solution with one pod element

Difference between FDM and ROM

Difference between FDM and ROM

The controlled one-dimensional heat equation

Consider the optimization problem

$$
\min _{(y, u) \in Y \times U} J(y, u)=\frac{1}{2}\|y\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2}
$$

subject to

$$
\left\{\begin{aligned}
\dot{y}(t, y)-\Delta y(t, x) & =f(t, x)+u(t) \chi(x) & & \text { for }(t, x) \in \Theta \times \Omega \\
y(t, x) & =0 & & \text { for }(t, x) \in \Theta \times \partial \Omega . \\
y(0, x) & =y_{0}(x) & & \text { for } x \in \Omega
\end{aligned} \quad\left(\operatorname{pde}_{u}\right)\right.
$$

The controlled one-dimensional heat equation

Consider the optimization problem

$$
\min _{(y, u) \in Y \times U} J(y, u)=\frac{1}{2}\|y\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2}
$$

subject to

$$
\left\{\begin{aligned}
\dot{y}(t, y)-\Delta y(t, x) & =f(t, x)+u(t) \chi(x) & & \text { for }(t, x) \in \Theta \times \Omega \\
y(t, x) & =0 & & \text { for }(t, x) \in \Theta \times \partial \Omega . \\
y(0, x) & =y_{0}(x) & & \text { for } x \in \Omega
\end{aligned} \quad\left(\operatorname{pde}_{u}\right)\right.
$$

- $f \in \mathcal{L}^{2}(\Theta \times \Omega)$ and $y_{0}, \chi \in \mathcal{L}^{2}(\Omega)$ are given data.
- The state-control pair $(y, u) \in Y \times U$ is desired.
- $U=\mathcal{L}^{2}(\Theta)$ and $Y=\mathcal{L}^{2}\left(\Theta, \mathcal{H}_{0}^{1}(\Omega)\right) \cap \mathcal{H}^{1}\left(\Theta, \mathcal{H}_{0}^{1}(\Omega)^{*}\right)$.
- (pde $_{u}$) admits an affin linear and bounded solution operator $S: U \rightarrow Y$.

Optimality condition and numerical strategy

We consider the equivalent unconstraint optimization problem

$$
\min _{u \in U} \hat{J}(u)=\frac{1}{2}\|S u\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2} .
$$

which admits a unique solution $u^{*} \in U$.

Optimality condition and numerical strategy

We consider the equivalent unconstraint optimization problem

$$
\min _{u \in U} \hat{J}(u)=\frac{1}{2}\|S u\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2}
$$

which admits a unique solution $u^{*} \in U$.

- The first-order optimality condition is

$$
\nabla \hat{J}(u)=S^{*} S u+u=0
$$

where $S^{*}: Y \rightarrow U$ can be considered as the adjoint operator of S.

Optimality condition and numerical strategy

We consider the equivalent unconstraint optimization problem

$$
\min _{u \in U} \hat{J}(u)=\frac{1}{2}\|S u\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2}
$$

which admits a unique solution $u^{*} \in U$.

- The first-order optimality condition is

$$
\nabla \hat{J}(u)=S^{*} S u+u=0
$$

where $S^{*}: Y \rightarrow U$ can be considered as the adjoint operator of S.

- Let $u_{n} \in U$ some suboptimal control, then the direction that guarantees maximal local decay of \hat{J} in u_{n} is $d_{n}=-\nabla \hat{J}\left(u_{n}\right)$ and there is some stepsize $s_{n}>0$ such that $u_{n+1}=u_{n}+s_{n} d_{n}$ satisfies $\hat{J}\left(u_{n+1}\right) \ll \hat{J}\left(u_{n}\right)$.

Optimality condition and numerical strategy

We consider the equivalent unconstraint optimization problem

$$
\min _{u \in U} \hat{J}(u)=\frac{1}{2}\|S u\|_{\mathcal{L}^{2}(\Theta \times \Omega)}^{2}+\frac{1}{2}\|u\|_{\mathcal{L}^{2}(\Theta)}^{2}
$$

which admits a unique solution $u^{*} \in U$.

- The first-order optimality condition is

$$
\nabla \hat{J}(u)=S^{*} S u+u=0
$$

where $S^{*}: Y \rightarrow U$ can be considered as the adjoint operator of S.

- Let $u_{n} \in U$ some suboptimal control, then the direction that guarantees maximal local decay of \hat{J} in u_{n} is $d_{n}=-\nabla \hat{J}\left(u_{n}\right)$ and there is some stepsize $s_{n}>0$ such that $u_{n+1}=u_{n}+s_{n} d_{n}$ satisfies $\hat{J}\left(u_{n+1}\right) \ll \hat{J}\left(u_{n}\right)$.
- \ll is interpreted in the sence that a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ created in this way converges at least linearily towards u^{*}.

Application of model reduction with POD

- We can determine $d_{n}=-\left(S^{*} S u_{n}+u_{n}\right)$ by solving (pde_{u}) and the corresponding adjoint equation ($\mathrm{pde}_{S u}^{*}$).

Application of model reduction with POD

- We can determine $d_{n}=-\left(S^{*} S u_{n}+u_{n}\right)$ by solving (pde $_{u}$) and the corresponding adjoint equation ($\mathrm{pde}_{S u}^{*}$).
- s_{n} can be received by testing if $s_{n}=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ lead to a sufficient decay of \hat{J}.

Application of model reduction with POD

- We can determine $d_{n}=-\left(S^{*} S u_{n}+u_{n}\right)$ by solving (pde_{u}) and the corresponding adjoint equation ($\mathrm{pde}_{S u}^{*}$).
- s_{n} can be received by testing if $s_{n}=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ lead to a sufficient decay of \hat{J}.
- But: To check if $\hat{J}\left(u_{n+1}\right) \ll \hat{J}\left(u_{n}\right)$ requires to calculate $S\left(u_{n}+s_{n} d_{n}\right)$, i.e. to solve (pde_{u}) again and again.

Application of model reduction with POD

- We can determine $d_{n}=-\left(S^{*} S u_{n}+u_{n}\right)$ by solving (pde_{u}) and the corresponding adjoint equation ($\mathrm{pde}_{S u}^{*}$).
- s_{n} can be received by testing if $s_{n}=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ lead to a sufficient decay of \hat{J}.
- But: To check if $\hat{J}\left(u_{n+1}\right) \ll \hat{J}\left(u_{n}\right)$ requires to calculate $S\left(u_{n}+s_{n} d_{n}\right)$, i.e. to solve (pde $_{u}$) again and again.
- To accelerate the algorithm, we determine a rank-l POD basis of $y_{n}=S u_{n}$ and solve $y\left(s_{n}\right)=S\left(u_{n}+s_{n} d_{n}\right)$ by the cheep POD-Galerkin ansatz.

Application of model reduction with POD

- We can determine $d_{n}=-\left(S^{*} S u_{n}+u_{n}\right)$ by solving (pde_{u}) and the corresponding adjoint equation ($\mathrm{pde}_{S u}^{*}$).
- s_{n} can be received by testing if $s_{n}=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ lead to a sufficient decay of \hat{J}.
- But: To check if $\hat{J}\left(u_{n+1}\right) \ll \hat{J}\left(u_{n}\right)$ requires to calculate $S\left(u_{n}+s_{n} d_{n}\right)$, i.e. to solve (pde $_{u}$) again and again.
- To accelerate the algorithm, we determine a rank-l POD basis of $y_{n}=S u_{n}$ and solve $y\left(s_{n}\right)=S\left(u_{n}+s_{n} d_{n}\right)$ by the cheep POD-Galerkin ansatz.
- To summerize: The effort of POD model order reduction is justified if the POD basis is used during an iteration that requires many evaluations of partial differential equations, i.e. if the same POD basis is used for multiple Galerkin ansätze.

References

Hinze, M. \& Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition.
Comput. Optim. Appl. 39, pp. 319-345, 2008.
Kunisch, K. \& Volkwein, S.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition.
J. Optim. Theor. Appl. 102, pp. 345-371, 1999.

Kunisch, K. \& Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems.
Numer. Math. 90, pp. 117-148, 2001.

Kunisch, K. \& Volkwein, S.: Proper Orthogonal Decomposition for Optimality Systems. ESAIM: M2AN, Vol. 42, No. 1, pp. 1-23, 2008.

Tröltzsch, F. \& Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems.
Comput. Optim. Appl. 39, pp. 319-345, 2008.

Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition.
Vorlesungsskript Universität Konstanz, p. 42, 2010.

Universität
Konstanz

$21 / 21$

