Proper Orthogonal Decomposition for Optimal Control Problems with Mixed Control-State Constraints

Technische Universität Berlin

Martin Gubisch, Stefan Volkwein

University of Konstanz

March 20, 2013

Problem formulation

$$
\begin{equation*}
\min _{(y, u) \in Y \times U} J(y, u)=\frac{1}{2}\left\|y-y_{Q}\right\|_{L^{2}(0, T ; H)}^{2}+\frac{\kappa}{2}\|u\|_{U}^{2} \tag{ОСР}
\end{equation*}
$$

subject to

$$
\begin{aligned}
\langle\dot{y}(t), \varphi\rangle_{V^{\star}, V}+\langle\nabla y(t), \nabla \varphi\rangle_{H} & =\langle(\mathcal{B} u+f)(t), \varphi\rangle_{V^{\star}, V} & & \left(\varphi \in V=H_{0}^{1}(\Omega)\right) \\
\langle y(0), \varphi\rangle_{H} & =\left\langle y_{0}, \varphi\right\rangle_{H} & & \left(\varphi \in H=L^{2}(\Omega)\right)
\end{aligned}
$$

and

$$
\varepsilon u(t)+(\mathcal{I} y)(t) \leq u_{b}(t)
$$

with $U=L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ and $\mathcal{B}: U \rightarrow L^{2}(0, T ; H), \mathcal{I}: L^{2}(0, T ; H) \rightarrow U$ given by

$$
(\mathcal{B} u)(t, x)=\sum_{i=1}^{m} u_{i}(t) \chi_{i}(x), \quad(\mathcal{I} y)(t)=\left(\int_{\operatorname{supp}\left(\chi_{i}\right)} y(t, x) \mathrm{d} x\right)
$$

Universität
Konstanz

Lagrange functional

Define the Lagrange functional

$$
\mathscr{L}: Y \times U \times L^{2}(0, T ; V) \times H \times L^{2}\left(0, T ; \mathbb{R}^{m}\right)
$$

by

$$
\begin{aligned}
\mathscr{L}(y, u, p, \lambda)= & J(y, u)+\langle E(y, u), p\rangle_{L^{2}\left(0, T ; V^{\star}\right), L^{2}(0, T ; V)} \\
& +\left\langle y(0)-y_{\circ}, p_{\circ}\right\rangle_{H} \\
& +\left\langle(\mathcal{I} y+\varepsilon u)-u_{b}, \lambda\right\rangle_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}
\end{aligned}
$$

where

$$
(E(y, u) \varphi)(t)=\langle\dot{y}(t), \varphi\rangle_{V^{\star}, V}+\langle\nabla y(t), \nabla \varphi\rangle_{H}-\langle(\mathcal{B} u+f)(t), \varphi\rangle_{V^{\star}, V}
$$

and the set of admissible points

$$
X_{\mathrm{ad}}=\left\{(y, u) \in Y \times U \mid E(y, u)=0 \& y(0)=y_{\mathrm{o}} \& \varepsilon u+\mathcal{I} y \leq u_{b}\right\} . \begin{gathered}
\text { Universitat } \\
\text { Konstanz }
\end{gathered}
$$

Existence and uniqueness

Theorem. Assume that the closed, convex and bounded set $X_{\text {ad }}$ is nonempty. Then there exists a unique solution (\bar{y}, \bar{u}) to (OCP).
Further, there is a unique pair of Lagrange multipliers $(\bar{p}, \bar{\lambda})$ such that

$$
\begin{align*}
\dot{\bar{y}}(t)+\langle\nabla \bar{y}(t), \nabla \cdot\rangle_{H}-(\mathcal{B} \bar{u}+f)(t) & =0 \\
\bar{y}(0)-y_{\circ} & =0 \\
-\dot{\bar{p}}(t)+\langle\nabla \bar{p}(t), \nabla \cdot\rangle_{H}+\left(\mathcal{I}^{\star} \bar{\lambda}\right)(t)+\left(\bar{y}-y_{Q}\right)(t) & =0 \\
\bar{p}(T) & =0 \tag{OS}\\
\kappa \bar{u}(t)-\left(\mathcal{B}^{\star} \bar{p}\right)(t)+\varepsilon \bar{\lambda}(t) & =0 \\
\bar{\lambda}(t)-\chi_{\mathcal{A}_{b}(\bar{y}, \bar{p})}\left(\frac{1}{\varepsilon} \mathcal{B}^{\star} \bar{p}+\frac{\kappa}{\varepsilon} \mathcal{I} \bar{y}-\frac{\kappa}{\varepsilon^{2}} u_{b}\right) & =0
\end{align*}
$$

where the active set $\mathcal{A}_{b}(\bar{y}, \bar{p})$ is

$$
\mathcal{A}_{b}(y, p)=\left\{t \in[0, T] \left\lvert\, \frac{\varepsilon}{\kappa}\left(\mathcal{B}^{\star} p+\mathcal{I} y\right)(t)>u_{b}(t)\right.\right\} .
$$

Universität
Konstanz

Primal-dual active set strategy (PDASS)

Algorithm (Primal-dual active set strategy)
Require: Initial state-adjoint state pair $\left(y^{0}, p^{0}\right) \in Y \times Y$.
1: Set $k=0$
2: repeat
3: \quad Calculate active set $\mathcal{A}_{b}\left(y^{k}, p^{k}\right)$
4: \quad Solve the primal-dual system (OS) to get $\left(y^{k+1}, p^{k+1}\right)$
5: \quad Set $k=k+1$
6: until $\mathcal{A}_{b}\left(y^{k}, p^{k}\right)=\mathcal{A}_{b}\left(y^{k-1}, p^{k-1}\right)$
7: Return $\bar{u}=u\left(y^{k}, p^{k}\right)$.

Proper orthogonal decomposition (POD)

Problem: After elimination of u, λ, the discrete linear system $(O S)$ is still of the dimension $2 N_{t} N_{x}$.

Idea: For $\ell \ll N_{x}$, find an optimal finite element basis $\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ such that the corresponding Galerkin solution y^{ℓ} is preferably close to \bar{y} :

$$
\begin{equation*}
\min _{\substack{i=1, \ldots, \ell \\\left\langle\phi_{i}, \phi_{j}\right) v=\delta_{i j}}}\|\bar{y}-\underbrace{\sum_{i=1}^{\ell}\left\langle\bar{y}, \phi_{i}\right\rangle_{H} \phi_{i}}_{=y^{\ell}}\|_{V}^{2} . \tag{POD}
\end{equation*}
$$

Realization: Perform an eigenvalue decomposition of a compact, self-adjoint, non-negative operator $\mathcal{K}: V \rightarrow V$ which includes the dynamics of the state solution.

Define the canonical mappings $\mathcal{Y}: L^{2}(0, T ; \mathbb{R}) \rightarrow V$ and $\left.\mathcal{Y}^{\star}: V \rightarrow L^{2}(0, T ; \mathbb{R})\right)$,

$$
\mathcal{Y} \phi=\langle\phi, y\rangle_{L^{2}(0, T ; \mathbb{R})} \in V, \quad \mathcal{Y}^{\star} \phi=\langle\phi, y(\cdot)\rangle_{V} \in L^{2}(0, T ; \mathbb{R})
$$ and choose $\mathcal{K}=\mathcal{Y} \mathcal{Y}^{\star}$.

Universität Konstanz

Proper orthogonal decomposition (POD)

Theorem. (Continuous version) Let $y \in C(0, T ; V)$ an arbitrary state and let $\left(\lambda_{i}, \psi_{i}\right)_{i \in \mathbb{N}}$ an eigenvalue decomposition of $\mathcal{K}=\mathcal{K}(y)$ with $\lambda_{i} \geq \lambda_{i+1}$ for all $i \in \mathbb{N}$.
Then $\left(\psi_{i}\right)_{i \in \mathbb{N}}$ is a complete orthonormal system in V, the rank- ℓ POD basis $\psi^{\ell}=\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ is a solution to (POD) and the residual of $y^{\ell}=y\left(\psi^{\ell}\right)$ sums up to

$$
\left\|y-y^{\ell}\right\|_{L^{2}(0, T ; V)}^{2}=\sum_{i=\ell+1}^{\infty} \lambda_{i} .
$$

Remark. POD can also be provided in H instead of V.
Problem: Good approximation properties of the POD basis are only guaranteed if the POD elements belong to $\mathcal{K}(\bar{y})$. However, \bar{y} is not known, of course. Hence, an adaptive strategy is applied to construct an appropriate POD basis.

Proper orthogonal decomposition (POD)

Discrete POD. Let $Y \in \mathbb{R}^{N_{x} \times N_{t}}$ a discrete approximation of y such as

- $y\left(t_{j}, x_{i}\right) \approx Y_{i j}(\mathrm{FDM})$ or
- $y\left(t_{j}, x\right) \approx \sum_{i=1}^{N_{x}} Y_{i j} \phi_{i}(x)$ (FEM).

Further, let $U^{\ell} \in \mathbb{R}^{N_{x} \times \ell}$ be the matrix of the first ℓ eigenvectors to

$$
\sqrt{W} Y \Theta Y^{\mathrm{T}} \sqrt{W} \in \mathbb{R}^{N_{x} \times N_{x}}
$$

where $\Theta=\operatorname{diag}(\Delta t) \in \mathbb{R}^{N_{t} \times N_{t}}$ provides the discrete $L^{2}(0, T)$ scalar product and

- $W=\operatorname{diag}(\Delta x) \in \mathbb{R}^{N_{x} \times N_{x}}($ FDM $)$ or
- $W=\left(\left\langle\phi_{i}, \phi_{j}\right\rangle_{H}\right) \in \mathbb{R}^{N_{x} \times N_{x}}($ FEM $)$
provides the discrete $L^{2}(\Omega)$ scalar product. Then a discrete POD basis is given by

$$
\psi^{\ell}=\sqrt{W}^{-1} U^{\ell}
$$

Remark. If $N_{x} \gg N_{t}$ or \sqrt{W} cannot easily be calculated, the eigenvalue decomposition should be provided for the transposed problem

$$
\sqrt{\Theta} Y^{\mathrm{T}} W Y \sqrt{\Theta} \in \mathbb{R}^{N_{t} \times N_{t}} .
$$

Universität
Konstanz

Reduced order modeling (ROM)

Algorithm (Reduced order modeling)
Require: $\ell \ll N_{x}$, initial control guess $u^{\ell} \in U$, desired exactness ϵ
1: repeat
2: Calculate full-order state solution $y=y\left(u^{\ell}\right)$
3: \quad Calculate POD basis $\psi=\psi(y)$
4: Apply PDASS on the reduced system (OS) to get $u^{\ell}=u(\psi)$
5: until $\operatorname{Aposti}\left(u^{\ell}\right)<\epsilon$
6: Return $\bar{u}=u^{\ell}$

Numerical example

desired state $y_{Q} \&$ state constraint u_{b}

Fig. 1. The desired state $y_{Q} \in L^{2}(0, T ; H)$ and the upper mixed control-state bound u_{b}, interpreted as a pure pointwise state constraint.

Universität
Konstanz

Numerical example

Numerical example

optimal control \bar{u}

Fig. 3. The optimal control term $\mathcal{B} \bar{u} \in L^{2}(0, T ; H)$ controlling the state equation.

Universität
Konstanz

March 20, 2013

Numerical results

Fig. 4. The ROM errors of the control u^{ℓ} for different POD basis ranks ℓ, the error bound provided by the a posteriori error estimator and the singular values (squares of the eigenvalues) of the operator

Universität Konstanz
 $\mathcal{Y} \mathcal{Y}^{\star}$ which can be used as a costless error indicator.

Numerical effort

Process	Time	$\#$	Total
Assemble full system	0.66 sec	$9 \times$	5.97 sec
Solve full system	22.27 sec	$9 \times$	200.43 sec
Total			206.40 sec
Solve full snapshots equations	0.11 sec	$2 \times$	0.21 sec
Solve eigenvalue problem	0.42 sec	$2 \times$	0.84 sec
Assemble ROM system	0.53 sec	$17 \times$	9.01 sec
Solve ROM system	0.45 sec	$17 \times$	7.72 sec
Evaluate error estimator	0.11 sec	$2 \times$	0.23 sec
Total			18.01 sec

Tab. 1. The calculation times for solving the optimization problem with and without model reduction. With 25 POD elements, the ROM problem has to be solved two times; solvings of two eigenvalue problems are required in addition to update the POD basis. Nevertheless, 91.27% of the calculation time is spared in total.

Fig. 5. The numerical effort of the single algorithm processes for solving the ROM problem on an $\operatorname{Intel}(\mathrm{R}) \operatorname{Core}(\mathrm{TM})$ i5 2.40 GHz processor.

Universität
Konstanz

References

Hintermüller，M．，Ito，K．\＆Kunisch，K．：The primal－dual active set strategy as a semismooth Newton method．
SIAM J．Optim．，vol．13，no．1：pp．865－888， 2003.
Hintermüller，M．，Kopacka，I．\＆Volkwein，S．：Mesh－independence and preconditioning for solving parabolic control problems with mixed control－state constraints．
ESAIM：COVC，vol．15：pp．626－652， 2009.
Hinze，M．\＆Volkwein，S．：Error estimates for abstract linear－quadratic optimal control problems using proper orthogonal decomposition．
Comput．Optim．Appl．，vol．39：pp．319－345， 2008.
Tröltzsch，F．\＆Volkwein，S．：POD a－posteriori error estimates for linear－quadratic optimal control problems．
Comput．Optim．Appl．，vol．44：pp．319－345， 2008.
园
Volkwein，S．：Model Reduction using Proper Orthogonal Decomposition．
Vorlesungsskript Universität Konstanz，p．42， 2010.

っの

