Model order reduction via Proper Orthogonal Decomposition

Reduced Basis Summer School 2015

Martin Gubisch

University of Konstanz
September 17, 2015

Motivation

Introduction

Let \mathcal{X} be a Hilbert space and Θ be a time interval.
For a given function $y \in L^{2}(\Theta, \mathcal{X})$ we want to find a reduced basis

$$
\Psi^{\ell}=\left\{\psi_{1}, \ldots, \psi_{\ell}\right\} \subseteq \mathcal{X}
$$

of \mathcal{X}-orthonormal elements $\psi_{1}, \ldots, \psi_{\ell}$ such that y admits an optimal representation in $L^{2}\left(\Theta, \operatorname{span} \Psi^{\ell}\right)$, in the sense that $\psi_{1}, \ldots, \psi_{\ell}$ solve

$$
\begin{equation*}
\min _{\psi_{1}, \ldots, \psi_{\ell} \in \mathcal{X}} \int_{\Theta}\left\|y(t)-\sum_{l=1}^{\ell}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}} \psi_{l}\right\|_{\mathcal{X}}^{2} \mathrm{~d} t \quad \text { s.t. } \quad\left\langle\psi_{k}, \psi_{l}\right\rangle_{\mathcal{X}}=\delta_{k l} \tag{1}
\end{equation*}
$$

where δ denotes the Kronecker-Delta $\delta_{k l}=1$ for $k=l$ and 0 elsewise.
A solution to (1) is called a rank- ℓ POD basis.

Introduction

The minimization problem (1) is equivalent to maximizing the averaged projection of the snapshots $y(t), t \in \Theta$, onto the reduced space span Ψ^{ℓ} :

$$
\begin{equation*}
\max _{\psi_{1}, \ldots, \psi_{\ell}} \sum_{l=1}^{\ell} \int_{\Theta}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}}^{2} \mathrm{~d} t \quad \text { s.t. } \quad\left\langle\psi_{k}, \psi_{l}\right\rangle_{\mathcal{X}}=\delta_{k l} \tag{2}
\end{equation*}
$$

especially, a given rank- ℓ POD basis Ψ^{ℓ} can be expanded to a rank- $(\ell+1)$ basis by a solution $\psi_{\ell+1}$ to

$$
\begin{equation*}
\max _{\psi \in\left(\operatorname{span} \Psi^{\ell}\right)^{\perp}} \int_{\Theta}\langle y(t), \psi\rangle_{\mathcal{X}}^{2} \mathrm{~d} t, \tag{3}
\end{equation*}
$$

choosing $\Psi^{\ell+1}=\Psi^{\ell} \cup\left\{\psi_{\ell+1}\right\}$; it is not required to calculate $\ell+1$ new basis elements.

Basis construction

Since problem (2) is a constrained optimization problem in a Banach space, we apply the Lagrange calculus: We define the Lagrange function $\mathscr{L}: \mathcal{X}^{\ell} \times \mathbb{R}^{\ell \times \ell} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathscr{L}(\psi, \lambda)=\sum_{l=1}^{\ell} \int_{\Theta}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}}^{2} \mathrm{~d} t+\sum_{k, l=1}^{\ell} \lambda_{k l}\left(\left\langle\psi_{k}, \psi_{l}\right\rangle_{\mathcal{X}}-\delta_{k l}\right) \tag{4}
\end{equation*}
$$

and receive the necessary first-order optimality conditions

$$
\begin{equation*}
\int_{\Theta}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}} y(t) \mathrm{d} t=\lambda_{l l} \psi_{l}: \tag{5}
\end{equation*}
$$

The POD basis elements solve an eigenvalue problem [4].

Basis construction

Furthermore, the maximal value of (2) is

$$
\begin{equation*}
\int_{\Theta}\left\|y(t)-\sum_{l=1}^{\ell}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}} \psi_{l}\right\|_{\mathcal{X}}^{2} \mathrm{~d} t=\sum_{l=1}^{\ell} \int_{\Theta}\left\langle y(t), \psi_{l}\right\rangle_{\mathcal{X}}^{2} \mathrm{~d} t=\sum_{l>\ell} \lambda_{l l}, \tag{6}
\end{equation*}
$$

so we look for eigenvectors corresponding to the ℓ largest eigenvalues of (5).
The eigenvalue problem (5) admits a solution in $\mathcal{X}^{\ell} \times \mathbb{R}^{\ell}$ since the operator $\mathcal{R}(y)$: $\mathcal{X} \rightarrow \mathcal{X}$,

$$
\begin{equation*}
\mathcal{R}(y) \phi=\int_{\Theta}\langle y(t), \phi\rangle_{\mathcal{X}} y(t) \mathrm{d} t \quad(\phi \in \mathcal{X}) \tag{7}
\end{equation*}
$$

is nonnegative, selfadjoint and compact.

Projection error

Let $\mathcal{P}_{\mathcal{X}}^{\ell}: \mathcal{X} \rightarrow \operatorname{span} \Psi^{\ell}$ denote the orthogonal projection on the POD space, i.e.

$$
\begin{equation*}
\mathcal{P}_{\mathcal{X}}^{\ell} \phi=\underset{\tilde{\psi} \in \operatorname{span} \Psi^{\ell}}{\arg \min }\|\phi-\tilde{\phi}\|_{\mathcal{X}}^{2}=\sum_{l=1}^{\ell}\left\langle\phi, \psi_{l}\right\rangle_{\mathcal{X}} \psi_{l} \tag{8}
\end{equation*}
$$

for each $\phi \in \mathcal{X}$. Then we have a formula for the POD projection error [10]:

$$
\begin{equation*}
\int_{\Theta}\left\|y(t)-\mathcal{P}_{\mathcal{X}}^{\ell} y(t)\right\|_{\mathcal{X}}^{2}=\sum_{l>\ell} \lambda_{l} \xrightarrow{\ell \rightarrow \infty} 0 . \tag{9}
\end{equation*}
$$

Projection error

Let V, H be Hilbert spaces with dense and continuous embedding $V \hookrightarrow H$ and let $y \in L^{2}(\Theta, V)$. Choose $\mathcal{X}=H$, then the V-orthogonal projection $\mathcal{P}_{V}^{\ell}: V \rightarrow \operatorname{span} \Psi^{\ell}$ has the following representation in the H-orthonormal basis Ψ^{ℓ} :

$$
\begin{equation*}
\mathcal{P}_{V}^{\ell} \phi=\underset{\tilde{\phi} \in \operatorname{span} \Psi^{\ell}}{\arg \min }\|\phi-\tilde{\phi}\|_{V}^{2}=\sum_{k, l=1}^{\ell} \mathrm{M}_{V}^{-1}(\psi)_{l k}\left\langle\phi, \psi_{k}\right\rangle_{H} \psi_{l} \tag{10}
\end{equation*}
$$

where $\mathbf{M}_{V}(\psi) \in \mathbb{R}^{\ell \times \ell}$ is the weights matrix $\mathbf{M}_{V}(\psi)_{l k}=\left\langle\psi_{l}, \psi_{k}\right\rangle_{V}$. We get [15]

$$
\begin{equation*}
\int_{\Theta}\left\|y(t)-\mathcal{P}_{V}^{\ell} y(t)\right\|_{V}^{2} \mathrm{~d} t=\sum_{l=\ell+1}^{\infty} \lambda_{l}\left\|\psi_{l}-\tilde{\mathcal{P}}_{V}^{\ell} \psi_{l}\right\|_{V}^{2} \xrightarrow{\ell \rightarrow \infty} 0 . \tag{11}
\end{equation*}
$$

Projection error

Let again be $\mathcal{X}=H$. Then we have the error formula [1]

$$
\begin{equation*}
\int_{\Theta}\left\|y(t)-\mathcal{P}_{H}^{\ell} y(t)\right\|_{V}^{2} \mathrm{~d} t=\sum_{l=\ell+1}^{\infty} \lambda_{l}\left\|\psi_{l}\right\|_{V}^{2} \xrightarrow{\ell \rightarrow \infty} 0 . \tag{12}
\end{equation*}
$$

The estimates (11) and (6) allow to bound the projection errors in V allthough the POD basis elements are orthogonal in H. This will be useful when POD is applied to partial differential equations.
If $y \in H^{1}(\Theta, V)$, then (6) will allow not only to approximate y, but also its time derivative \dot{y} as we will see later.

Method of snapshots

We define the multiplication operator $\mathcal{Q}(y): L^{2}(\Theta, \mathbb{R}) \rightarrow \mathcal{X}$ and it's adjoints $\mathcal{Q}(y)^{\star}$: $\mathcal{X} \rightarrow L^{2}(\Theta, \mathbb{R})$,

$$
\begin{equation*}
\mathcal{Q}(y) \phi=\int_{\Theta} \phi(t) y(t) \mathrm{d} t, \quad\left(\mathcal{Q}(y)^{\star} \phi\right)(t)=\langle\phi, y(t)\rangle_{\mathcal{X}} . \tag{13}
\end{equation*}
$$

Then the composition satisfies $\mathcal{R}(y)=\mathcal{Q}(y) \mathcal{Q}(y)^{\star}: V \rightarrow V$.
Let $\mathcal{K}(y)=\mathcal{Q}(y)^{\star} \mathcal{Q}(y): L^{2}(\Theta, \mathbb{R}) \rightarrow L^{2}(\Theta, \mathbb{R})$. Since $\mathcal{R}(y)$ and $\mathcal{K}(y)$ have the same eigenvalues with the same multiplicities (except of possible 0), a POD basis is also given by a spectral decomposition $\left(\lambda_{l}, \phi_{l}\right)_{l=1, \ldots, \ell} \subseteq L^{2}(\Theta, \mathbb{R})^{\ell} \times \mathbb{R}^{\ell}$ of

$$
\begin{equation*}
(\mathcal{K}(y) \phi)(t)=\left\langle\int_{\Theta}\langle\phi(s) y(s) \mathrm{d} s, y(t)\rangle_{\mathcal{X}}=\int_{\Theta} \phi(s)\langle y(s), y(t)\rangle_{\mathcal{X}} \mathrm{d} s,\right. \tag{14}
\end{equation*}
$$

choosing $\psi_{l}=\frac{1}{\sqrt{\lambda_{l}}} \mathcal{Q}(y) \phi_{l} \in V$.

Discretization

Let $\mathcal{X}_{n} \subseteq \mathcal{X}$ be a finite-dimensional subspace of \mathcal{X} spanned by the linearly independent elements $\varphi_{1}, \ldots, \varphi_{n} \in V$ with mass matrix $\mathrm{M}(\varphi) \in \mathbb{R}^{n \times n}, \mathrm{M}(\varphi)_{\mathrm{jj}}=\left\langle\varphi_{j}, \varphi_{\mathrm{j}}\right\rangle_{\mathcal{X}}$. Let $\left\{t_{1}, \ldots, t_{m}\right\} \subseteq \Theta$.
We replace $y \in L^{2}(\Theta, V)$ by $\mathrm{y} \in \mathbb{R}^{n \times m}$ such that $y\left(t_{i}\right) \approx \sum_{j=1}^{n} \mathrm{y}_{j i} \varphi_{j}$ and consider

$$
\begin{equation*}
\min _{\psi_{1}, \ldots, \psi_{\ell} \in \mathbb{R}^{n}} \sum_{i=1}^{m} \alpha_{i}\left\|\mathrm{y}_{\cdot i}-\sum_{l=1}^{\ell}\left\langle\mathrm{y}_{\cdot i}, \psi_{l}\right\rangle_{\mathbb{R}_{\varphi}^{n}} \psi_{l}\right\|_{\mathbb{R}_{\varphi}^{n}}^{2} \quad \text { s.t. } \quad\left\langle\psi_{k}, \psi_{l}\right\rangle_{\mathbb{R}_{\varphi}^{n}}=\delta_{k l} \tag{15}
\end{equation*}
$$

with the weighted scalar product $\langle\cdot, \cdot\rangle_{\mathbb{R}_{\varphi}^{n}}=\langle\cdot, \mathrm{M}(\varphi) \cdot\rangle_{\mathbb{R}^{n}}$ and time weights $\alpha_{i}>0$.
Then a POD basis can be calculated by a decomposition of one of the matrices

$$
\begin{equation*}
\mathrm{R}(\mathrm{y})=\mathrm{yM}(\alpha) \mathrm{y}^{\mathrm{T}} \mathrm{M}(\varphi) \in \mathbb{R}^{n \times n}, \quad \mathrm{~K}(\mathrm{y})=\mathrm{y}^{\mathrm{T}} \mathrm{M}(\varphi) \mathrm{yM}(\alpha) \in \mathbb{R}^{m \times m} \tag{16}
\end{equation*}
$$

where $\mathbf{M}(\alpha)_{j \mathrm{j}}=\alpha_{j} \delta_{j \mathrm{j}}[4]$.

Discretization

(1) Let $\left(\tilde{\psi}_{l}, \lambda_{l}\right)$ be a decomposition of the symmetrized matrix

$$
\tilde{\mathbf{R}}(\mathrm{y})=\mathrm{M}(\varphi)^{1 / 2} \mathrm{y} \mathbf{M}(\alpha) \mathrm{y}^{\mathrm{T}} \mathrm{M}(\varphi)^{1 / 2}
$$

then appropriate POD elements are $\psi_{l}=\mathrm{M}(\varphi)^{-1 / 2} \tilde{\psi}_{l} \in \mathbb{R}^{n}$. We require the decomposition of an $n \underset{\sim}{\times} n$ matrix, the root of the mass matrix and solution steps for the transformation $\tilde{\psi} \rightarrow \psi$.
(2) Let $\left(\tilde{\psi}_{l}, \lambda_{l}\right)$ be a decomposition of the symmetrized matrix

$$
\tilde{\mathbf{K}}(\mathrm{y})=\mathrm{M}(\alpha)^{1 / 2} \mathbf{y}^{\mathrm{T}} \mathrm{M}(\varphi) \mathrm{yM}(\alpha)^{1 / 2}
$$

then appropriate POD elements are $\psi_{l}=\lambda_{l}^{-1 / 2} \mathrm{yM}(\alpha)^{1 / 2} \tilde{\psi}_{l}$: An $m \times m$ matrix has to be decomposed, but no matrix roots or solving steps are needed.
(3) A singular value decomposition $\left(\tilde{\psi}_{l}, \tilde{\lambda}_{l}, \psi_{l}\right)$ of $\mathrm{M}(\varphi)^{1 / 2} \mathrm{yM}(\alpha)^{1 / 2}$ is costly, but more robust; the eigenvalues corresponding to the POD elements ψ_{l} are $\lambda_{l}=\tilde{\lambda}_{l}^{2}$.

Discretization


```
POD determines a weighted POD matrix by solving the eigenvalue problem
    R(Y)*psi = Y*diag(T)*Y'*W*psi = lambda*psi
Input:
Y ......................................... nxm snapshot matrix
```



```
I .......................................... mxl time weights
Output:
Psi ..
.................................. nxl pod basis
Lambda
    lx1 eigenvalues
```



```
% Build up pod operator R(Y)
Alpha = spdiags(T,0,size(T,1),size(T,1)); % Alpha ........... mxm
R = Y*Alpha*Y'*W; % R.
% R ................. nnx
% Solve eigenvalue problem by EIG
[Psi,Lambda] = eig(R);
    [Lambda,Ord] = sort(diag(Lambda),'descend');
```

\% Lambda nx 1
\% Lambda lx1
\% Psinxn
$\operatorname{Lambda}=\operatorname{Lambda}(1: 1,1)$;
Psi = Psi(:,Ord);
Psi = Psi(:,1:l);

Application: Filtering and compression of frogs

No Animals Were Harmed ${ }^{\circ}$

Application: Filtering and compression of frogs

Universität

Application: Filtering and compression of frogs

Application: Filtering and compression of frogs

Universität

Application: Filtering and compression of frogs

Application: Filtering and compression of frogs

l	Rel. Error	Rel. Size	Rel. SVs
5	12.31%	0.51%	$1.08 \mathrm{e}-01$
10	7.81%	1.02%	$6.68 \mathrm{e}-02$
20	4.44%	2.04%	$3.88 \mathrm{e}-02$
50	1.92%	5.09%	$1.50 \mathrm{e}-02$
100	0.91%	10.18%	$7.10 \mathrm{e}-03$
200	0.39%	20.36%	$3.09 \mathrm{e}-03$

Application: Filtering and compression of random data

Application: Filtering and compression of dynamical flows

Universität
Konstanz

Application: Filtering and compression of dynamical flows

Application: Frogs, randoms and dynamics

(1) Photo compression with POD works quite well: from 10% of the original data onwards, the visible approximation errors vanish.
(2) For random data, POD is completely useless (and it should be: it recognizes structurs only if they are there ...). Taking 95% of the original data still does not lead to appropriate results although the original data storage is exceeded by 150%.
© Dynamical flows in nice settings (such as diffusion dominated processes with smooth data) are reconstructed perfectly: In the example above, we just used two POD basis functions ...

Reduced order modeling

Let $\Psi^{\ell}=\left\{\psi_{1}, \ldots, \psi_{\ell}\right\}$ be an orthonormal system in $\mathcal{X} \in\{V, H\}$. In the following, we interprete the parabolic partial differential equation

$$
\begin{equation*}
\dot{y}(t)+A y(t)=f(t) \text { in } V^{\prime}, \quad y(0)=y_{\circ} \text { in } H \tag{17}
\end{equation*}
$$

as a variational problem in the reduced space span $\Psi^{\ell} \subseteq V$:

$$
\begin{equation*}
\langle\dot{y}(t), \phi\rangle_{V^{\prime}, V}+a(y(t), \phi)=\langle f(t), \phi\rangle_{V^{\prime}, V}, \quad\langle y(0), \phi\rangle_{H}=\left\langle y_{0}, \phi\right\rangle_{H} \tag{18}
\end{equation*}
$$

for all $\phi \in \operatorname{span} \Psi^{\ell}$.
The solution to (18) has the form

$$
\begin{equation*}
y^{\ell} \in H^{1}(\Theta, V), \quad y^{\ell}(t)=\sum_{l=1}^{\ell} \mathrm{y}_{l}(t) \psi_{l} \tag{19}
\end{equation*}
$$

Reduced order modeling

The coefficient function $y \in H^{1}\left(\Theta, \mathbb{R}^{\ell}\right)$ is given by the system of ordinary differential equations

$$
\begin{equation*}
\mathrm{M}(\psi) \dot{\mathrm{y}}(t)+\mathrm{A}(\psi) \mathrm{y}(t)=\mathrm{f}(\psi ; t), \quad \mathrm{M}(\psi) \mathrm{y}(0)=\mathrm{y}_{\mathrm{\circ}}(\psi) ; \tag{20}
\end{equation*}
$$

$\mathbf{M}(\psi), \mathbf{A}(\psi) \in \mathbb{R}^{\ell \times \ell}$ are defined as

$$
\mathrm{M}(\psi)_{k l}=\left\langle\psi_{k}, \psi_{l}\right\rangle_{H}, \quad \mathrm{~A}(\psi)_{k l}=a\left(\psi_{k}, \psi_{l}\right)
$$

and the reduced data functions are $\mathrm{f}(\psi) \in L^{2}\left(\Theta, \mathbb{R}^{\ell}\right)$, and $\mathrm{y}_{\circ}(\psi) \in \mathbb{R}^{\ell}$,

$$
\mathrm{f}(\psi ; t)_{l}=\left\langle f(t), \psi_{l}\right\rangle_{V^{\prime}, V}, \quad \mathrm{y}_{\circ}(\psi)_{l}=\left\langle y_{\circ}, \psi_{l}\right\rangle_{H} .
$$

(20) admits the unique solution

$$
\mathrm{y}(t)=e^{-t \mathrm{M}(\psi)^{-1} \mathrm{~A}(\psi)} \mathrm{y}_{\circ}+\int_{0}^{t} e^{(\tau-t) \mathrm{M}(\psi)^{-1} \mathrm{~A}(\psi)} \mathbf{M}(\psi)^{-1} \mathbf{f}(\psi ; \tau) \mathrm{d} \tau .
$$

Universität

Model reduction error

Assume $y_{\circ}=0$. Let $\mathcal{X}=V,\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ be a POD basis satisfying the problem

$$
\int_{\Theta}\left\langle\psi_{l}, y(t)\right\rangle_{V} y(t) \mathrm{d} t=\lambda_{l} \psi_{l}
$$

and let $\mathrm{y} \in H^{1}\left(\Theta, \mathbb{R}^{\ell}\right)$ be the solution to the reduced problem (20). Then there exists a constant $C>0$ just depending on the final time and the geometric data such that the ROM error can be estimated by

$$
\begin{equation*}
\left\|y-\sum_{l=1}^{\ell} \mathrm{y}_{l} \psi_{l}\right\|_{L^{2}(\Theta, V) \cap H^{1}\left(\Theta, V^{\prime}\right)}^{2} \leq C\left(\sum_{l=\ell+1}^{\infty} \lambda_{l}+\left\|\dot{\tilde{y}}(t)-\mathcal{P}_{V}^{\ell} \dot{\tilde{y}}(t)\right\|_{L^{2}\left(\Theta, V^{\prime}\right)}^{2}\right) . \tag{22}
\end{equation*}
$$

Model reduction error

Let $\mathcal{X}=V,\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ be a POD basis satisfying the problem

$$
\int_{\Theta}\left\langle\psi_{l}, y(t)\right\rangle_{V} y(t) \mathrm{d} t+\int_{\Theta}\left\langle\psi_{l}, \dot{y}(t)\right\rangle_{V} \dot{y}(t) \mathrm{d} t=\lambda_{l} \psi_{l}
$$

and let $\mathrm{y} \in H^{1}\left(\Theta, \mathbb{R}^{\ell}\right)$ be the solution to the reduced problem (20). Then there exists a constant $C>0$ just depending on the final time and the geometric data such that the ROM error can be estimated by

$$
\begin{equation*}
\left\|y-\sum_{l=1}^{\ell} \mathrm{y}_{l} \psi_{l}\right\|_{L^{2}(\Theta, V) \cap H^{1}\left(\Theta, V^{\prime}\right)}^{2} \leq C \sum_{l=\ell+1}^{\infty} \lambda_{l} \tag{23}
\end{equation*}
$$

Model reduction error

Let $\mathcal{X}=H,\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ be a POD basis satisfying the problem

$$
\int_{\Theta}\left\langle\psi_{l}, y(t)\right\rangle_{H} y(t) \mathrm{d} t+\int_{\Theta}\left\langle\psi_{l}, \dot{y}(t)\right\rangle_{H} \dot{y}(t) \mathrm{d} t=\lambda_{l} \psi_{l}
$$

and let $\mathrm{y} \in H^{1}\left(\Theta, \mathbb{R}^{\ell}\right)$ be the solution to the reduced problem (20). Then there exists a constant $C>0$ just depending on the final time and the geometric data such that the ROM error can be estimated by

$$
\begin{equation*}
\left\|y-\sum_{l=1}^{\ell} \mathrm{y}_{l} \psi_{l}\right\|_{L^{2}(\Theta, V) \cap H^{1}\left(\Theta, V^{\prime}\right)}^{2} \leq C \sum_{l=\ell+1}^{\infty} \lambda_{l}\left\|\psi_{l}-\tilde{\mathcal{P}}_{V}^{\ell} \psi_{l}\right\|_{V}^{2} . \tag{24}
\end{equation*}
$$

Model reduction error

Let $\mathcal{X}=V,\left(\psi_{1}, \ldots, \psi_{\ell}\right)$ be a POD basis satisfying the problem

$$
\int_{\Theta}\left\langle\psi_{l}, y(t)\right\rangle_{V} y(t) \mathrm{d} t=\lambda_{l} \psi_{l}
$$

and let $\mathrm{y} \in H^{1}\left(\Theta, \mathbb{R}^{\ell}\right)$ be the solution to the reduced problem (20). Then there exists a constant $C>0$ just depending on the final time and the geometric data such that the ROM error can be estimated by

$\left\\|y-\sum_{l=1}^{\ell} \mathrm{y}_{l} \psi_{l}\right\\|_{L^{2}(\Theta, V)}^{2} \leq C \sum_{l=\ell+1}^{\infty} \lambda_{l}\left\\|\psi_{l}\right\\|_{V}^{2} .$		(25)
	$\begin{gathered} \text { Universitatit } \\ \text { Konstanz } \end{gathered}$	

Motivation

(1) Combination of POD with nonlinear PDE solvers such as Sequential Quadratic Programming [2], Trust Region Method [14] or Primal Dual Active Set Method [5].
(2) How does the reduction error react if the state y which builds up $\mathcal{R}(y)$ corresponds to a different source term f then the reduced system [6]?
(3) In this case, the presented a-priori estimates are not valid any more. The design of efficient a-posteriori error bounds [16], especially for nonlinear equations [7], is in work.
(9) The a-priori bounds [10] and convergence rates [9] are available if an appropriate POD basis update strategy (OS-POD) [11], [3] is used.
(6) Applications to optimal control [5], parameter identification [12] and inverse problems [13].
(1) Combination of POD model reduction and Greedy algorithm in the reduced basis context [8].

References I

[1] Chapelle, D., Gariah, A. \& Sainte-Marie, J.: Galerkin approximation with Proper Orthogonal Decomposition: New error estimates and illustrative examples.
ESAIM: M2AN, vol. 46, no. 4: pp. 731-757, 2011.
[2] Gräßle, C.: POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation. Master's thesis, Universität Konstanz, 2014.
[3] Grimm, E., Gubisch, M. \& Volkwein, S.: A-Posteriori Error Analysis and OS-POD for Optimal Control. Comp. Eng., vol. 3: pp. 125-129, 2014.
[4] Gubisch, M. \& Volkwein, S.: POD Reduced-Order Modelling for PDE Constrained Optimization. proceeding Model Reduction and Approximation (Luminy), submitted, Oct. 2013.
URL http://n.bn-resolving.de/urn:nbn:de:bsz:352-250378.
[5] Gubisch, M. \& Volkwein, S.: POD a-posteriori error analysis for optimal control Problems with mixed constraints. Comp. Opt. Appl., vol. 58, no. 3: pp. 619-644, 2014.
[6] Hinze, M. \& Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using POD. Comput. Optim. Appl., vol. 39: pp. 319-345, 2008.
[7] Kammann, E., Tröltzsch, F. \& Volkwein, S.: A method of a-posteriori error estimation with application to proper orthogonal decomposition.
ESAIM M2AN, vol. 47, no. 2: pp. 555-581, 2013.
[8] Kärcher, M. \& Grepl, M. A.: A posteriori error estimation for reduced order solutions of parametrized parabolis optimal control problems.
Math. Mod. Num., vol. 48, no. 6: pp. 1615-1638, 2014.

References II

[9] Kunisch, K. \& Müller, M.: Uniform convergence of the Pod method and applications to optimal control. Disc. Cont. Dyn. Syst., vol. 35, no. 9: pp. 4477-4501, 2015.
[10] Kunisch, K. \& Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., vol. 90, no. 1: pp. 117-148, 2001.
[11] Kunisch, K. \& Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM M2AN, vol. 42: pp. 1-23, 2008.
[12] Lass, O. \& Volkwein, S.: Parameter identification for nonlinear elliptic-parabolic systems with application in lithium-ion battery modeling.
Comp. Opt. Appl., vol. 62: pp. 217-239, 2015.
[13] Ostrowsky, Z., Białecki, R. \& Kassab, A.: Advances in Application of POD in Inverse Problems. Proc. Inv,. Prob. Eng., vol. 5: pp. 1-10, 2005.
[14] Rogg, S.: Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation. Master's thesis, Universität Konstanz, 2014.
[15] Singler, J. R.: New POD error expressions, error bounds, and asymptotic results for reduced order models. SIAM J. Numer. Anal., vol. 52, no. 2: pp. 852-876, 2014.
[16] Tröltzsch, F. \& Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl., vol. 44: pp. 319-345, 2008.

Motivation

Universität

