Model order reduction via Proper Orthogonal Decomposition

Reduced Basis Summer School 2015

Martin Gubisch

University of Konstanz

September 17, 2015

Universität Konstanz

September 17, 2015

1/37

Martin Gubisch (University of Konstanz)

Model order reduction via POD

Motivation

Introduction

Let \mathcal{X} be a Hilbert space and Θ be a time interval.

For a given function $y \in L^2(\Theta, \mathcal{X})$ we want to find a reduced basis

$$\Psi^{\ell} = \{\psi_1, ..., \psi_{\ell}\} \subseteq \mathcal{X}$$

of \mathcal{X} -orthonormal elements $\psi_1, ..., \psi_\ell$ such that y admits an optimal representation in $L^2(\Theta, \operatorname{span} \Psi^\ell)$, in the sense that $\psi_1, ..., \psi_\ell$ solve

$$\min_{\psi_1,\dots,\psi_\ell\in\mathcal{X}}\int_{\Theta} \left\| y(t) - \sum_{l=1}^{\ell} \langle y(t), \psi_l \rangle_{\mathcal{X}} \psi_l \right\|_{\mathcal{X}}^2 dt \quad \text{s.t.} \quad \langle \psi_k, \psi_l \rangle_{\mathcal{X}} = \delta_{kl}$$
(1)

where δ denotes the Kronecker-Delta $\delta_{kl} = 1$ for k = l and 0 elsewise.

A solution to (1) is called a rank- ℓ POD basis.

		Konstanz
Martin Gubisch (University of Konstanz)	Model order reduction via POD	September 17, 2015 3 / 37
Introduction		

The minimization problem (1) is equivalent to maximizing the averaged projection of the snapshots y(t), $t \in \Theta$, onto the reduced space span Ψ^{ℓ} :

$$\max_{\psi_1,\ldots,\psi_\ell} \sum_{l=1}^\ell \int_{\Theta} \langle y(t),\psi_l \rangle_{\mathcal{X}}^2 \,\mathrm{d}t \quad \text{s.t.} \quad \langle \psi_k,\psi_l \rangle_{\mathcal{X}} = \delta_{kl};$$
(2)

especially, a given rank- ℓ POD basis Ψ^ℓ can be expanded to a rank- $(\ell+1)$ basis by a solution $\psi_{\ell+1}$ to

$$\max_{\psi \in (\operatorname{span} \Psi^{\ell})^{\perp}} \int_{\Theta} \langle y(t), \psi \rangle_{\mathcal{X}}^{2} \, \mathrm{d}t,$$
(3)

choosing $\Psi^{\ell+1} = \Psi^{\ell} \cup \{\psi_{\ell+1}\}$; it is not required to calculate $\ell + 1$ new basis elements.

Since problem (2) is a constrained optimization problem in a Banach space, we apply the Lagrange calculus: We define the Lagrange function $\mathscr{L} : \mathscr{X}^{\ell} \times \mathbb{R}^{\ell \times \ell} \to \mathbb{R}$ by

$$\mathscr{L}(\psi,\lambda) = \sum_{l=1}^{\ell} \int_{\Theta} \langle y(t), \psi_l \rangle_{\mathcal{X}}^2 \, \mathrm{d}t + \sum_{k,l=1}^{\ell} \lambda_{kl} (\langle \psi_k, \psi_l \rangle_{\mathcal{X}} - \delta_{kl}) \tag{4}$$

and receive the necessary first-order optimality conditions

$$\int_{\Theta} \langle y(t), \psi_l \rangle_{\mathcal{X}} y(t) \, \mathrm{d}t = \lambda_{ll} \psi_l :$$
(5)

The POD basis elements solve an eigenvalue problem [4].

		Universität Konstanz
Martin Gubisch (University of Konstanz)	Model order reduction via POD	September 17, 2015 5 / 37
Basis construction		

Furthermore, the maximal value of (2) is

$$\int_{\Theta} \left\| y(t) - \sum_{l=1}^{\ell} \langle y(t), \psi_l \rangle_{\mathcal{X}} \psi_l \right\|_{\mathcal{X}}^2 \mathrm{d}t = \sum_{l=1}^{\ell} \int_{\Theta} \langle y(t), \psi_l \rangle_{\mathcal{X}}^2 \mathrm{d}t = \sum_{l>\ell} \lambda_{ll}, \qquad (6)$$

so we look for eigenvectors corresponding to the ℓ largest eigenvalues of (5).

The eigenvalue problem (5) admits a solution in $\mathcal{X}^{\ell} \times \mathbb{R}^{\ell}$ since the operator $\mathcal{R}(y) : \mathcal{X} \to \mathcal{X}$,

$$\mathcal{R}(y)\phi = \int_{\Theta} \langle y(t), \phi \rangle_{\mathcal{X}} y(t) \, \mathrm{d}t \qquad (\phi \in \mathcal{X})$$
(7)

is nonnegative, selfadjoint and compact.

Projection error

Let $\mathcal{P}^{\ell}_{\mathcal{X}}: \mathcal{X} \to \operatorname{span} \Psi^{\ell}$ denote the orthogonal projection on the POD space, i.e.

$$\mathcal{P}_{\mathcal{X}}^{\ell}\phi = \underset{\tilde{\psi}\in\operatorname{span}\Psi^{\ell}}{\operatorname{arg\,min}} \|\phi - \tilde{\phi}\|_{\mathcal{X}}^{2} = \sum_{l=1}^{\ell} \langle\phi,\psi_{l}\rangle_{\mathcal{X}}\psi_{l}$$
(8)

for each $\phi \in \mathcal{X}$. Then we have a formula for the POD projection error [10]:

Let V, H be Hilbert spaces with dense and continuous embedding $V \hookrightarrow H$ and let $y \in L^2(\Theta, V)$. Choose $\mathcal{X} = H$, then the *V*-orthogonal projection $\mathcal{P}_V^{\ell} : V \to \operatorname{span} \Psi^{\ell}$ has the following representation in the *H*-orthonormal basis Ψ^{ℓ} :

$$\mathcal{P}_{V}^{\ell}\phi = \underset{\tilde{\phi}\in\operatorname{span}\Psi^{\ell}}{\operatorname{arg\,min}} \|\phi - \tilde{\phi}\|_{V}^{2} = \sum_{k,l=1}^{\ell} \mathbf{M}_{V}^{-1}(\psi)_{lk} \langle \phi, \psi_{k} \rangle_{H} \psi_{l}$$
(10)

where $\mathbf{M}_{V}(\psi) \in \mathbb{R}^{\ell \times \ell}$ is the weights matrix $\mathbf{M}_{V}(\psi)_{lk} = \langle \psi_{l}, \psi_{k} \rangle_{V}$. We get [15]

$$\int_{\Theta} \|y(t) - \mathcal{P}_{V}^{\ell} y(t)\|_{V}^{2} dt = \sum_{l=\ell+1}^{\infty} \lambda_{l} \|\psi_{l} - \tilde{\mathcal{P}}_{V}^{\ell} \psi_{l}\|_{V}^{2} \xrightarrow{\ell \to \infty} 0.$$
(11)

Projection error

Let again be $\mathcal{X} = H$. Then we have the error formula [1]

$$\int_{\Theta} \|y(t) - \mathcal{P}_{H}^{\ell} y(t)\|_{V}^{2} dt = \sum_{l=\ell+1}^{\infty} \lambda_{l} \|\psi_{l}\|_{V}^{2} \stackrel{\ell \to \infty}{\longrightarrow} 0.$$
(12)

The estimates (11) and (6) allow to bound the projection errors in V allthough the POD basis elements are orthogonal in H. This will be useful when POD is applied to partial differential equations.

If $y \in H^1(\Theta, V)$, then (6) will allow not only to approximate *y*, but also its time derivative \dot{y} as we will see later.

Model order reduction via POD

Universität Konstanz	
-------------------------	--

September 17, 2015 9 / 37

Method of snapshots

Martin Gubisch (University of Konstanz)

We define the multiplication operator $\mathcal{Q}(y) : L^2(\Theta, \mathbb{R}) \to \mathcal{X}$ and it's adjoints $\mathcal{Q}(y)^* : \mathcal{X} \to L^2(\Theta, \mathbb{R})$,

$$\mathcal{Q}(y)\phi = \int_{\Theta} \phi(t)y(t) \,\mathrm{d}t, \qquad (\mathcal{Q}(y)^{\star}\phi)(t) = \langle \phi, y(t) \rangle_{\mathcal{X}}. \tag{13}$$

Then the composition satisfies $\mathcal{R}(y) = \mathcal{Q}(y)\mathcal{Q}(y)^* : V \to V$.

Let $\mathcal{K}(y) = \mathcal{Q}(y)^* \mathcal{Q}(y) : L^2(\Theta, \mathbb{R}) \to L^2(\Theta, \mathbb{R})$. Since $\mathcal{R}(y)$ and $\mathcal{K}(y)$ have the same eigenvalues with the same multiplicities (except of possible 0), a POD basis is also given by a spectral decomposition $(\lambda_l, \phi_l)_{l=1,...,\ell} \subseteq L^2(\Theta, \mathbb{R})^\ell \times \mathbb{R}^\ell$ of

$$(\mathcal{K}(y)\phi)(t) = \left\langle \int_{\Theta} \langle \phi(s)y(s) \, \mathrm{d}s, y(t) \right\rangle_{\mathcal{X}} = \int_{\Theta} \phi(s) \langle y(s), y(t) \rangle_{\mathcal{X}} \, \mathrm{d}s, \qquad (14)$$

choosing $\psi_l = \frac{1}{\sqrt{\lambda_l}} \mathcal{Q}(y) \phi_l \in V.$

Discretization

Let $\mathcal{X}_n \subseteq \mathcal{X}$ be a finite-dimensional subspace of \mathcal{X} spanned by the linearly independent elements $\varphi_1, ..., \varphi_n \in V$ with mass matrix $\mathbf{M}(\varphi) \in \mathbb{R}^{n \times n}$, $\mathbf{M}(\varphi)_{jj} = \langle \varphi_j, \varphi_j \rangle_{\mathcal{X}}$. Let $\{t_1, ..., t_m\} \subseteq \Theta$.

We replace $y \in L^2(\Theta, V)$ by $y \in \mathbb{R}^{n \times m}$ such that $y(t_i) \approx \sum_{j=1}^n y_{ji}\varphi_j$ and consider

$$\min_{\psi_1,\dots,\psi_\ell\in\mathbb{R}^n}\sum_{i=1}^m \alpha_i \left\| \mathbf{y}_{\cdot i} - \sum_{l=1}^\ell \langle \mathbf{y}_{\cdot i}, \psi_l \rangle_{\mathbb{R}^n_{\varphi}} \psi_l \right\|_{\mathbb{R}^n_{\varphi}}^2 \qquad \text{s.t.} \qquad \langle \psi_k, \psi_l \rangle_{\mathbb{R}^n_{\varphi}} = \delta_{kl} \quad (15)$$

with the weighted scalar product $\langle \cdot, \cdot \rangle_{\mathbb{R}^n_{\varphi}} = \langle \cdot, \mathbf{M}(\varphi) \cdot \rangle_{\mathbb{R}^n}$ and time weights $\alpha_i > 0$. Then a POD basis can be calculated by a decomposition of one of the matrices

$$\mathbf{R}(\mathbf{y}) = \mathbf{y}\mathbf{M}(\alpha)\mathbf{y}^{\mathrm{T}}\mathbf{M}(\varphi) \in \mathbb{R}^{n \times n}, \qquad \mathbf{K}(\mathbf{y}) = \mathbf{y}^{\mathrm{T}}\mathbf{M}(\varphi)\mathbf{y}\mathbf{M}(\alpha) \in \mathbb{R}^{m \times m}$$
(16)

where $\mathbf{M}(\alpha)_{jj} = \alpha_j \delta_{jj}$ [4].		Universität Konstanz
Martin Gubisch (University of Konstanz)	Model order reduction via POD	September 17, 2015 11 / 37
Discretization		

• Let $(\tilde{\psi}_l, \lambda_l)$ be a decomposition of the symmetrized matrix

$$\tilde{\mathbf{R}}(\mathbf{y}) = \mathbf{M}(\varphi)^{1/2} \mathbf{y} \mathbf{M}(\alpha) \mathbf{y}^{\mathrm{T}} \mathbf{M}(\varphi)^{1/2},$$

then appropriate POD elements are $\psi_l = \mathbf{M}(\varphi)^{-1/2} \tilde{\psi}_l \in \mathbb{R}^n$. We require the decomposition of an $n \times n$ matrix, the root of the mass matrix and solution steps for the transformation $\tilde{\psi} \to \psi$.

2 Let $(\tilde{\psi}_l, \lambda_l)$ be a decomposition of the symmetrized matrix

$$\tilde{\mathbf{K}}(\mathbf{y}) = \mathbf{M}(\alpha)^{1/2} \mathbf{y}^{\mathrm{T}} \mathbf{M}(\varphi) \mathbf{y} \mathbf{M}(\alpha)^{1/2},$$

then appropriate POD elements are $\psi_l = \lambda_l^{-1/2} y \mathbf{M}(\alpha)^{1/2} \tilde{\psi}_l$: An $m \times m$ matrix has to be decomposed, but no matrix roots or solving steps are needed.

S A singular value decomposition $(\tilde{\psi}_l, \tilde{\lambda}_l, \psi_l)$ of $M(\varphi)^{1/2} yM(\alpha)^{1/2}$ is costly, but more robust; the eigenvalues corresponding to the POD elements ψ_l are $\lambda_l = \tilde{\lambda}_l^2$.


```
%
% POD determines a weighted POD matrix by solving the eigenvalue problem
%
  R(Y)*psi = Y*diag(T)*Y'*W*psi = lambda*psi.
%
% Input:
% Y ..... nxm snapshot matrix
% l ..... 1x1 pod basis rank
% W ..... nxn space weights
% T ..... mxl time weights
%
% Output:
% Psi ..... nxl pod basis
% Lambda ..... lx1 eigenvalues
§ _____
function [Psi,Lambda] = pod(Y,l,W,T)
% Build up pod operator R(Y)
Alpha = spdiags(T,0,size(T,1),size(T,1)); % Alpha ..... mxm
R = Y*Alpha*Y'*W;
                                   % R ..... nxn
% Solve eigenvalue problem by EIG
[Psi,Lambda] = eig(R);
 [Lambda,Ord] = sort(diag(Lambda),'descend'); % Lambda ..... nx1
 Lambda = Lambda(1:1,1);
                                   % Lambda ..... lx1
 Psi = Psi(:,Ord);
                                   % Psi ..... nxn
 Psi = Psi(:,1:1);
                                   % Psi ..... nxl
```

```
end
```

Universität Konstanz

	h				
	ЯÞ				
FY	ΗY		1	\sim	
			灬		F
			П		
		Ħ			М
	MM				
00		Ш	Ш	Ш	

Martin Gubisch (University of Konstanz)

Model order reduction via POD

September 17, 2015 13 / 37

Application: Filtering and compression of frogs

Martin Gubisch (University of Konstanz)

Model order reduction via POD

September 17, 2015 15 / 37

Application: Filtering and compression of frogs

Universität Konstanz

F	*	h	

Martin Gubisch (University of Konstanz)

Model order reduction via POD

September 17, 2015 17 / 37

Application: Filtering and compression of frogs

Universität Konstanz

```
Martin Gubisch (University of Konstanz)
```

Model order reduction via POD

September 17, 2015 19 / 37

Application: Filtering and compression of frogs

		_			
		٨	Ľ		
	Ш			A	
ÞΨ	Щ			É	
				-	

Konstanz

September 17, 2015 21 / 37

```
Martin Gubisch (University of Konstanz)
```

Model order reduction via POD

Application: Filtering and compression of frogs

l	Rel. Error	Rel. Size	Rel. SVs
5	12.31%	0.51%	1.08e-01
10	7.81%	1.02%	6.68e-02
20	4.44%	2.04%	3.88e-02
50	1.92%	5.09%	1.50e-02
100	0.91%	10.18%	7.10e-03
200	0.39%	20.36%	3.09e-03

Application: Filtering and compression of random data

ität	5			_	Ē	*			-	1	
anz					f	1	Ì	t			
unz			Η	t	ł		H		1		2
		И	Ľ	l	Ĺ	l			ļ		

Martin Gubisch (University of Konstanz)

Model order reduction via POD

September 17, 2015 23 / 37

Application: Filtering and compression of random data

Application: Filtering and compression of dynamical flows

Application: Filtering and compression of dynamical flows

- Photo compression with POD works quite well: from 10% of the original data onwards, the visible approximation errors vanish.
- For random data, POD is completely useless (and it should be: it recognizes structurs only if they are there ...). Taking 95% of the original data still does not lead to appropriate results although the original data storage is exceeded by 150%.
- Oynamical flows in nice settings (such as diffusion dominated processes with smooth data) are reconstructed perfectly: In the example above, we just used two POD basis functions ...

Let $\Psi^{\ell} = \{\psi_1, ..., \psi_{\ell}\}$ be an orthonormal system in $\mathcal{X} \in \{V, H\}$. In the following, we interpret the parabolic partial differential equation

$$\dot{y}(t) + Ay(t) = f(t) \text{ in } V', \qquad y(0) = y_{\circ} \text{ in } H$$
 (17)

as a variational problem in the reduced space span $\Psi^\ell \subseteq V$:

$$\langle \dot{y}(t), \phi \rangle_{V',V} + a(y(t), \phi) = \langle f(t), \phi \rangle_{V',V}, \qquad \langle y(0), \phi \rangle_H = \langle y_\circ, \phi \rangle_H$$
(18)

for all $\phi \in \operatorname{span} \Psi^{\ell}$.

The solution to (18) has the form

$$y^{\ell} \in H^1(\Theta, V), \qquad y^{\ell}(t) = \sum_{l=1}^{\ell} y_l(t)\psi_l$$
(19)

Reduced order modeling

The coefficient function $y \in H^1(\Theta, \mathbb{R}^{\ell})$ is given by the system of ordinary differential equations

$$M(\psi)\dot{y}(t) + A(\psi)y(t) = f(\psi; t), \qquad M(\psi)y(0) = y_{\circ}(\psi);$$
 (20)

 $\mathbf{M}(\psi), \mathbf{A}(\psi) \in \mathbb{R}^{\ell \times \ell}$ are defined as

$$\mathbf{M}(\psi)_{kl} = \langle \psi_k, \psi_l \rangle_H, \qquad \mathbf{A}(\psi)_{kl} = a(\psi_k, \psi_l)$$

and the reduced data functions are $f(\psi) \in L^2(\Theta, \mathbb{R}^{\ell})$, and $y_{\circ}(\psi) \in \mathbb{R}^{\ell}$,

$$\mathbf{f}(\psi;t)_l = \langle f(t), \psi_l \rangle_{V',V}, \qquad \mathbf{y}_{\circ}(\psi)_l = \langle \mathbf{y}_{\circ}, \psi_l \rangle_H.$$

(20) admits the unique solution

$$\mathbf{y}(t) = e^{-t\mathbf{M}(\psi)^{-1}\mathbf{A}(\psi)}\mathbf{y}_{\circ} + \int_{0}^{t} e^{(\tau-t)\mathbf{M}(\psi)^{-1}\mathbf{A}(\psi)}\mathbf{M}(\psi)^{-1}\mathbf{f}(\psi;\tau) \,\mathrm{d}\tau.$$
Universität
Konstanz

Model order reduction via POD

Model reduction error

Martin Gubisch (University of Konstanz)

Assume $y_{\circ} = 0$. Let $\mathcal{X} = V$, $(\psi_1, ..., \psi_{\ell})$ be a POD basis satisfying the problem

$$\int_{\Theta} \langle \psi_l, \mathbf{y}(t) \rangle_V \mathbf{y}(t) \, \mathrm{d}t = \lambda_l \psi_l$$

and let $y \in H^1(\Theta, \mathbb{R}^{\ell})$ be the solution to the reduced problem (20). Then there exists a constant C > 0 just depending on the final time and the geometric data such that the ROM error can be estimated by

$$\left\| y - \sum_{l=1}^{\ell} y_l \psi_l \right\|_{L^2(\Theta, V) \cap H^1(\Theta, V')}^2 \le C \left(\sum_{l=\ell+1}^{\infty} \lambda_l + \|\dot{\tilde{y}}(t) - \mathcal{P}_V^{\ell} \dot{\tilde{y}}(t)\|_{L^2(\Theta, V')}^2 \right).$$
(22)
Universität
Konstanz

September 17, 2015 29 / 37

Model reduction error

Let $\mathcal{X} = V$, $(\psi_1, ..., \psi_\ell)$ be a POD basis satisfying the problem

$$\int_{\Theta} \langle \psi_l, \mathbf{y}(t) \rangle_V \mathbf{y}(t) \, \mathrm{d}t + \int_{\Theta} \langle \psi_l, \dot{\mathbf{y}}(t) \rangle_V \dot{\mathbf{y}}(t) \, \mathrm{d}t = \lambda_l \psi_l$$

and let $y \in H^1(\Theta, \mathbb{R}^{\ell})$ be the solution to the reduced problem (20). Then there exists a constant C > 0 just depending on the final time and the geometric data such that the ROM error can be estimated by

Model reduction error

Let $\mathcal{X} = H$, $(\psi_1, ..., \psi_\ell)$ be a POD basis satisfying the problem

$$\int_{\Theta} \langle \psi_l, \mathbf{y}(t) \rangle_{H} \mathbf{y}(t) \, \mathrm{d}t + \int_{\Theta} \langle \psi_l, \dot{\mathbf{y}}(t) \rangle_{H} \dot{\mathbf{y}}(t) \, \mathrm{d}t = \lambda_l \psi_l$$

and let $y \in H^1(\Theta, \mathbb{R}^{\ell})$ be the solution to the reduced problem (20). Then there exists a constant C > 0 just depending on the final time and the geometric data such that the ROM error can be estimated by

$$\left\| y - \sum_{l=1}^{\ell} y_l \psi_l \right\|_{L^2(\Theta, V) \cap H^1(\Theta, V')}^2 \le C \sum_{l=\ell+1}^{\infty} \lambda_l \|\psi_l - \tilde{\mathcal{P}}_V^{\ell} \psi_l\|_V^2.$$
(24)
Universität
Konstanz

Model reduction error

Let $\mathcal{X} = V, (\psi_1, ..., \psi_\ell)$ be a POD basis satisfying the problem

$$\int_{\Theta} \langle \psi_l, y(t) \rangle_V y(t) \, \mathrm{d}t = \lambda_l \psi_l$$

and let $y \in H^1(\Theta, \mathbb{R}^{\ell})$ be the solution to the reduced problem (20). Then there exists a constant C > 0 just depending on the final time and the geometric data such that the ROM error can be estimated by

Motivation

- Combination of POD with nonlinear PDE solvers such as Sequential Quadratic Programming [2], Trust Region Method [14] or Primal Dual Active Set Method [5].
- **2** How does the reduction error react if the state y which builds up $\mathcal{R}(y)$ corresponds to a different source term f then the reduced system [6]?
- In this case, the presented a-priori estimates are not valid any more. The design of efficient a-posteriori error bounds [16], especially for nonlinear equations [7], is in work.
- The a-priori bounds [10] and convergence rates [9] are available if an appropriate POD basis update strategy (OS-POD) [11], [3] is used.
- Applications to optimal control [5], parameter identification [12] and inverse problems [13].
- O Combination of POD model reduction and Greedy algorithm in the reduced basis context [8]. Universität

References I

- Chapelle, D., Gariah, A. & Sainte-Marie, J.: Galerkin approximation with Proper Orthogonal Decomposition: New [1] error estimates and illustrative examples. ESAIM: M2AN, vol. 46, no. 4: pp. 731–757, 2011.
- Gräßle, C.: POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation. [2] Master's thesis, Universität Konstanz, 2014.
- [3] Grimm, E., Gubisch, M. & Volkwein, S.: A-Posteriori Error Analysis and OS-POD for Optimal Control. Comp. Eng., vol. 3: pp. 125–129, 2014.

Reference

- [4] Gubisch, M. & Volkwein, S.: POD Reduced-Order Modelling for PDE Constrained Optimization. proceeding Model Reduction and Approximation (Luminy), submitted, Oct. 2013. URL http://nbn-resolving.de/urn:nbn:de:bsz:352-250378.
- Gubisch, M. & Volkwein, S.: POD a-posteriori error analysis for optimal control Problems with mixed constraints. [5] Comp. Opt. Appl., vol. 58, no. 3: pp. 619–644, 2014.
- Hinze, M. & Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using POD. [6] Comput. Optim. Appl., vol. 39: pp. 319–345, 2008.
- Kammann, E., Tröltzsch, F. & Volkwein, S.: A method of a-posteriori error estimation with application to proper [7] orthogonal decomposition. ESAIM M2AN, vol. 47, no. 2: pp. 555-581, 2013.
- Kärcher, M. & Grepl, M. A.: A posteriori error estimation for reduced order solutions of parametrized parabelies [8] optimal control problems. Universit Math. Mod. Num., vol. 48, no. 6: pp. 1615–1638, 2014. Konstar

at	
1Z	

September 17, 2015 35 / 37

```
Martin Gubisch (University of Konstanz)
```

Model order reduction via POD

References II

Kunisch, K. & Müller, M.: Uniform convergence of the Pod method and applications to optimal control. [9] Disc. Cont. Dyn. Syst., vol. 35, no. 9: pp. 4477-4501, 2015.

Reference

- [10] Kunisch, K. & Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math., vol. 90, no. 1: pp. 117–148, 2001.
- [11] Kunisch, K. & Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM M2AN, vol. 42: pp. 1–23, 2008.
- [12] Lass, O. & Volkwein, S.: Parameter identification for nonlinear elliptic-parabolic systems with application in lithium-ion battery modeling. Comp. Opt. Appl., vol. 62: pp. 217–239, 2015.
- [13] Ostrowsky, Z., Białecki, R. & Kassab, A.: Advances in Application of POD in Inverse Problems. Proc. Inv,. Prob. Eng., vol. 5: pp. 1–10, 2005.
- [14] Rogg, S.: Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation. Master's thesis, Universität Konstanz, 2014.
- [15] Singler, J. R.: New POD error expressions, error bounds, and asymptotic results for reduced order models. SIAM J. Numer. Anal., vol. 52, no. 2: pp. 852-876, 2014.
- [16] Tröltzsch, F. & Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl., vol. 44: pp. 319–345, 2008.

Motivation

September 17, 2015 37 / 37

Universität Konstanz

Martin Gubisch (University of Konstanz)

Model order reduction via POD