POD Model Order Reduction for Optimal Control Problems

MoRePaS 2015

Martin Gubisch

University of Konstanz

October 17, 2015
Outline

1. The optimal control problem
2. Model reduction
3. Numerical experiments
4. References
Problem formulation

We consider the optimal control problem (OCP)

$$
\min_{y,u,w} J(y, u, w) = \int_{\Theta} \int_{\Omega} \frac{1}{2} |y(t, x) - y_d(t, x)|^2 \, dx \, dt + \frac{\sigma_u}{2} \|u\|_{L^2(\Theta, \mathbb{R}^m)}^2 + \frac{\sigma_w}{2} \|w(t)\|_{L^2(\Theta, \mathbb{R}^n)}^2
$$

subject to the linear parabolic pde constraint

$$
\dot{y}(t, x) - \Delta y(t, x) = (Bu)(t, x) \quad \text{in } \Theta \times \Omega,
$$
$$
y(t, x) = 0 \quad \text{in } \Theta \times \partial \Omega,
$$
$$
y(0, x) = 0 \quad \text{in } \Omega
$$

and the control and state constraints

$$
y_a \leq \varepsilon w(t) + (Iy)(t) \leq y_b \quad \& \quad u_a \leq u(t) \leq u_b,
$$

with the operators $B : L^2(\Theta, \mathbb{R}^m) \rightarrow L^2(\Theta, H)$ and $I : L^2(\Theta, H) \rightarrow L^2(\Theta, \mathbb{R}^n)$,

$$
(Bu)(t, x) = \sum_{i=1}^{m} u_i(t) \chi_i(x), \quad (Iy)_i(t) = \int_{\Omega_i} y(t, x) \, dx.
$$
Well-posedness and optimality conditions

Theorem. There exists a unique solution \((\bar{y}, \bar{u}, \bar{w})\) to (OCP).

Theorem. With the transformation \(\omega = \varepsilon w + \mathcal{L}y\), linear operators \(\mathcal{L}_1, \mathcal{L}_2\) and nonlinear operators \(\mathcal{N}_1, \mathcal{N}_2\), (OCP) admits regular Lagrange multipliers and the following first-order optimality conditions are satisfied:

\[
\begin{align*}
\dot{y} - \Delta y - \mathcal{L}_1(u) &= 0, \\
-\dot{p} - \Delta p - \mathcal{L}_2(y, \omega) &= 0
\end{align*}
\]

\[
\begin{align*}
u - \mathcal{N}_1(p)p &= 0, \\
\omega - \mathcal{N}_2(y)y &= 0
\end{align*}
\]

The system can be solved iteratively by the primal-dual active set strategy (PDASS)

\[
\begin{align*}
\dot{y}_{k+1} - \Delta y_{k+1} &= \mathcal{L}_1\mathcal{N}_1(p_k)p_{k+1} \\
-\dot{p}_{k+1} - \Delta p_{k+1} &= \mathcal{L}_2(y_{k+1}, \mathcal{N}_2(y_k)y_{k+1})
\end{align*}
\]

This is a semismooth Newton method with global convergence and superlinear convergence rates.
Proper orthogonal decomposition (POD)

Discretization: Let $V^\ell \subseteq V$ be an ℓ-dimensional subspace of V. For all test functions $\varphi \in V^\ell$ we consider the variational equation

$$\langle \dot{y} - \Delta y - Bu, \varphi \rangle_{V', V} = 0.$$

We look for an optimal orthonormal system $\psi = (\psi_1, ..., \psi_\ell) \subseteq V$ such that the projection error of y on the space $V^\ell = \text{span}(\psi)$ is minimal:

$$\min_{\psi \text{ ONB}} \int_\Theta \left\| y(t) - \sum_{i=1}^\ell \langle y(t), \psi_i \rangle_{V} \psi_i \right\|_V^2 \, dt.$$

(POD)
Proper orthogonal decomposition (POD)

Theorem. Let \((\lambda_i, \psi_i)_{i \in \mathbb{N}}\) be a normalized eigenvalue decomposition of the compact, nonnegative, selfadjoint operator

\[
\mathcal{R}(y) : V \rightarrow V, \quad \mathcal{R}(y) \varphi = \int_{\Theta} \langle y(t), \varphi \rangle dy(t) dt.
\]

with \(\lambda_i \geq \lambda_{i+1}\) for all \(i \in \mathbb{N}\).

Then the rank-\(\ell\) POD basis \(\psi^\ell = (\psi_1, ..., \psi_\ell)\) is a solution to (POD).

A-priori estimate: The projection error of \(y\) on \(V^\ell = \text{span}(\psi)\) fulfills

\[
\int_{\Theta} \left\| y(t) - \sum_{i=1}^\ell \langle y(t), \phi_i \rangle V \phi_i \right\|^2_V = \sum_{i=\ell+1}^{\infty} \lambda_i.
\]
Reduced order model (ROM)

Let \((u^\ell, \omega^\ell)\) be the solution to the reduced system in \(V^\ell\).

A-posteriori error bound: There exists some computable \(\zeta \in L^2(\Theta, \mathbb{R}^m \times \mathbb{R}^n)\) with

\[
\int_{\Theta} \|u(t) - \bar{u}(t)\|_{\mathbb{R}^m}^2 + \|\omega(t) - \bar{\omega}(t)\|_{\mathbb{R}^n}^2 \, dt \leq \int_{\Theta} \|\zeta(t)\|_{\mathbb{R}^m \times \mathbb{R}^n}^2 \, dt + C(\Delta t + \Delta x^2).
\]

Further, \((u^\ell, \omega^\ell) \to (\bar{u}, \bar{\omega})\) for \(\ell \to \infty\) and \(\zeta\) vanishes with the same rate.

Similar results are available for nonlinear PDEs; then second-order information – the smallest eigenvalue of the Hessian \(J''\) – is required.

\(\rightarrow\) SQP (Sequential Quadratic Programming) & TR-POD (Trust Region POD).
Optimality system proper orthogonal decomp. (OSPOD)

The optimal state required to determine the POD basis is known implicitly:

\[
\min_{y,u,\omega,\psi} J(y, u, \omega, \psi) = \int_{\Theta} \left\{ \frac{1}{2} \left| \sum_{l=1}^{\ell} y_l \psi_l - y_d \right|_H^2 + \frac{\sigma_u}{2} \| u \|_{\mathbb{R}^m}^2 + \frac{\sigma_w}{2\varepsilon^2} \| \omega - I(\psi)y \|_{\mathbb{R}^n}^2 \right\} dt
\]

subject to the full-order state equation

\[
\dot{y} + Ay = Bu \quad y(0) = 0,
\]

the reduced-order state equation

\[
M(\psi)\dot{y} + A(\psi)y = B(\psi)u, \quad y(0) = 0,
\]

the POD eigenvalue problem

\[
\mathcal{R}(y)\psi_l - \lambda_l \psi_l = 0, \quad \|\psi_l\|_V^2 = 1
\]

and the penalty and control constraints

\[
y_a(t) \leq \omega(t) \leq y_b(t) \quad \& \quad u_a(t) \leq u(t) \leq u_b(t).
\]
The OSPOD system is solved iteratively; the semismooth Newton method is applied to the coupled reduced components where a gradient method is provided for the uncoupled full-order part.

Since the OSPOD basis belongs to the optimal state, a-priori bounds are applicable in addition to the a-posteriori analysis.

To guarantee convergence of the iterative ansatz, perturbation arguments are used.
Numerical experiments
Numerical experiments

Control errors for different Pod bases

<table>
<thead>
<tr>
<th>Pod basis rank ℓ</th>
<th>Rom Error(ℓ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10^2</td>
</tr>
<tr>
<td>4</td>
<td>10^0</td>
</tr>
<tr>
<td>6</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>12</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>

OSPOD model reduction error

<table>
<thead>
<tr>
<th>Pod basis rank ℓ</th>
<th>Error(Exact)</th>
<th>Error(A-priori)</th>
<th>Error(A-posteriori)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10^4</td>
<td>10^3</td>
<td>10^2</td>
</tr>
<tr>
<td>4</td>
<td>10^2</td>
<td>10^1</td>
<td>10^0</td>
</tr>
<tr>
<td>6</td>
<td>10^0</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10</td>
<td>10^{-4}</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>12</td>
<td>10^{-6}</td>
<td>10^{-7}</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>
Numerical experiments

<table>
<thead>
<tr>
<th>method</th>
<th>DoF</th>
<th>CPU time</th>
<th>relative time</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite element system</td>
<td>$N_x = 500$</td>
<td>860.75 sec</td>
<td>100.00%</td>
</tr>
<tr>
<td>initial basis</td>
<td>$\ell = 35$</td>
<td>110.77 sec</td>
<td>13.02%</td>
</tr>
<tr>
<td>iterative basis updates</td>
<td>$\ell = 15$</td>
<td>37.41 sec</td>
<td>4.40%</td>
</tr>
<tr>
<td>OS-POD basis selection</td>
<td>$\ell = 13$</td>
<td>18.39 sec</td>
<td>2.16%</td>
</tr>
<tr>
<td>optimal POD basis</td>
<td>$\ell = 13$</td>
<td>11.48 sec</td>
<td>1.35%</td>
</tr>
</tbody>
</table>
References I

Gräßle, C.: *POD based inexact SQP methods for optimal control problems governed by a semilinear heat equation.*

Gubisch, M., Neitzel, I. & Volkwein, S.: *POD a-posteriori analysis respecting finite element discretization errors.*
to appear 2015.

[URL](http://nbn-resolving.de/urn:nbn:de:bsz:352-250378).

Gubisch, M. & Volkwein, S.: *POD a-posteriori error analysis for optimal control Problems with mixed constraints.*

Hinze, M. & Volkwein, S.: *Error estimates for abstract linear-quadratic optimal control problems using POD.*

Kammann, E., Tröltzsch, F. & Volkwein, S.: *A-posteriori error estimation with application to POD.*
References II

