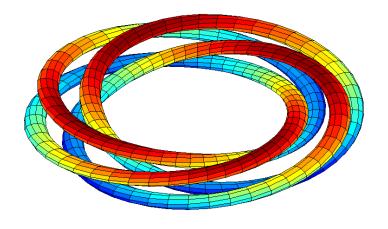
Skript zur Vorlesung

Algebra

Private Mitschrift



Gruppen, Ringe, Körper

gelesen von

Prof. Dr. Alexander Prestel

Martin Gubisch

Konstanz, Wintersemester 2006/2007

Inhaltsverzeichnis

Pr	Problemstellungen der Algebra 3			
1	v 11	4 8 12 15 16		
2	2.1 Grundbegriffe	21 23 26 26 27		
3	3.1 Grundbegriffe	30 31 34 37 40 41		
4	4.1 Die Galoisgruppe einer Erweiterung	44 47 49 54		
5	5.1 Angeordnete Körper	56 56 60 61		
6	6.1 Aufgaben zur Gruppentheorie 6.2 Aufgaben zur Ringtheorie 6.3 Aufgaben zur Körpertheorie 6.4 Aufgaben zur Galoistheorie 6.5 Aufgaben zur Theorie angeordneter Körper	62 64 65 67 67		

Problemstellungen der Algebra

Mathematische Vorgehensweise zur Problemlösung.

- 1. Problemstellung (in -g en Unbestimmten (explizite Beschreibung der gesuchten Größen)
- 2. Berechnung (durch Eins-g en Unbestimmten (explizite Beschreibung der gesuchten Größen)
- 3. Berechnung (durch Eins Form einer "Textaufgabe")
- 4. Modellierung (implizite mathematische Beschreibung mit Hilfe von Unbestimmten)
- 5. Auflösung nach d -g en Unbestimmten (explizite Beschreibung der gesuchten Größen)
- 6. Berechnung (durch Einsg etzen gegebener Werte)

Dazu: Sätze über die Lösbarkeit (Existenz und Eindeutigkeit) und Lösungsverfahren (zur konkreten Berechnung).

Beschreibung: Sehr oft durch Gleichungssysteme, zum Beispiel:

- 1. Lineare Systeme über \mathbb{R} oder \mathbb{C} : Lineare Algebra
- 2. Differenzialgleichungen: Analysis, Theorie und Numerik für Differenzialgleichungen
- 3. Algebraische Gleichung in einer Unbestimmten z.B. über \mathbb{R} , \mathbb{C} , \mathbb{Z} , \mathbb{F}_p : Algebra
- 4. Algebraische Gleichungen in n Unbestimmten über \mathbb{C} : Algebraische Geometrie

Delisches Problem. Es ist unmöglich, einen Würfel mit Volumen 2 nur mit Zirkel und Lineal zu konstruieren.

Zusammenhang mit nichtlinearen Gleichungen: Die Seitenlänge x des Würfels löst

$$X^3 - 2 = 0$$
.

ist also Nullstelle eines Polynoms dritten Grades.

Dreiteilung von Winkeln. Es ist unmöglich, den 60°-Winkel $\alpha = \frac{\pi}{3}$ mit Zirkel und Lineal dreizuteilen. Für α gilt wegen $(e^{i\frac{\alpha}{3}})^3 = e^{i\alpha}$ der Zusammenhang

$$\frac{1}{2} = \operatorname{Re}\left(\cos\frac{\alpha}{3} + i\sin\frac{\alpha}{3}\right)^3 = \cos^3\frac{\alpha}{3} + 3\cos\frac{\alpha}{3}\left(-\sin^2\frac{\alpha}{3}\right) = 4\cos^3\frac{\alpha}{3} - 3\cos\frac{\alpha}{3},$$

d.h. der exakte Wert $\alpha = \cos \frac{\alpha}{3}$ ist gegeben als Lösung der kubischen Gleichung

$$x^3 - \frac{3}{4}x - \frac{1}{8} = 0.$$

Quadratur des Kreises. Unmöglichkeit der Konstruktion eines Quadrates mit Flächeninhalt π mit Zirkel und Lineal.

Die Seitenlängen a des Quadrats lösen

$$x^2 - \pi = 0.$$

Da π "transzendent über \mathbb{Q} " ist, d.h. Nullstelle keinen Polynoms mit rationalen Koeffizienten, ist die Konstruktion nicht möglich.

Konstruktion eines regelmäßigen p-Ecks. Es ist nicht möglich, mit Zirkel und Lineal ein regelmäßiges 7-Eck zu konstruieren.

Ein $(\frac{360}{7})^{\circ}$ -Winkel $\alpha=e^{\frac{2\pi i}{7}}$ ist nämlich Nullstelle des Polynoms

$$X^7 - 1 = (X - 1)(X^6 + X^5 + X^4 + X^3 + X^2 + X + 1).$$

1.1 Grundbegriffe 1 Gruppen

Da 7-1 keine Zweierpotenz ist, ist die Konstruktion nicht möglich. Selbiges Argument funktioniert auch für 11-Ecke, 13-Ecke u.s.w..

Auflösung in Wurzeln. Für polynomiale Gleichungen bis zum Grad vier existieren explizite Lösungsformeln:

1. Für quadratische Gleichungen:

$$x^{2} + ax + b = 0$$
 \Longrightarrow $x_{1,2} = \frac{1}{2}(-a \pm \sqrt{D})$

mit Diskriminante

$$D = a^2 - 4b.$$

2. Für kubische Gleichungen: Betrachte

$$x^3 + a_2 x^2 + a_1 x + a_0 = 0.$$

Substitutionsansatz: Ersetze x durch $x - \frac{1}{3}a_2$, dann ist

$$x^3 + ax + b = 0.$$

Setze

$$D := -(4a^3 + 27b^2); \qquad A := \sqrt[3]{-\frac{27}{2}b + \frac{3}{2}\sqrt{-3D}}; \qquad B := \sqrt[3]{-\frac{27}{2}b - \frac{3}{2}\sqrt{-3D}}$$

und $\rho := -\frac{1}{2} + \frac{1}{2}\sqrt{-3}$ (d.h. $\rho^3 = 1$). Dann liefern die Cardanische Formeln:

$$x_1 = \frac{1}{3}(A+B);$$
 $x_2 = \frac{1}{3}(\rho^2 A + \rho B);$ $x_3 = \frac{1}{3}(\rho A + \rho^2 B).$

- 3. Auflösung von Gleichungen vierten Grades: Formel von Ferrari (16. Jh.).
- 4. Nichtauflösbarkeit von Gleichungen fünften Grades bewiesen durch Abel 1826.
- 5. 1831: Endgültige Lösung des Auflösbarkeitsproblems durch Galois.

1 Gruppen

1.1 Grundbegriffe

1.1. Wiederholung

- 1. Seien G eine Menge und $\circ: G \times G \to G$ eine Abbildung. (G, \circ) heißt Gruppe, falls gelten:
 - a) \circ ist assoziativ, d.h. $\forall x, y, z \in G : (x \circ y) \circ z = x \circ (y \circ z)$.
 - b) G besitzt ein neutrales Element, d.h. $\exists e \in G : \forall x \in G : x \circ e = e \circ x = x$.
 - c) Jedes Element in G besitzt ein Inverses, d.h. $\forall x \in G: \exists x^{-1} \in G: x \circ x^{-1} = x^{-1} \circ x = e$.
 - (G, \circ) heißt abelsch (kommutativ), falls für alle $x, y \in G$ gilt: $x \circ y = y \circ x$.
- 2. $H \subseteq G$ heißt Untergruppe von G (in Zeichen: H < G), falls gelten:
 - a) $\forall x, y \in H : x \circ y \in H$.
 - b) $e \in H$.
 - c) $\forall x \in H : x^{-1} \in H$.
- 3. H heißt Normalteiler von G (in Zeichen: $H \triangleleft G$), falls $xHx^{-1} = H$ bzw. xH = Hx für alle $x \in G$. xH heißt Linksnebenklasse und Hx Rechtsnebenklasse von H. Es gilt: $Hx \cap Hy \neq \emptyset \Rightarrow Hx = Hy$.
- 4. Sind H eine Untergruppe von G und G ist disjunkte Vereinigung $G = Hx_1 \cup ... \cup Hx_n$ für gewisse $x_1,...,x_n \in G$, dann gilt: |G| = n|H|.

 $|G:H|:=\frac{|G|}{|H|}$ heißt der Index von H in G.

1 Gruppen 1.1 Grundbegriffe

5. Ist H Normalteiler in G, so definiert (xH)(yH) := xyH eine Multiplikation auf den Nebenklassen. $G/H := \{xH \mid x \in G\}$ wird dadurch zu einer Gruppe, der Quotientengruppe von G nach H.

6. $f: G \to H$ heißt Gruppenhomomorphismus (in Zeichen: $f \in \text{Hom}(G, H)$), falls für alle $x, y \in G$ gilt: f(xy) = f(x)f(y). Ist f zusätzlich bijektiv, dann heißt f Isomorphismus (in Zeichen: $G \cong H$). Ein surjektiver Homomorphismus heißt Epimorphismus, ein injektiver Homomorphismus Monomorphismus.

 $\operatorname{Kern}(f) := \{x \in G \mid f(x) = e\}$ ist ein Normalteiler von G und G/N ist isomorph zu $\operatorname{Bild}(f) := f(G)$ via $gN \mapsto f(g)$ (Homomorphiesatz).

1.2. Beispiel

Die folgenden Abbildungen sind Gruppenhomomorphismen:

- 1. $\exp: (\mathbb{R}, +) \to (\mathbb{R}, \cdot), \ x \mapsto e^x, \text{ denn es gilt } e^{x+y} = e^x \cdot e^y.$
- 2. Sei $l: V \to W$ eine lineare Abbildung zwischen Vektorräumen, dann ist l(v+w) = l(v) + l(w).
- 3. Sei $N \triangleleft G$, dann definiert der kanonischer Epimorphismus $\sigma(g) := gN$ einen Homomorphismus zwischen G und G/N, denn (xN)(yN) = (xy)N.

1.3. SATZ (Erster Isomorphiesatz)

Seien U < G und $N \triangleleft G$. Dann gelten:

- 1. UN < G.
- 2. $(U \cap N) \triangleleft U$.
- 3. $N \triangleleft UN$.
- 4. $U/(U \cap N) \cong (UN)/N$.

BEWEIS.

- 1. a) $1 \in UN$: $1 = 1 \cdot 1 \in UN$.
 - b) $a, b \in UN \Rightarrow ab \in UN$:

Seien $a, b \in UN$. Wähle $g, g' \in U$ und $h, h' \in N$ mit a = gh und b = g'h'. Dann gilt:

$$g'^{-1}hg' \in N \Rightarrow ab = ghg'h' = gg'(g'^{-1}hg')h' \in UN.$$

c) $a \in UN \Rightarrow a^{-1} \in UN$:

Sei $a \in UN$. Wähle $g \in U$, $h \in N$ mit a = gh. Dann gilt:

$$gh^{-1}g^{-1} \in N \Rightarrow a^{-1} = (gh)^{-1} = h^{-1}g^{-1} = g^{-1}(gh^{-1}g^{-1}) \in UN.$$

2. Zu zeigen: $g \in U$, $h \in U \cap N \Rightarrow g^{-1}hg \in U \cap N$.

Es gelten $g^{-1}hg \in N$, da $N \triangleleft G$, und $g^{-1}hg \in U$, da U < G, also $g^{-1}hg \in U \cap N$.

- 3. Trivial.
- 4. Betrachte die kanonische Einbettung ι und den kanonischen Epimorphismus π , gegeben durch

$$\iota: U \to UN, \ \iota(g) := g \cdot 1 \quad \text{und} \quad \pi: UN \to (UN)/N, \ \pi(g) := [g]_N.$$

Definiere $\varphi := \pi \circ \iota : U \to (UN)/N, \varphi(g) := [g]_N$, dann ist φ ein Homomorphismus als Verkettung von Homomorphismen.

a) $U \cap N = \text{Kern}(\varphi)$:

Trivial.

b) φ ist surjektiv:

Sei $a \in (UN)/N$. Wähle $g \in U$, $h \in N$ mit $a = [gh]_N$. Dann

$$\varphi(g) = [g]_N = [g]_N [h]_N = [gh]_N = a,$$

d.h. zu jedem $a \in (UN)/N$ findet man ein $g \in U$ mit $\varphi(g) = a$.

WS 2006/2007 5 Martin Gubisch

1.1 Grundbegriffe 1 Gruppen

Mit dem Homomorphiesatz folgt: $U/(U \cap N) \cong (UN)/N$.

1.4. SATZ (Zweiter Isomorphiesatz)

Seien G Gruppe, $U \lhd G$, $N \lhd G$, U < N. Dann gelten:

- 1. $N/U \triangleleft G/U$.
- $2. \ (G/U)/(U/N) \cong G/N.$

BEWEIS.

1. Offensichtlich ist N/U eine Untergruppe von G/U. Noch zu zeigen:

$$\forall a \in G/U : \forall b \in N/U : a^{-1}ba \in N/U.$$

äquivalente Formulierung mit Vertretern:

$$\forall g \in G : \forall h \in N : [g]_U^{-1}[h]_U[g]_U = [g^{-1}hg]_U \in N/U.$$

Seien $g \in G$ und $h \in N$. Dann gilt $g^{-1}hg \in N$, da N Normalteiler von G. Insbesondere gilt dann

$$[g^{-1}hg]_U \in N/U.$$

2. Der Normalteiler U von G ist im Kern des kanonischen Epimorphismus

$$G \to G/N, \qquad g \mapsto gN$$

enthalten, da $U \subseteq N$.

Der Homomorphiesatz liefert also den Epimorphismus

$$\varphi: G/U \to G/N, \qquad [g]_U \mapsto [g]_N.$$

Wiederum nach Homomorphiesatz ist nur zu zeigen: $Kern(\varphi) = N/U$.

- \subseteq : Ist $g \in G$ mit $[g]_U \in \text{Kern}(\varphi)$, dann $[g]_N = \varphi([g]_U) = 1$, also $g \in N$.
- ⊇: Sei $b \in N/U$. Wähle $h \in N$ mit $b = [h]_U$. Dann gilt:

$$\varphi(b) = \varphi([h]_U) = [h]_N = [1]_N = 1,$$

da $h \in N$. Also $b \in \text{Kern}(\varphi)$.

Damit ist

$$(G/U)/(N/U) \to G/N, \qquad [[g]_U]_{N/U} \to [g]_N$$

ein Isomorphismus.

1.5. Wiederholung

1. Seien $A \subseteq G$ und G Gruppe.

$$\langle A \rangle := \bigcap_{\substack{A \subseteq H \\ H < G}} H$$

heißt die von A in G erzeugte Gruppe.

2. Es gilt

$$\langle A \rangle = \{a_1, ..., a_m \mid m \in \mathbb{N}, \ a_i \in A \text{ oder } a_i^{-1} \in A \text{ oder } a_i = e\}.$$

3. Sei $A = \{a\}$. Dann heißt

$$\langle a \rangle = a^{\mathbb{Z}} = \{ a^n \mid n \in \mathbb{Z} \}$$

die von a in G erzeugte Gruppe.

1 Gruppen 1.1 Grundbegriffe

4. Durch

$$\varphi: \mathbb{Z} \to a^{\mathbb{Z}} \subseteq G, \qquad n \mapsto a^n$$

ist ein Epimorphismus gegeben, denn $a^{n+m} = a^n \cdot a^m$. Zwei Fälle sind möglich:

- a) $\operatorname{Kern}(\varphi) = \{0\}$, dann ist $\mathbb{Z} \cong a^{\mathbb{Z}}$ via φ . $\langle a \rangle$ heißt dann unendliche zyklische Gruppe.
- b) Kern $(\varphi) = n\mathbb{Z}$. Dann ist $\mathbb{Z}/(n\mathbb{Z}) \cong \{0, 1, ..., n-1\}$. $\langle a \rangle = \{a^0, ..., a^{n-1}\}$ heißt dann zyklische Gruppe der n.

1.6. Definition

Seien X eine Menge und (G, \cdot) eine Gruppe.

$$f: G \times X \to X, \qquad (g, x) \mapsto gx$$

heißt Operation von G auf X, falls gelten:

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 und $e \cdot x = x$.

Sei $x \in X$.

$$G \cdot x = \{ g \cdot x \mid g \in G \}$$

heißt Bahn von x unter G.

 $V\subseteq X$ heißt vollständiges Vertretersystem, falls für alle $x\in X$ gilt:

$$|(G \cdot x) \cap V| = 1.$$

f heißt transitiv, falls es nur eine Bahn in X gibt.

$$G_x := \{ g \in G \mid g \cdot x = x \}$$

heißt Stabilitätsgruppe oder Isotropiegruppe oder Fixgruppe von $x \in X$.

1.7. Bemerkung

1. Sei $g \cdot x_1 = h \cdot x_2$. Dann gilt:

$$x_1 = e \cdot x_1 = g^{-1}g \cdot x_1 = g^{-1} \cdot (g \cdot x_1) = g^{-1} \cdot (h \cdot x_2) = (g^{-1}h) \cdot x_2,$$

d.h. $x_1 \in G \cdot x_2$ und damit $G \cdot x_1 = G \cdot x_2$.

- 2. G_x ist eine Untergruppe von G.
- 3. Seien X endlich und $G \times X \to X$ transitiv, so gilt für jedes $x \in X$:

$$|X| = |G:G_x|.$$

Allgemeiner erhalten wir:

1.8. SATZ (Bahnengleichung)

Seien G eine Gruppe, X eine endlich Menge und $V \subseteq X$ ein vollständiges Vertretersystem. Dann gilt:

$$|X| = \sum_{x \in V} |G : G_x|.$$

BEWEIS.

Es ist $|X| = \sum_{x \in V} |Gx|$. Wir zeigen: $|Gx| = |G:G_x|$ für festes x. Sei hierfür

$$G \to \{x_1, ..., x_m\} = Gx \subseteq X, \qquad g \mapsto gx,$$

WS 2006/2007 7 Martin Gubisch

1.2 Sylow-Gruppen 1 Gruppen

 $\times x = x_1$. Dann lässt G sich schreiben als disjunkte Vereinigung

$$G = \{g \mid gx = x_1\} \cup \cdots \cup \{g \mid gx = x_m\}.$$

Sei $g_1x = x_1$. Dann ist

$$hx = x_1 \Leftrightarrow hx = g_1x \Leftrightarrow (g_1^{-1}h)x = x \Leftrightarrow g_1^{-1}h \in G_x \Leftrightarrow h \in g_1G_x.$$

Also $G = g_1 G_x \cup \cdots \cup g_m G_x$, d.h.

$$m = |Gx| = |G:G_x|.$$

1.9. Definition

Seien G eine Gruppe und H < G.

$$Nor(H) := \{ g \in G \mid gHg^{-1} = H \}$$

heißt Normalisator von H in G.

1.10. Bemerkung

- 1. Nor(H) ist eine Untergruppe von G.
- 2. $H \triangleleft Nor(H)$.
- 3. Ist K < G mit $H \triangleleft K$, dann ist $K \subseteq \text{Nor}(H)$, d.h. Nor(H) ist die größte Untergruppe von G, in der H Normalteiler ist:

$$k \in K \implies kHk^{-1} = H \implies k \in Nor(H).$$

1.2 Sylow-Gruppen

1.11. Definition

Seien G eine Gruppe und p eine Primzahl.

G heißt p-Gruppe, falls es zu jedem $g \in G$ ein $k \in \mathbb{N}$ gibt mit $g^{(p^k)} = e$.

Eine Untergruppe H von G heißt p-Untergruppe von G, falls H eine p-Gruppe ist.

H heißt p-Sylowgruppe von G, falls H eine maximale p-Untergruppe von G ist.

1.12. Bemerkung

Seien G eine endliche Gruppe und d ein Teiler von |G|. Wir wollen im Folgenden Aussagen darüber treffen, ob G Untergruppen der Ordnung d enthält ober ob es ein Element der Ordnung d in G gibt. \Diamond

1.13. Behauptung

Seien p prim und $n = p^r m$ mit $p \nmid m$. Dann ist p^{r-s+1} für kein $s \in \{1, ..., r\}$ Teiler von $\binom{n}{p^s}$.

BEWEIS.

Es gilt

$$\begin{pmatrix} n \\ p^s \end{pmatrix} = \frac{n(n-1)\cdots(n-(p^s-1))}{p^s(p^s-1)\cdots 1} = p^{r-s}m\xi \qquad \text{mit} \qquad \xi := \prod_{i=1}^{p^s-1} \frac{p^rm-i}{p^s-i}.$$

Zu zeigen: $p \nmid \xi$.

$$i = p^{l_i} t_i, \ p \nmid t_i \& 0 \le l_i \le s \qquad \Longrightarrow \qquad \xi = \prod_i \frac{p^{r-l_i} m - t_i}{p^{s-l_i} - t_i} \stackrel{\cdot \frac{p^{l_i}}{p^l}}{=} \frac{\lambda p + a}{\mu p + a} \quad \text{mit} \quad a = \prod_i (-t_i).$$

Martin Gubisch 8 WS 2006/2007

1 Gruppen 1.2 Sylow-Gruppen

Also folgt

$$a\xi - a = \lambda p - \mu p \xi = p(\lambda - \mu \xi)$$
 \Longrightarrow $p \mid a(\xi - 1).$

Wegen $p \nmid a$ gilt dann $p \mid (\xi - 1)$ und damit $p \nmid \xi$.

1.14. LEMMA

Seien G endliche Gruppe, p eine Primzahl und $|G| = p^k m$ mit $p \nmid m$.

Dann gibt es zu jedem $l \leq k$ eine Untergruppe H von G mit $|H| = p^l$.

BEWEIS.

Sei X die Menge aller Teilmengen von G der Mächtigkeit p^l . Ist |G|=n, dann $|X|=\binom{n}{p^l}$.

$$G \times X \to X, \qquad (g, U) \mapsto gU = \{gu \mid u \in U\}$$

definiert einen Monomorphismus, da $\sigma_g:U\to gU,\ u\mapsto gu$ injektiv ist. Mit Behauptung 1.13 gilt:

$$p^{k-l+1} \nmid \left(\begin{array}{c} n \\ p^l \end{array} \right) = |X|.$$

Sei $G_U := \{g \in G \mid gU = U\}$. Nach der Bahnengleichung 1.8 gibt es $U \in X$ mit

$$p^{k-l+1} \nmid |G:G_U| \implies s \leq k-l.$$

Es gibt v, w, so dass $|G_U| = p^r v$ mit $p \nmid v$ und $|G: G_U| = p^s w$ mit $p \nmid w$, also

$$|G| = |G: G_U||G_U| \implies k = r + s \le r + k - l \implies l \le r,$$

also $p^l \mid |G_U|$. Fixiere ein $u \in U$ und betrachte $\sigma_u : G_U \to U, \ h \mapsto hu$. Da σ_u ein Monomorphismus ist, folgt

$$|G_{II}| < |U| = p^l \implies |G_{II}| = p^l.$$

1.15. Korollar

Sei G eine endliche Gruppe. Dann gelten:

- 1. Ist p ein Teiler von |G|, so es gibt ein $g \in G$ mit $\operatorname{Ord}(g) = p$.
- 2. Ist G eine p-Gruppe, so gilt $|G| = p^k$ für ein $k \in \mathbb{N}$.
- 3. Ist $|G| = p^k m$ mit $p \nmid m$, dann ist jedes H < G mit $|H| = p^k$ eine p-Sylowgruppe in G.

BEWEIS.

- 1. Gelte $|G| = p^k m$ mit $p \nmid m$, $k \geq 1$. Nach Lemma 1.14 gibt es ein H < G mit |H| = p und da p prim, ist $H = g^{\mathbb{Z}}$ für ein $g \in \mathbb{Z}$ und für dieses g gilt: $\operatorname{Ord}(g) = p$.
- 2. \Rightarrow Sei q prim mit $q \mid |G|$ und $q \neq p$. Nach Lemma 1.14 gibt es dann ein $g \in G$ mit $g^q = 1$ und G kann somit keine p-Gruppe sein.
 - \Leftarrow Ist $|G| = p^k$, dann gilt für alle $g \in G$, dass $Ord(g) \mid p^k$.
- 3. Sei S < G mit $|S| = p^k$, $S \subseteq H$ und H eine p-Gruppe. Dann ist $|H| = p^l$, d.h. $k \le l$, und |H| teilt |G|, d.h. $l \le k$, also k = l und damit S = H.

1.16. HILFSSATZ

Seien G eine endliche Gruppe, p prim, H eine p-Untergruppe von G, S eine p-Sylowgruppe in G und $H \subseteq \text{Nor}(S)$.

Dann gilt $H \subseteq S$.

1.2 Sylow-Gruppen 1 Gruppen

BEWEIS.

Da $S \triangleleft \operatorname{Nor}(S)$, gilt nach dem ersten Isomorphiesatz: $(HS)/S \cong H/(H \cap S)$. Wegen $|H| = |H \cap S|H/(H \cap S)|$ ist (HS)/S eine p-Gruppe unf wegen |HS| = |S||(HS)/S ist HS eine p-Gruppe. Da $S \subseteq SH$, folgt mit Korollar 1.15: S = SH, also $H \subseteq S$.

1.17. HILFSSATZ

Seien G eine endliche Gruppe, p prim und $|G| = p^k m$ mit $p \nmid m$.

Ist S_0 eine Untergruppe von G mit $|S_0| = p^k$, so gibt es zu jeder p-Untergruppe H von G ein $b \in G$ mit $H \subseteq bS_0b^{-1}$.

BEWEIS.

Sei $X = \{gS_0g^{-1} \mid g \in G\}$. Durch $G \times X \to X$, $(g,S) \mapsto gSg^{-1}$ ist eine transitive Operation von G auf X gegeben. $X = GS_0$ ist die Bahn von S_0 , also $|X| = |G:S_{S_0}|$, d.h. $|G| = |X||G_{S_0}|$.

Wegen $S_0 < G_{S_0} = \{g \in G \mid gS_0g^{-1} = S_0\}$ ist $p \nmid |X|$. Betrachte $H \times X \to X$, definiert durch $(h, S) \mapsto hSh^{-1}$ (muss nicht mehr transitiv sein). Nach der Bahnengleichung gilt für ein vollständiges Vertretersystem $V: |X| = \sum \{|H: H_s| \mid s \in V\}$.

Da H eine p-Gruppe ist, folgt $|H:H_S|=1$ oder durch p teilbar. Da $p \nmid |X|$, gibt es ein $S \in X$ mit $H=H_S$, d.h. $hSh^{-1}=S$ für alle $h \in H$ und somit $H \subseteq \operatorname{Nor}(S)$. Da außerdem S_0 eine p-Sylowgruppe in G ist und $S=aS_0a^{-1}$ gilt, folgt, dass S eine p-Sylowgruppe ist, also $H \subseteq S$ nach Hilfssatz 1.16.

1.18. SATZ (Sylowsatz)

Seien G eine endliche Gruppe und p prim, so dass $|G| = p^k m$ mit $p \nmid m$. Dann gelten:

- 1. Eine Untergruppe S von G ist genau dann eine p-Sylowgruppe in G, wenn $|S| = p^k$ gilt.
- 2. Zu jeder p-Untergruppe H von G gibt es eine p-Sylowgruppe S in G mit $H \subseteq S$.
- 3. Mit S ist auch gSg^{-1} eine p-Sylowgruppe in G. Je zwei p-Sylowgruppen S_1, S_2 in G sind zueinander konjugiert in G, d.h. es gibt ein $g \in G$ mit $S_1 = gS_2g^{-1}$.
- 4. Ist s die Anzahl der p-Sylowgruppen in G, dann wird |G| von s geteilt und $s \equiv 1 \mod p$.

BEWEIS.

- 1. \Rightarrow Seien S und S_0 zwei p-Sylowgruppen, dann liefert Hilfssatz 1.17, dass $S \subseteq gS_0g^{-1}$ für ein $g \in G$. Da S maximal, folgt $S = gS_0g^{-1}$, d.h. $|S| = |S_0| = p^k$.
 - \Leftarrow Dies besagt bereits Korollar 1.15.
- 2. vgl. Hilfssatz 1.17.
- 3. Schon gezeigt: Da S p-Sylowgruppe, ist auch gSg^{-1} eine p-Sylowgruppe. Seien S_0 und S_1 zwei p-Sylowgruppen, dann $S_1 \subseteq gS_0g^{-1}$ und aus der Maximalität folgt $S_1 = gS_0g^{-1}$.
- 4. Sei $X := \{gSg^{-1} \mid g \in G\}$. Setze s := |X|. $G \times X \to X$, $(g, S) \mapsto gSg^{-1}$ ist eine transitive Operation von G auf X, d.h. es gibt nur eine Bahn. Wähle einen Vertreter S_0 aus dieser Bahn. Nach der Bahnengleichung ist $|X| = |G: G_{S_0}|$ (wobei $G_{S_0} = \{g \in G \mid gS_0 = S_0\}$), also $gS_0g^{-1} = S_0$. Weiter gilt $|G: G_{S_0}| \mid |G|$.

Betrachte $S_0 \times X \to X$, $(a, S) \mapsto aSa^{-1}$ (muss nicht transitiv sein). Sei V vollständiges Vertretersystem, dann $|X| = \sum \{|S_0: S_0s| \mid s \in V\}$. Œ sei $S_0 \in V$, dann $|S_0: S_0s_0| = |S_0: S_0| = 1$. Wegen $S \neq S_0$ ist $(S_0)s \neq S_0$, sonst $S_0 \subseteq \text{Nor}(S) = \{a \mid aSa^{-1} = S\}$ und mit Hilfssatz 1.17 würde folgen $S_0 = S$. Damit

$$|S_0:(S_0)s|>1 \implies p\mid |S_0:(S_0)s| \implies s\equiv 1 \bmod p \implies s=1+pl.$$

1.19. Wiederholung

Martin Gubisch 10 WS 2006/2007

1 Gruppen 1.2 Sylow-Gruppen

- 1. Ist |G| = p prim, dann ist $G = a^{\mathbb{Z}}$ für ein $a \in G \setminus \{e\}$ und es ist $G \cong \mathbb{Z}/(p\mathbb{Z})$.
- 2. Sei $\sigma: (\mathbb{Z}, +) \to (G, \cdot), \ n \mapsto a^n$, dann ist $\operatorname{Kern}(\sigma) = p\mathbb{Z}$.
- 3. Seien G_1 und G_2 zwei Gruppen. Definiere $G_1 \times G_2 := \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$. Dann ist $|G_1 \times G_2| = |G_1||G_2|$.

$$(G_1 \times G_2) \times (G_1 \times G_2) \to (G_1 \times G_2), \qquad (a_1, a_2)(b_1, b_2) := (a_1b_1, a_2b_2)$$

macht $G_1 \times G_2$ zu einer Gruppe. $G_1 \times G_2$ heißt direktes Produkt von G_1 mit G_2 . Neutrales Element ist (e_1, e_2) ; zu $(a, b) \in G_1 \times G_2$ ist das Inverse gegeben durch $(a, b)^{-1} = (a^{-1}, b^{-1})$.

Es gelten
$$G_1 \cong G_1 \times \{e_2\}$$
 und $G_2 \cong \{e_1\} \times G_2$ via $a \mapsto (a, e_2), b \mapsto (e_1, b).$

1.20. Behauptung

Sei $|G_1| = p \neq q = |G_2|$ mit p, q prim, dann ist $G_1 \times G_2$ zyklisch.

BEWEIS.

Seien $G_1 = a_1^{\mathbb{Z}}$ und $G_2 = a_2^{\mathbb{Z}}$ mit $a_1^p = e_1$ und $a_2^q = e_2$. Es gilt $\operatorname{Ord}((a_1, a_2)) = pq$, denn $\operatorname{Ord}(a_1, a_2)$ liegt in $\{1, p, q, pq\}$ und $(a_1, a_2)^p = (a_1^p, a_2^p) = (e_1, a_2^p) \neq (e_1, e_2)$... analog können die anderen Fälle ausgeschlossen werden, also $\operatorname{Ord}(a_1, a_2) = pq$.

1.21. Behauptung

Seien G eine Gruppe und N_1, N_2 zwei Normalteiler von G mit $N_1 \cap N_2 = \{1\}$.

Dann gilt für alle $(a,b) \in N_1 \times N_2$: ab = ba.

BEWEIS.

Wir zeigen: Gibt es ein $(a, b) \in N_1 \times N_2$ mit $ab \neq ba$, dann ist $N_1 \cap N_2 \neq \{1\}$.

Sei $ab \neq ba$, dann $a \neq 1$, $b \neq 1$. Wegen $N_1 \triangleleft G$, $N_2 \triangleleft G$ sind $bab^{-1} \in N_1$ und $aba^{-1} \in N_2$, d.h. $aba^{-1}b^{-1} \in N_2$ und $bab^{-1}a^{-1} \in N_1$. Es folgt: $1 \neq bab^{-1}a^{-1} = (aba^{-1}b^{-1})^{-1} \in N_2 \Rightarrow N_1 \cap N_2 \neq \{1\}$. \square

1.22. SATZ

Es seien p,q Primzahlen mit p < q und $p \nmid q - 1$. Dann ist jede Gruppe der Ordnung pq zyklisch.

BEWEIS.

Sei |G|=pq mit s Anzahl der p-Sylowgruppen in G. Dann $s\equiv 1$ mod p, also s=1+kp, und s|pq, d.h. s=1 oder s=q. Es gilt $s\neq q$, sonst q-1=kp, Widerspruch zur Voraussetzung. Also ist s=1, d.h. es gibt nur eine p-Sylowgruppe in G. Bezeichne S' die Anzahl der q-Sylowgruppen in G, s'=1+lp und s'|pq. Analoge Argumentation ergibt: s'=1. Seien S_1 eine p-Sylowgruppe mit $|S_1|=p$ und S_2 eine q-Sylowgruppe mit $|S_2|=q$, insbesondere sind S_1 und S_2 zyklisch.

 $\varphi: S_1 \times S_2 \to G$, $(a_1, a_2) \mapsto a_1 a_2$ ist ein Gruppenhomomorphismus, denn da S_1 die einzige p-Sylowgruppe und S_2 die einzige q-Sylowgruppe ist, gelten $S_1 \triangleleft G$ und $S_2 \triangleleft G$, außerdem ist $S_1 \cap S_2 = \{1\}$. Mit Behauptung 1.21 folgt:

$$(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) \mapsto a_1b_1a_2b_2 = (a_1a_2)(b_1b_2).$$

Weiter ist φ injektiv, denn

$$(a_1, a_2) \in \operatorname{Kern}(\varphi) \implies a_1 a_2 = 1 \implies a_1, a_2 \in S_1 \cap S_2 \implies a_1 = 1 = a_2.$$

Mit dem Homomorphiesatz folgt $G \cong (S_1 \times S_2)/\mathrm{Kern}(\varphi)$. Aus $G \cong S_1 \times S_2$ mit $|S_1| = p \neq q = |S_2|$ folgt dann nach Behauptung 1.20: $S_1 \times S_2$ ist zyklisch.

1.23. Bemerkung

WS 2006/2007 11 Martin Gubisch

- 1. $\mathbb{Z}/(n\mathbb{Z})$ ist zyklisch, da von 1 erzeugt.
- 2. $\mathbb{Z}/(n\mathbb{Z}) \times \mathbb{Z}/(n\mathbb{Z})$ dagegen ist nicht zyklisch, denn für jedes Element $(a,b) \in \mathbb{Z}/(n\mathbb{Z}) \times \mathbb{Z}/(n\mathbb{Z})$ gilt: n(a,b) = (na,nb) = (0,0), d.h. $\operatorname{Ord}(a,b) \mid n$, d.h. es gibt kein Element der Ordnung n^2 , also auch kein Element, das die ganze Gruppe erzeugt.

1.24. Behauptung

Seien G endliche Gruppe, p die kleinste Primzahl mit $p \mid |G|$, H < G und $X := \{gH \mid g \in G\}$ die Menge der Linksnebenklassen von H.

Ist dann |X| = p, so ist H ein Normalteiler von G.

BEWEIS.

Sei $x \in X$ beliebig. Dann ist $|Hx| = |H: H_x|$, insbesondere $|Hx| \mid |H| \mid |G|$. Wegen $|Hx| \le |X| = p$ und p kleinster Primteiler von G, folgt |Hx| = p oder |Hx| = 1. Wäre nun |Hx| = p, dann Hx = X, d.h. es gibt nur eine Bahn $Hx = Hx_0$, etwa $x_0 = H$. Sei $g \in G$ beliebig. Dann $gH \in X$, d.h. es gibt $h \in H$ mit $gH = hx_0$, also $g \in hH \subseteq H$. Damit $G \subseteq H$, also G = H und damit |X| = 1, Widerspruch. Also sind die Bahnen der Gruppenwirkung von H auf X alle einelementig. Setzt man $\varphi : G \to S_X$, $g \mapsto (x \mapsto gx)$, so ist H gerade der Kern von φ , also $H \triangleleft G$.

1.25. SATZ

Seien G eine Gruppe und p prim mit $|G| = p^2$. Dann ist $G \cong \mathbb{Z}/p^2\mathbb{Z}$ oder $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

BEWEIS.

- 1. Ist G zyklisch, dann $G \cong \mathbb{Z}/p^2\mathbb{Z}$.
- 2. Ist G dagegen nicht zyklisch, dann $g^p = 1$ für alle $g \in G$, denn wegen $\operatorname{Ord}(g) \mid p$ folgt $\operatorname{Ord}(g) \in \{1, p, p^2\}$ und im Falle $\operatorname{Ord}(g) = p^2$ wäre $\langle q \rangle = G$, d.h. G zyklisch.

Es gibt nach Lemma 1.14 H < G mit |H| = p, insbesondere ist H zyklisch, also $H = \langle a \rangle = a^{\mathbb{Z}}$ für ein $a \in G$. Sei $b \in G \backslash H$, dann $\operatorname{Ord}(b) \in \{1, p, p^2\}$. Setze $H' := \langle b \rangle$. Dann gilt:

$$b \notin H \cap H' \implies H \cap H' \subsetneq H' \implies |H \cap H'| \mid p \implies |H \cap H'| = 1 \implies H \cap H' = \{1\}.$$

Es ist $|G:H|=|G:H'|=\frac{p^2}{p}=p$, d.h. $H,H' \triangleleft G$. Wie oben ist $\varphi:H\times H'\to G$, $(a,b)\mapsto ab$ ein Gruppenhomomorphismus. Für $(a,b)\in \mathrm{Kern}(\varphi)$ gilt $a,b\in H\cap H'=\{1\}$, also $H\times H'\cong G$, d.h. $G\cong \mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z}$, da $H\cong \mathbb{Z}/p\mathbb{Z}$ und $H'\cong \mathbb{Z}/p\mathbb{Z}$.

1.3 Semidirekte Produkte

1.26. SATZ

Seien G eine Gruppe und H_1 , H_2 Untergruppen von G. Dann ist $\varphi: H_1 \times H_2 \to G$, $(a,b) \mapsto ab$ genau dann ein Isomorphismus, wenn gelten:

- 1. ab = ba für alle $a \in H_1$, $b \in H_2$, d.h. H_1 und H_2 kommutieren,
- 2. $G = H_1H_2 = \{ab \mid a \in H_1, b \in H_2\}$ und
- 3. $H_1 \cap H_2 = \{e\}.$

BEWEIS.

- \Rightarrow 1. $abab = \varphi(a,b)\varphi(a,b) = \varphi((a,b)(a,b)) = \varphi(a^2,b^2) = a^2b^2$, d.h. ba = ab.
 - 2. Klar, da φ surjektiv.
 - 3. Sei $a \in H_1 \cap H_2$, dann $\varphi(a, e) = ae = ea = \varphi(e, a)$. Da φ injektiv, folgt $\Rightarrow a = e$.

- $\Leftarrow 1. \Rightarrow \varphi$ Homomorphismus, denn $(aa', bb') = (a, b)(a', b') \mapsto (a, b)(a', b') = aa'bb'$.
 - $2. \Rightarrow Surjektivität.$
 - 3. \Rightarrow Injektivität, denn $ab = e \Rightarrow b = a^{-1} \Rightarrow b \in H_1 \cap H_2 \Rightarrow a = b = e$, d.h. Kern $(\varphi) = \{e\}$.

1.27. Bemerkung

Bedingung 1. kann ersetzt werden durch $H_1 \triangleleft G$, $H_2 \triangleleft G$, denn:

- $\Rightarrow H_1 \triangleleft G, H_2 \triangleleft G \text{ und } H_1 \cap H_2 = \{e\}, \text{ d.h. } ab = ba \text{ für alle } a \in H_1, b \in H_2.$
- \Leftarrow Sei $G = H_1 \times H_2$. Dann gilt: $(a,b)(c,e)(a,b)^{-1} = (aca^{-1},beb^{-1}) = (aca^{-1},e) \in H_1$, d.h. $H_1 \triangleleft G$. Analog $H_2 \triangleleft G$.

1.28. Bemerkung

- 1. Seien G eine Gruppe und $b \in G$, dann ist die Konjugation mit b, $\rho_b : G \to G$, $a \mapsto bab^{-1}$, ein Automorphismus von G, d.h. ein Isomorphismus von G in sich.
- 2. Seien ab jetzt $H_1 \triangleleft G$, $H_2 \triangleleft G$ und $\varphi: H_1 \times H_2 \rightarrow G$, $(a,b) \mapsto ab$ die Einschränkung der Gruppenoperation auf $H_1 \times H_2$, dann

$$\forall (a,b), (a',b') \in H_1 \times H_2 : \varphi(a,b)\varphi(a',b') = (ab)(a'b') = a(ba'b^{-1})bb' = a\rho_b(a')bb'.$$

Da $H_1 \triangleleft G$, ost $\rho_b : H_1 \to H_1$ nach 1.27 weiter ein Automorphismus von H_1 .

- 3. $\operatorname{Aut}(H_1)$ bezeichne die $\operatorname{Automorphismengruppe}$ von H_1 mit neutralem Element id. Beachte: Es gilt $\rho, \rho' \in \operatorname{Aut}(H_1) \Rightarrow \rho' \circ \rho \in \operatorname{Aut}(H_1)$.
- 4. Definiere $\Phi: H_2 \to \operatorname{Aut}(H_1)$ via $\Phi(b) := \rho_b$, dann ist $\Phi_{b_1b_2} = \Phi_{b_1} \circ \Phi_{b_2}$, d.h. $\Phi \in \operatorname{Hom}(H_2, \operatorname{Aut}(H_1))$.

1.29. Definition

Sei $\Phi \in \text{Hom}(H_2, \text{Aut}(H_1))$. Wir definieren eine neue Multiplikation auf $H_1 \times H_2$ durch

$$\circ_{\Phi} : (H_1 \times H_2) \times (H_1 \times H_2) \to (H_1 \times H_2), \qquad (a,b) \circ_{\Phi} (a',b') := (a\Phi_b(a'),bb').$$

 $H_1 \times_{\Phi} H_2 := (H_1 \times H_2, \circ_{\Phi})$ heißt semidirektes Produkt von H_1 und H_2

1.30. BEHAUPTUNG

- 1. \circ_{Φ} definiert eine Gruppenoperation auf $H_1 \times H_2$:
 - a) Assoziativität: Seien $a, a', a'' \in H_1$ und $b, b', b'' \in H_2$, dann gilt:

$$((a,b)(a',b'))(a'',b'') = (a\Phi_b(a'),bb')(a'',b'')$$

$$= (a\Phi_b(a')\Phi_{bb'}(a''),bb'b'')$$

$$= (a\Phi_b(a')\Phi_b(\Phi_{b'}(a'')),bb'b'')$$

$$= (a\Phi_b(a')\Phi_{bb'}(a''),bb'b'')$$

$$= (a,b)((a',b')(a'',b''))$$

b) Neutrales Element: Seien $a \in H_1$ und $b \in H_2$, dann

$$(a,b)(e_1,e_2) = (a\Phi_b(e_1)be_2)$$

$$= (ae_1,be_2)$$

$$= (e_1a,e_2b)$$

$$= (e_1\Phi_{e_2}(a),e_2b)$$

$$= (e_1,e_2)(a,b)$$

c) Inverse Elemente: Seien $a \in H_1$ und $b \in H_2$, dann ist $(a,b)^{-1} = (\Phi_{b^{-1}}(a^{-1}),b^{-1})$:

$$(a,b)(\Phi_{b^{-1}}(a^{-1}),b^{-1}) = (a\Phi_b(\Phi_{b^{-1}}(a^{-1}))bb^{-1})$$

$$= (a\Phi_{bb^{-1}}(a^{-1}),e_2)$$

$$= (aa^{-1},e_2)$$

$$= (e_1,e_2)$$

$$= (\Phi_{b^{-1}}(e_1),e_2)$$

$$= (\Phi_{b^{-1}}(a^{-1})\Phi_{b^{-1}}(a),b^{-1}b)$$

$$= (\Phi_{b^{-1}}(a^{-1}),b^{-1})(a,b).$$

- 2. Ist $\Phi: H_2 \to \operatorname{Aut}(H_1)$ gegeben durch $\Phi_b = \operatorname{id}_{H_1}$, so ist $H_1 \times_{\Phi} H_2 = H_1 \times H_2$ das direkte Produkt.
- 3. $H_1 \cong \{(a, e_2) \mid a \in H_1\}$ via $a \mapsto (a, e_2)$. Beachte dabei: $(a, e_2)(a', e_2) = (a\Phi_{e_2}(a'), e_2e_2) = (aa', e_2)$. \Diamond

1.31. SATZ

Seien G eine Gruppe, $H_1 \triangleleft G$ und $H_2 \triangleleft G$. Dann liefert die Abbildung

$$\varphi: H_1 \times_o H_2 \to G, \qquad (a,b) \mapsto ab$$

einen Isomorphismus, falls $H_1 \cap H_2 = \{e\}$ und $G = H_1H_2$.

BEWEIS.

- 1. Homomorphie: $\varphi(a,b)\varphi(a',b')=(ab)(a'b')=a(ba'b^{-1})bb'=a\rho_b(a')bb'=\varphi(a\rho_b(a'),bb')$.
- 2. Surjektivität ist klar. Injektivität: $(a,b) \in \text{Kern}(\varphi) \Rightarrow ab = e \Rightarrow a,b \in H_1 \cap H_2 = \{e\}.$

1.32. Bemerkung

Falls auch $H_2 \triangleleft G$, so kommutieren H_1 und H_2 . Also gilt $\rho_b(a) = bab^{-1} = a$, d.h. $\rho_b = id$.

1.33. Beispiel

Seien G eine Gruppe und H_1 eine Untergruppe von G zum Index 2 (d.h. $H_1 \triangleleft G$). Dann ist G disjunkte Vereinugung $G = eH_1 \cup bH_1$ für ein $b \notin H_1$. Damit ist $G = H_1H_2$. Weiter seien $b^2 = e$, d.h. $b = b^{-1}$, und $H_2 := \{e, b\} = \langle b \rangle$ und $H_1 \cap H_2 = \{e\}$. Dann ist $G \cong H_1 \times_{\rho} H_2$ mit $\rho : H_2 \to \operatorname{Aut}(H_1)$, gegeben durch $b \mapsto \rho_b$.

1.34. Definition

Ist $\rho_b(a) = bab^{-1} = a^{-1}$ für alle $a \in G$, so heißt G eine Diedergruppe.

1.35. Bemerkung

Diedergruppen sind stets abelsch:

$$xy = (y^{-1}x^{-1})^{-1} = \rho_b(y^{-1}x^{-1}) = \rho_b(y^{-1})\rho_b(x^{-1}) = yx.$$

1.36. Beispiel

Seien $\sigma, \tau \in S_n$, der Permutationsgruppe von $\{1, ..., n\}$, gegeben durch

$$\sigma:=\left(\begin{array}{cccc}1&2&\cdots&n\\2&3&\cdots&1\end{array}\right), \qquad \tau:=\left(\begin{array}{ccccc}1&2&3&\cdots&n-1&n\\1&n&n-1&\cdots&3&2\end{array}\right).$$

Dann gelten $\tau^2 = id$ und $\sigma^n = id$. $D_n := \langle \sigma, \tau \rangle$ ist eine Diedergruppe.

Sei nun etwa n=7. Dann ist D_n die Gruppe der "Bewegungen" des Siebenecks in der Ebene. τ Spiegelung am Durchmesser von S_7 durch eine fixierte Ecke (der Eins) und σ der Drehung um den Winkel $\frac{360}{7}^{\circ}$.

Es gilt $D_n = \{ \text{id}, \ \sigma, \ ..., \ \sigma^{n-1}, \ \tau, \ \sigma\tau, \ ..., \ \sigma^{n-1}\tau \}, \ \text{d.h.} \ |D_n| = 2n \ \text{für beliebiges} \ n \geq 3.$ Weiter sind $\tau \sigma^m = \sigma^{-m}\tau$ für alle m.

1.37. SATZ

Jede Gruppe der Ordnung 2p mit $p \neq 2$ prim ist zyklisch oder die Diedergruppe D_p .

BEWEIS.

Seien H_1 und H_2 Untergruppen von G mit $|H_1|=p$, also $H_1=\langle a\rangle\cong\mathbb{Z}/p\mathbb{Z}$, und $|H_2|=2$, also $H_2=\langle b\rangle$, $b^2=e$, d.h. $b=b^{-1}$. Wegen $[G:H_1]=2$ sind (vgl. Beispiel 1.33) $H_1 \triangleleft G$ und $G=H_1 \cup H_1b$ disjunkt, also $G\cong H_1\times_{\rho} H_2$ mit

$$H_1 \times_{\rho} H_2 \to G, \qquad (a,b) \mapsto ab \qquad \text{ und } \qquad \rho: H_2 \to \operatorname{Aut}(H_1), \qquad b \mapsto \rho_b,$$

insbesondere $e \mapsto \rho_e = \mathrm{id} = \rho_{b^2} = \rho_b \circ \rho_b = (\rho_b)^2$. Da ρ_b Automorphismus, gilt $\rho_b(a) = a^m$ für ein $m \in \{1,...,p-1\}$. Dann sind $\rho_b(a^n) = (a^m)^n = a^{mn}$ und $\rho_b \circ \rho_b(a^n) = a^{m^2n} = a^n = \mathrm{id}(a^n)$, d.h. $m^2n \equiv n \mod p$, also $p \mid n(m^2-1)$. Speziell für n=1 folgt $p \mid m^2-1 = (m+1)(m-1)$; da p prim, also $p \mid (m+1)$ oder $p \mid (m-1)$, d.h. $m=\pm 1 \mod p$, also $a^m=a$ oder $a^m=a^{-1}$.

Im Fall $\rho_b(a) = a$ ist $\rho = \mathrm{id}$, also $G \cong H_1 \times_{\rho} H_2 = H_1 \times H_2$ und damit G zyklisch. Falls dagegen $\rho_b(a) = a^{-1}$, ist G die Diedergruppe D_p .

1.4 Die Symmetrische Gruppe

1.38. NOTATION

Sei $\sigma \in S_n$ eine Permutationen von $\{1,...,n\}$, dann schreiben wir

$$\sigma := \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array} \right).$$

Speziell setzen wir $\sigma := (x_1 \cdots x_m)$ für den m-Zykel

$$\sigma(x_i) = x_{i+1} \text{ für alle } 1 \le i \le m-1, \qquad \sigma(x_m) = x_1, \qquad \sigma(x) = x \text{ und } x \notin \{x_1, ..., x_m\}.$$

Ein $\tau = (x_1 \ x_2)$ heißt Transposition ein $\sigma = (x_1 \ x_2 \ x_3)$ heißt 3er-Zykel.

1.39. Bemerkung

- 1. Jedes $\sigma \in S_n$ ist ein Produkt von Transpositionen.
- 2. Je zwei Transpositionen sind konjugiert zueinander, d.h. $\forall \tau_1, \tau_2 \in S_n : \exists \sigma \in S_n : \tau_1 = \sigma \tau_2 \sigma^{-1}$.

1.40. Definition

(i, j) heißt Fehlstand von $\sigma \in S_n$, falls i < j und $\sigma(i) > \sigma(j)$.

Ist n die Anzahl der Fehlstände von σ , so ist das Signum von σ definiert als $\operatorname{sgn}(\sigma) := (-1)^n$.

1.41. Bemerkung

- 1. $\operatorname{sgn}: S_n \to \{\pm 1\}$ ist ein Gruppenhomomorphismus und $\{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}: \operatorname{sgn}(\sigma \circ \sigma') = \operatorname{sgn}(\sigma)\operatorname{sgn}(\sigma')$.
- 2. $A_n := \text{Kern}(\text{sgn}) = \{ \sigma \in S_n \mid \text{sgn}(\sigma) = 1 \}$ heißt alternierende Gruppe auf $\{1, ..., n\}$.
- 3. Nach dem Homomorphiesatz gilt $S_n/A_n \cong \{\pm 1\}$, d.h. $[S_n:A_n]=2$, also $A_n \triangleleft S_n$ und $S_n=A_n \cup A_n \sigma$ disjunkt mit beliebigem $\operatorname{sgn}(\sigma)=-1$.
- 4. Jeder 3er-Zykel liegt in A_n , denn $(x_1 \ x_2 \ x_3) = (x_1 \ x_3) \circ (x_1 \ x_2)$.
- 5. Die Determinante einer Matrix $A \in \mathbb{R}^{n \times n}$ lässt sich berechnen als

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)}.$$

1.5 Auflösbare Gruppen 1 Gruppen

1.42. LEMMA

Für $n \geq 3$ ist A_n die Menge aller Produkte von 3er-Zyklen.

BEWEIS.

Klar: Mit den 3er-Zyklen liegen auch alle Produkte von 3er-Zyklen liegen in A_n . Dann liegen auch alle Produkte von Transpositionen in A_n : Seien x_1, x_2, x_3, x_4 paarweise verschieden, dann gelten:

 \Diamond

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \circ \begin{pmatrix} x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_3 & x_2 & x_1 \end{pmatrix} \circ \begin{pmatrix} x_1 & x_3 & x_4 \end{pmatrix} \in A_n.$$

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \circ \begin{pmatrix} x_2 & x_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \in A_n.$$

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \circ \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \mathrm{id} \in A_n.$$

Also liegt auch jedes beliebige $\sigma = \tau_1 \circ \cdots \circ \tau_{2m}$ in A_n .

1.5 Auflösbare Gruppen

1.43. Definition

Seien G eine Gruppe und $a,b\in G$. $[a,b]:=aba^{-1}b^{-1}$ heißt Kommutator von a und b.

Die von $\{[a,b] \mid a,b \in G\}$ erzeugte Untergruppe in G heißt die Kommutatorgruppe K(G) von G.

1.44. Bemerkung

- 1. Ist G abelsch, dann ist $K(G) = \{e\}$.
- 2. Es gilt $[a,b]^{-1} = (aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1} = [b,a]$ für alle $a,b \in G$.
- 3. $K(G) = \{ [a_1, b_1] \cdots [a_m, b_m] \mid m \in \mathbb{N}, \ a_i, b_i \in G \}.$

1.45. LEMMA

- 1. K(G) ist ein Normalteiler von G.
- 2. Sei N ein Normalteiler von G. Dann gilt: G/N ist abelsch $\Leftrightarrow K(G)$ ist eine Untergruppe von N. Speziell ist G/K(G) stets abelsch und es gilt $[a,b]=e\Rightarrow ab=ba$.

BEWEIS.

1. Seien $x, a, b \in G$ beliebig. Dann liegt $x[a_n, b_n]x^{-1}$ in K(G):

$$\begin{split} x[a,b]x^{-1} &= x(aba^{-1}b^{-1})x^{-1} \\ &= (xax^{-1})(xb^x - 1)(xa^{-1}x^{-1})(xb^{-1}x^{-1}) \\ &= [xax^{-1}, xbx^{-1}]. \end{split}$$

Allgemeiner ist

$$x[a_1, b_1][a_2, b_2] \cdots [a_n, b_n] x^{-1} = x[a_1, b_1] x^{-1} x[a_2, b_2] x^{-1} \cdots x[a_n, b_n] x^{-1}$$

ein Kommutator.

2. Betrachte $\rho: G \to G/N, \ g \mapsto gN$, insbesondere $N = \mathrm{Kern}(\rho)$. Dann gilt:

$$G/N$$
 abelsch $\iff \rho([a,b]) = \rho(a)\rho(b)\rho(a^{-1})\rho(b^{-1}) = N \iff K(G) \subseteq \operatorname{Kern}(\rho) = N.$

1.46. Behauptung

- 1. $K(S_n) = A_n$ für $n \ge 2$.
- 2. $K(A_n) = A_n$ für $n \ge 5$.
- 3. $K(A_n) = \{id\}$ für $n \in \{1, 2, 3\}$.
- 4. $K(A_4) = K_4 := \{ id, (1\ 2) \circ (3\ 4), (1\ 3) \circ (2\ 4), (1\ 4) \circ (2\ 3) \}, die Kleinsche Vierergruppe.$

BEWEIS.

Beachte: S_n/A_n ist abelsch, da $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$, also $K(S_n) < A_n$.

1. Ist n = 2, dann $A_n = \{id\}$, also ist A_n abelsch, d.h. $A_n = K(S_n)$. Ist dagegen $n \geq 3$, dann ist jedes Element aus A_n Produkt aus 3er-Zyklen und für paarweise verschiedene i, j, k ist

$$(i \ j \ k) = (i \ k)(j \ k)(i \ k)^{-1}(j \ k)^{-1}$$

ein Kommutator. Also gilt: $A_n = K(S_n)$.

- 2. Zu zeigen: Jeder 3er-Zyklus ist Kommutator von 3er-Zyklen. Seien $\alpha:=(i\ j\ k)$ und l,m so gewählt, dass $|\{i,j,k,l,m\}|=5$. Setze $\pi:=(i\ j\ l)$ und $\sigma:=(i\ k\ m)$, dann $\pi\circ\sigma\circ\pi^{-1}\circ\sigma^{-1}=\alpha$
- 3. Für $n \in \{1, 2, 3\}$ ist A_n abelsch, d.h. $K(A_n) = \{id\}$.
- 4. a) $K(A_4) \subseteq K_4$: Es gilt $K(A_4) \triangleleft A_4$ und $A_4/K(A_4)$ ist abelsch. Weiter ist K_4 die einzige 2-Sylowuntergruppe von A_4 der Ordnung 4, denn in A_4 liegen alle 8 3-Zykel von S_4 ; diese haben die Ordnung 3, können also in keiner Gruppe der Ordnung 4 liegen. Damit ist $K_4 \triangleleft A_4$ und $|A_4/K(A_4)| = \frac{|A_4|}{|K_4|} = \frac{12}{4} = 3$ ist prim. Also ist $A_4/K(A_4)$ zyklisch und damit abelsch, d.h. $K(A_4) < K_4$.
 - b) $K(A_4) \supseteq K_4$: Jedes von id verschiedene Element der K_4 lässt sich in das Produkt von vier 3-Zyklen der Gestalt $\sigma_1 \circ \sigma_2 \circ \sigma_1^{-1} \circ \sigma_2^{-1}$ zerlegen:

$$(1\ 2)(3\ 4) = (1\ 2\ 3)(1\ 2\ 4)(3\ 2\ 1)(4\ 2\ 1);$$

 $(1\ 3)(2\ 4) = (1\ 3\ 2)(1\ 3\ 4)(2\ 3\ 1)(4\ 3\ 1);$
 $(1\ 4)(2\ 3) = (1\ 4\ 2)(1\ 4\ 3)(2\ 4\ 1)(3\ 4\ 1).$

Also liegt jedes Element aus K_4 im Kommutator von A_4 .

1.47. Bemerkung

Setzt man $K^0(G) := G$ und $K^{n+1}(G) := K(K^n(G))$, so erhält man mit

$$G = K^0(G) \supseteq K^1(G) \supseteq K^2(G) \supseteq \cdots \supseteq K^n(G) \supseteq K^{n+1}(G) \supseteq \cdots$$

eine Kette von Untergruppen von G derart, dass für alle $n \in \mathbb{N}$ gelten:

$$K^{n+1}(G) \triangleleft K^n(G)$$
 und $K^n(G)/K^{n+1}(G)$ ist abelsch.

1.48. DEFINITION

Sei G eine Gruppe. Dann heißt $G \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_n = \{e\}$ eine Normalreihe. Die Quotientengruppen G_i/G_{i+1} heißen Faktoren dieser Normalreihe.

G heißt auflösbar, falls es ein $n \in \mathbb{N}$ gibt mit $K^n(G) = \{e\}$.

1.49. Satz (Auflösbarkeit von Gruppen)

Sei G eine Gruppe. Dann gilt: G ist auflösbar $\Leftrightarrow G$ besitzt eine Normalreihe mit abelschen Faktoren.

BEWEIS.

- $\Rightarrow \ G = K^0(G) \rhd K^1(G) \rhd K^2(G) \rhd \cdots \rhd K^n(G) = \{e\} \ \text{ist eine Normalreihe von } G \ \text{aus abelschen Faktoren}.$
- \Leftarrow Wir zeigen per endlicher Induktion über i, dass $K^i(G) \subseteq G_i$, dann ist insbesondere $K^n(G) = \{e\}$. Im Fall i = 0 ist offenbar $K^0(G) = G = G_0$. Gelte die Behauptung also für ein i, dann ist G_i/G_{i+1} abelsch, d.h. $K(G_i) \subseteq G_{i+1}$. Mit der Induktionsvoraussetzung folgt: $K^i(G) \subseteq G_i$ und wir erhalten $K^{i+1}(G) \subseteq K(G_i) \subseteq G_{i+1}$, d.h. die Behauptung gilt auch für i+1.

1.50. Beispiele

1. Ist G abelsch, dann ist G auflösbar, da $K(G) = \{e\}$.

1.5 Auflösbare Gruppen 1 Gruppen

2. A_n und S_n sind für $n \geq 5$ nicht auflösbar, denn es gelten $K(S_n) = A_n$ und $K(A_n) = A_n$, also $K^{i+1}(S_n) = K^i(A_n) = A_n \neq \{e\}.$

- 3. S_3 ist auflösbar: $K(S_3) = A_3$ und $K(A_3) = \{e\}$, da $A_3 \cong \mathbb{Z}/3\mathbb{Z}$ zyklisch, also abelsch.
- 4. S_4 ist auflösbar, denn $K(S_4) = A_4$ ujd $K(A_4) = K_4$ abelsch, d.h. $K^3(S_4) = \{e\}$.

1.51. SATZ

Zu jeder endlichen auflösbaren Gruppe gibt es eine Normalreihe, deren Faktoren zyklisch von Primzahlordnung sind.

BEWEIS.

Seien $G = G_0 \triangleright \cdots \triangleright G_n = \{e\}$ eine Normalreihe mit abelschen Faktoren und $\rho: G_i \to G_i/G_{i+1}$ der kanonische Homomorphismus. Wähle $U < G_i/G_{i+1}$ mit |U| = p prim und setze $N_1 := \rho^{-1}(U) < U$. Dann ist $U \lhd G_i/G_{i+1}$, da G_i/G_{i+1} abelsch. Damit $N_1 \lhd G$ und wegen $U \cong N_1/G_{i+1}$ gilt

$$G_i/N_1 \cong (G_i/G_{i+1})/(N_1/G_{i+1}) \cong (G_i/G_{i+1})/U.$$

 $(G_i/G_{i+1})/U$ ist abelsch und $|G_i/N_1| = |G_i/G_{i+1}| \frac{1}{p} < |G_i/G_{i+1}|$ und $N_1/G_{i+1} = U$ hat Ordnung p. Per Induktion finden wir $G_i \triangleright N_m \triangleright \cdots \triangleright N_1 \triangleright G_{i+1}$, wobei alle Quotienten Primzahlordnung haben.

1.52. LEMMA

Seien G, G' Gruppen, $\varphi: G \to G'$ ein Homomorphismus und H eine Untergruppe von G. Dann gelten:

- 1. $\varphi(K(H)) = K(\varphi(H))$.
- 2. $\varphi(K^n(G)) \subseteq K^n(G')$ für alle $n \in \mathbb{N}$. Ist φ surjektiv, dann gilt sogar Gleichheit.

BEWEIS.

1. Folgt aus

$$\varphi([a,b]) = \varphi(aba^{-1}b^{-1}) = \varphi(a)\varphi(b)\varphi(a^{-1})\varphi(b^{-1}) = [\varphi(a),\varphi(b)].$$

2. Per Induktion über n: Im Fall n = 0 ist

$$\varphi(K^0(G)) = \varphi(G) \subseteq G' = K^0(G')$$

und Gleichheit gilt, falls φ surjektiv ist. Gelte die Behauptung also für ein n, dann ist

$$\varphi(K^{n+1}(G)) = K(\varphi(K^n(G))) \subseteq K(K^n(G')) = K^{n+1}(G'),$$

wobei wiederum für surjektives φ Gleichheit erfüllt ist. Also gilt die Behauptung auch für n+1.

1.53. SATZ

- 1. Jede Untergruppe H einer auflösbaren Gruppe G ist auflösbar.
- 2. Sei $N \triangleleft G$. Dann gilt: G ist auflösbar $\Leftrightarrow G/N$ und N sind auflösbar.

BEWEIS.

- 1. Ab gewissem n gilt $K^n(H) \subseteq K^n(G) = \{e\}$, d.h. $K^n(H) = \{e\}$.
- 2. \Rightarrow Da G auflösbar ist, folgt mit 1., dass N auflösbar ist. Betrachte den kanonischen Homomorphismus $\varphi: G \to G/N$. Wegen $K^n(G) = \{e\}$ gilt $K^n(G/N) = \varphi(K^n(G)) = \varphi(\{e\}) = \{e\}$.
 - \Leftarrow Seien $K^n(N) = \{e\}$ und $K^m(G/N) = \{N\}$. Dann ist $\varphi(K^m(G)) = K^m(G/N) = \{N\}$, also $K^m(G) \subseteq N$. Aus $K^n(N) = \{e\}$ folgt $K^{n+m}(G) = K^n(K^m(G)) = \{e\}$.

1.54. Definition

Seien G eine Gruppe und X eine Teilmenge von G.

 $\operatorname{Cen}(X) := \{ g \in G \mid gx = xg \text{ für alle } x \in X \} \text{ heißt der } \operatorname{Zentralisator} \text{ von } X \text{ in } G.$

Z(G) := Cen(G) heißt das Zentrum von G.

1.55. Bemerkung

- 1. Es gilt Cen(X) < G, denn falls ax = xa und bx = xb, dann auch xab = axb = abx und $xa^{-1} = a^{-1}x$.
- 2. Z(G) < Cen(X).
- 3. Für $x \in X$ gilt: $Cen(x) := Cen(\{x\}) = G$ genau dann, wenn $x \in Z(G)$.
- 4. Z(G) ist abelsch und $Z(G) \triangleleft G$.

Für den Monomorphismus $\rho: G/\operatorname{Aut}(G), g \mapsto \rho_g := g(\cdot)g^{-1}$ gilt

$$\operatorname{Kern}(\rho) = \{ g \in G \mid gxg^{-1} = x \text{ für alle } x \in G \} = \operatorname{Z}(G) \triangleleft G.$$

 $\operatorname{Bild}(\rho) \cong G/\operatorname{Z}(G)$ ist die Gruppe der inneren Automorphismen von G.

5. Ist $G/\mathbb{Z}(G)$ zyklisch, dann ist G abelsch: Sei $x \in \mathbb{Z}(G)$ ein erzeugendes Element von $G/\mathbb{Z}(G)$, d.h. $G/\mathbb{Z}(G) = \langle x\mathbb{Z}(G) \rangle$. Dann gilt für alle $a, b \in G$, dass $a = x^n z_1$ und $b = x^m z_2$ für gewisse $n, m \in \mathbb{Z}$ und $z_1, z_2 \in \mathbb{Z}(G)$, also

$$ab = x^n z_1 x^m z_2 = x^{n+m} z_1 z_2 = x^{m+n} z_2 z_1 = x^m z_2 x^n z_1 = ba.$$

1.56. SATZ (Klassengleichung)

Seien G eine endliche Gruppe und V eine Teilmenge von G, so dass jedes Element von $G \setminus Z(G)$ zu genau einem Element aus V konjugiert ist. Dann gilt:

$$|G| = |\mathbf{Z}(G)| + \sum_{x \in V} |G: \mathbf{Cen}(x)|.$$

BEWEIS.

 $G \times G \to G$, $(g,x) \mapsto gxg^{-1}$ operiert auf G mit Fixgruppe $G_x = \{g \in G \mid gxg^{-1} = x\} = \operatorname{Cen}(x)$. Für $x \in \operatorname{Z}(G)$ gilt $\operatorname{Cen}(x) = G$, also ist $V' := V \cup \operatorname{Z}(G)$ ein vollständiges Vertretersystem und mit der Bahnengleichung folgt:

$$|G| = \sum_{x \in V'} |G: G_x| = \sum_{x \in Z(G)} |G: G| + \sum_{x \in V} |G: Cen(x)|.$$

1.57. Behauptung

Seien G eine Gruppe und p prim mit $|G| = p^k$. Dann gilt $p \mid |Z(G)|$ und insbesondere |Z(G)| > 1.

BEWEIS.

Sei $x \notin \mathrm{Z}(G)$. Dann ist $|G:\mathrm{Cen}(x)| > 1$, sonst wäre $G = \mathrm{Cen}(x)$, d.h. G abelsch und damit $G \setminus \mathrm{Z}(G) = \emptyset$. Damit $p \mid |G:\mathrm{Cen}(x)|$ und die Klassengleichung liefert $p \mid |\mathrm{Z}(G)|$.

1.58. SATZ (Auflösbarkeit von p-Gruppen)

Sei p prim. Dann ist jede endliche p-Gruppe auflösbar.

BEWEIS.

Sei G eine Gruppe mit $|G| = p^k$. Wir führen eine Induktion über k: Im Falle k = 0 ist $G = \{e\}$ auflösbar.

WS 2006/2007 19 Martin Gubisch

Gelte die Behauptung also für alle $l < k$ und sei $ G = k$	p^l mit $l < k$, dann ist G auflösbar und $Z(G)$ ist
abelsch, d.h. $Z(G)$ ist auflösbar $(Z(G) \triangleleft G)$. Weiter ist	$ \mathbf{Z}(G) > 1$, d.h. $ G/\mathbf{Z}(G) = p^l$, und wegen $l < k$
ist $G/\mathbb{Z}(G)$ auflösbar. Also ist auch G auflösbar.	

1.59. SATZ (Feit-Thomson)

Jede endliche Gruppe ungerader Ordnung ist auflösbar (ohne Beweis).

Martin Gubisch 20 WS 2006/2007

2 Ringe 2.1 Grundbegriffe

2 Ringe

2.1 Grundbegriffe

2.1. Wiederholung

- 1. $(A, +, \cdot)$ ist ein Ring, falls
 - a) (A, +) eine abelsche Gruppe ist,
 - b) (A, \cdot) assoziativ ist und
 - c) $(A, +, \cdot)$ distributiv ist, d.h. $\forall a, b, c \in A : (a+b)c = ac + bc \& a(b+c) = ab + ac$.
- 2. $(A, +, \cdot)$ ist kommutativ, falls $\forall a, b \in A : ab = ba$.
- 3. $1 \in A$ heißt Einselement, falls $\forall a \in A : 1a = a1 = a$.
- 4. $(A, +, \cdot)$ ist ein Schiefkörper, falls $(A \setminus \{0\}, \cdot)$ eine Gruppe ist.
- 5. Sei A ein Ring mit Eins. $A^{\times} := \{a \in A \mid \exists b \in A : ab = ba = 1\}$ ist die Einheitengruppe von A. Beispiele sind $\mathbb{Z}^{\times} = \{\pm 1\}$ und $K^{\times} = K \setminus \{0\}$.
- 6. a ∈ A heißt Nullteiler, falls a ≠ 0 und es ein b ≠ 0 gibt mit ab = 0 oder ba = 0.
 (A, +, ·) heißt Integritätsbereich, falls A kommutativ mit Eins und nullteilerfrei ist. Beispiele sind Z und K[X].
- 7. $f: A \to B$ heißt Ringhomomorphismus, falls f(1) = 1, f(a+b) = f(a) + f(b) und f(ab) = f(a)f(b) für alle $a, b \in A$ gelten. Kern $(f) := f^{-1}\{0\}$ ist genau dann trivial (d.h. Kern $(f) = \{0\}$), wenn f injektiv ist. Es gilt der Homomorphiesatz: $f(A) \cong A/\text{Kern}(f)$.
- 8. $I \subseteq A$ heißt Ideal, wenn $I + I \subseteq I$ und $AI, IA \subseteq I$ gelten. Beispiele sind $\operatorname{Kern}(f)$ und $\{0\}$. $A/I := \{a+I \mid a \in A\}$ heißt Quotientenring oder Restklassenring mit additiv Neutralem I = 0+I, wobei $a+I := \{a+b \mid b \in I\}$. Die Operationen auf A/I sind gegeben durch (a+I)+(b+I) := (a+b)+I und (a+I)(b+I) := (ab)+I. Es gilt: $a+I=b+I \Leftrightarrow a-b \in I$.

2.2. Beispiel

In $A = \mathbb{Z}$ ist jedes $I = n\mathbb{Z}$ ein Ideal. Es gilt:

$$a+I=b+I\quad\Longleftrightarrow\quad a-b\in I\quad\Longleftrightarrow\quad n\mid (a-b)\quad\Longleftrightarrow\quad a\equiv b\bmod n.$$

A/I lässt sich schreiben als $\mathbb{Z}/n\mathbb{Z} = n\mathbb{Z} \cup (1+n\mathbb{Z}) \cup \cdots \cup ((n-1)+n\mathbb{Z}) = \{0,1,...,n-1\}.$

Für $n \ge 1$ gilt: $\mathbb{Z}/n\mathbb{Z}$ ist nullteilerfrei $\Leftrightarrow \mathbb{Z}/n\mathbb{Z}$ ist ein Körper $\Leftrightarrow n$ ist eine Primzahl.

2.3. Satz (Chinesischer Restsatz)

Seien R ein kommutativer Ring mit 1 und $I_1,...,I_n$ Ideale in R mit $I_i+I_j=R$ für $i\neq j$.

Dann gibt es zu $x_1, ..., x_n \in R$ ein $x \in R$ mit $x \equiv x_i \mod I_i$ für alle $i \le n$.

BEWEIS.

Per Induktion über n.

1. n=2: Seien $a_1 \in I_1$ und $a_2 \in I_2$ mit $a_1+a_2=1$. Setze $x:=x_1a_2+x_2a_1$, dann gelten

$$x \equiv x_1 a_2 = (1 - a_1)x_1 = x_1 - a_1 x_1 \equiv x_1 \mod I_1,$$

 $x \equiv x_2 a_1 = (1 - a_2)x_2 = x_2 - a_2 x_2 \equiv x_2 \mod I_2.$

2. n > 2: Für $i \ge 2$ gibt es $a_i \in I_1$ und $b_i \in I_i$ mit $a_i + b_i = 1$. Dann ist

$$1 = \prod_{i \ge 2} (a_i + b_i) = \prod_{i \ge 2} a_i + \dots + \prod_{i \ge 2} b_i,$$

WS 2006/2007 21 Martin Gubisch

2.1 Grundbegriffe 2 Ringe

wobei alle Faktoren bis auf den letzten in I_1 liegen und der letzte in $\bigcap_{i>2} I_i =: I$, d.h. $I_1 + I = R$.

Nach Induktionsvoraussetzung gibt es $y_1 \in R$ mit $y_1 \equiv 1 \mod I_1$ und $y_1 \equiv 0 \mod I$. Analog gibt es $y_j \in R$ mit $y_j \equiv 1 \mod I_j$ und $y_j \equiv 0 \mod \bigcap_{i \neq j} I_i$.

Setze $x := x_1 y_1 + \dots + x_n y_n$, dann $x \equiv x_j y_j$ (da $x_i \in I_j$ für alle $i \neq j$) und $x_j y_j \equiv x_j 1 = 1 \mod I_j$.

2.4. Bemerkung

Seien R kommutativer Ring mit Eins, und I, J Ideale in R. Dann sind auch

$$I \cap J$$
, $I + J := \{i + j \mid i \in I, \ j \in J\}$, $I \cdot J := \left\{ \sum_{k=1}^{n} i_k j_k \mid n \in \mathbb{N}, \ i_k \in I, \ j_k \in J \right\}$

Ideale in R. Seien $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots$ Ideale in R. Dann ist auch $\bigcup_{i=1}^{\infty} I_i$ ein R-Ideal.

 \Diamond

 \Diamond

2.5. Definition

Zu $M \subseteq R$ heißt

$$(M) := \bigcup_{\substack{M \subseteq I \\ \text{Ideal}}} I = \left\{ \sum_{k=1}^{n} i_k m_k \mid n \in \mathbb{N}, \ i_k \in R, \ m_k \in M \right\}$$

das von M erzeugte Ideal in R.

Für endliches $M = \{b_1, ..., b_n\}$ schreiben wir auch $(b_1, ..., b_n) := (\{b_1, ..., b_n\}) = Rb_1 + \cdots + Rb_n$. R heißt Noethersch, falls jedes Ideal I von R endlich erzeugt ist.

2.6. Wiederholung

- 1. Seien R ein kommutativer Ring und $a \in R$, dann heißt $Ra := \{ba \mid b \in R\}$ ein Hauptideal von R.
- 2. R heißt ein Hauptidealring, falls jedes R-Ideal ein Hauptideal ist.
- 3. $w: R\setminus\{0\} \to \mathbb{N}$ heißt euklidische Wertefunktion, falls für alle $a, b \in R\setminus\{0\}$ gelten:
 - a) Falls $a \mid b$, dann $w(a) \leq w(b)$ und
 - b) Es gibt $q, r \in R$ mit r = 0 oder w(r) < w(b), so dass a = bq + r.

R heißt euklidisch, falls auf R eine euklidische Wertefunktion existiert. Beispiele sind \mathbb{Z} mit w(m) := |m| und K[X] mit $w(p) := \deg(p)$.

- 4. Jeder euklidische Integritätsbereich ist ein Hauptidealring. Insbesondere ist K[X] ein Integritätsbereich, falls K ein Körper ist.
- 5. Ingeritätsbereiche, die Hauptidealringe sind, besitzen keine unendlichen Teilerketten.

2.7. SATZ

Für kommutative Ringe mit Eins sind äquivalent:

- 1. R ist Noethersch.
- 2. Jede aufsteigende Kette von Idealen bricht ab.
- 3. Jede nichtleere Menge von Idealen besitzt ein maximales Element.

BEWEIS.

- 1. (1) \Rightarrow (2): Sei $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots \subseteq I := \bigcup I_n$. Dann ist $I = (a_1, ..., a_m)$, d.h. es gibt ein $n \in \mathbb{N}$ mit $a_1, ..., a_m \in I_n$, also $I \subseteq I_n$, also $I = I_n$, d.h. es gilt $I = I_j$ für alle $j \ge n$.
- 2. (2) \Rightarrow (3): Sei $M \neq \emptyset$ eine Menge von Idealen. Dann ist $I_1 \subsetneq I_2 \subsetneq \cdots \subsetneq I_n$ mit I_n maximal.
- 3. (3) \Rightarrow (1): Seien I ein Ideal und M die Menge aller endlich erzeugten Teilideale von I. Dann ist $M \neq \emptyset$, da zu $a \in I$ auch $(a) \subseteq I$, also $(a) \in M$. Sei $(a_1, ..., a_n) \subseteq I$ maximal, dann $I = (a_1, ..., a_n)$, denn sonst gäbe es ein $a \in I \setminus \{a_1, ..., a_n\}$ und damit $(a_1, ..., a_n) \subsetneq (a_1, ..., a_n, a)$. Also ist I endlich erzeugt. \square

Martin Gubisch 22 WS 2006/2007

2 Ringe 2.2 Polynomringe

2.8. Korollar

Seien R, R' Ringe, R Noethersch und $\varphi: R \to R'$ ein Epimorphismus, dann ist auch R' Noethersch.

BEWEIS.

Sei $I'_1 \subseteq I'_2 \subseteq \cdots$ eine Idealkette in R'. Setze $I_i := \varphi^{-1}(I'_i)$. Dies definiert eine Idealkette in R. Dann gibt es $n \in \mathbb{N}$ mit $I_n = I_m$ für alle $m \ge n$, also auch $I'_n = I'_m$ für $m \ge n$. Also bricht die Kette I'_i ab.

2.2 Polynomringe

2.9. Wiederholung

1. Sei R ein kommutativer Ring mit Eins. Dann heißt

$$R[X] := \{ f = a_0 + a_1 X + \dots + a_n X^n \mid a_1, \dots, a_n \in \mathbb{R}, \ n \in \mathbb{N} \}$$

 \Diamond

der Ring der Polynome in der Unbestimmten X mit Koeffizienten aus R.

- 2. Es gilt: $a_0 + a_1 X + \cdots + a_n X^n = 0 \Leftrightarrow a_0 = 0, ..., a_n = 0$.
- 3. Ist $a_n \neq 0$, dann heißt $\deg(f) := n \operatorname{der} \operatorname{Grad} \operatorname{von} f$. Setze $\deg(0) := -\infty$. Es gilt $\deg(fg) \leq \deg f + \deg g$; Gleichheit gilt in Integritätsbereichen.

2.10. Satz (Division mit Rest)

Seien R kommut. Ring mit Eins, $f, g \in R[X] \setminus \{0\}$ und $n = \deg g, m \ge \deg f, k = \max\{0, m - n + 1\}$. Ist $g = bX^n + \cdots$, so gibt es $q, r \in R[X]$ mit $b^k f = qg + r$ und $\deg r < \deg g$.

Ist b kein Nullteiler, so sind q und r eindeutig bestimmt.

BEWEIS.

- 1. Eindeutigkeit: Sei qg+r=q'g+r', dann (q-q')g=r'-r. Wäre $q\neq q'$, dann $\deg(q-q')g\geq \deg g=n$, da b kein Nullteiler ist, und $\deg g>r-r'$, was nicht möglich ist, da $\deg(r-r')=\deg(q-q')g$. Analog würde aus $r\neq r'$ folgen $\deg(r-r')<\deg g\leq \deg(q-q')g$, ein Widerspruch. Also gelten q=q' und r=r'.
- 2. Existenz: Per Induktion über m.
 - a) Sei m = 0. Falls auch n = 0, dann gelten $b^1 f = fg + 0$ und $\deg r = -\infty < \deg f = 0$. Ist dagegen n > 0, so gelten $b^0 f = 0g + f$ und $\deg f = 0 < n = \deg g$.
 - b) Sei nun m>0 und die Behauptung gelte für alle l< m. Falls n>m, so gelten $b^0f=0g+f$ und $\deg f\leq m< n=\deg g$. Für $m\geq n$ sei $f=aX^m+\cdots$. Es gilt $\deg(bf-aX^{m-n}g)\leq m-1$. Mit der Induktionsvoraussetzung folgt: Es gibt $q',r'\in R[X]$ mit $q'g+r'=b^l(bf-aX^{m-n}g)$ mit $l=\max\{0,m-1-n+1\}$ und $\deg r'< n$. Dann $b^{l+1}f=(b^laX^{m-n}q')g+r',\ \deg r'< n=\deg g$ und $l+1=\max\{0,m-n+1\}$.

2.11. Satz (Hilbertscher Basissatz)

Ist R ein kommutativer Noetherscher Ring mit Eins, so ist auch R[X] Noethersch.

BEWEIS.

Wir nehmen an, es gibt ein nicht endlich erzeugtes Ideal I in R[X]. Da $I \neq \{0\}$, gibt es $f_1 \in I \setminus \{0\}$ mit minimalem Grad, $f_2 \in I \setminus (f_1)$ mit minimalem Grad, $f_3 \in I \setminus (f_1, f_2) = I \setminus (R[X]f_1 + R[X]f_2)$ mit minimalem Grad u.s.w.. Diese Kette bricht nicht ab und die Folge der Grade von f_i ist monoton wachsend.

Sei $f_k = a_k X^{m_k} + \cdots$ mit $a_k \neq 0$. Es folgt $m_k \leq m_{k+1}$ und $(a_1, ..., a_k) = Ra_1 + ... + Ra_k \subseteq (a_1, ..., a_{k+1})$. Weiter gilt: $(a_1, ..., a_k) \neq (a_1, ..., a_{k+1})$, sonst $a_{k+1} = \sum \{r_i a_i \mid i = 1, ..., k\}$ mit $r_i \in R$.

WS 2006/2007 23 Martin Gubisch

2.2 Polynomringe 2 Ringe

Definiere $g := \sum \{r_i X^{m_{k+1}-m_i} f_i \mid i=1,...,k\}$. Dann gelten für $h := f_{k+1} - g$, dass $\deg h < m_{k+1}$ und $h \in I \setminus (f_1,...,f_k)$, Widerspruch. Gleichzeitig kann nicht gelten $(a_1,...,a_k) \subsetneq (a_1,...,a_{k+1})$, da R Noethersch. Also gibt es in R[X] nur endlich erzeugte Ideale.

2.12. Definition

 $R[X_1,...,X_n] := R[X_1,...,x_{n-1}][X_n]$ heißt Polynomring mehrerer Unbestimmter.

Elemente aus $R[X_1,...,X_n]$ sind Polynome der Gestalt $f=a_0+a_1X_n^1+\cdots+a_dX_n^d$ mit $a_i\in R[X_1,...,X_{n-1}]$.

Beachte: $R[X_1,...,X_n]=R[X_{\sigma(1)},...,X_{\sigma(n)}]$ für beliebige Permutation $\sigma\in S_n$.

2.13. Beispiel

Sei

$$f = f[X, Y] = 1 + 3X + 7Y - X^{2}Y + YX \in R[X, YY],$$

dann gelten

$$\begin{array}{rclcrcl} \deg_Y(f) & = & \deg_y((1+3X) + (7+X-X^2)Y) & = & 1 \text{ in } R[X][Y] & \text{ und } \\ \deg_X(f) & = & \deg_X((1+7Y) + (3+Y)X - YX^2) & = & 2 \text{ in } R[Y][X]. \end{array} \diamondsuit$$

2.14. Definition

Ein Monom ist ein Polynom der Gestalt $f = aX_1^{\nu_1} \cdots X_n^{\nu_n}$. f heißt primitiv, falls a = 1.

 $\operatorname{deg}_{\operatorname{tot}}(f) := \nu_1 + \dots + \nu_n$ heißt der totale Grad von f.

Der Grad $\deg f(X_1,...,X_n) := \deg_X f(X,...,X)$ eines Polynoms $f \in R[X_1,...,X_n]$ ist das Maximum der totalen Grade der Monome in f.

 $f \in R[X_1,...,X_n]$ heißt homogen, falls alle Monome in f den gleichen totalen Grad haben.

2.15. Beispiel

1. $f = X^3 - 3Y^2 + XY \in R[X,Y]$ hat den Grad 2 und ist nicht homogen.

2.
$$g = aX + bY \in R[X, Y]$$
 hat den Grad 1 und ist homogen.

2.16. Bemerkung

Jedes $f \in R[X_1, ..., X_n]$ hat eine eindeutige Darstellung

$$f = \sum_{(\nu_1, \dots, \nu_n) \in \mathbb{N}_0^n} a_{\nu_1, \dots, \nu_n} X_1^{\nu_1} \cdots X_n^{\nu_n}.$$

 \Diamond

2.17. BEHAUPTUNG

Sei K ein Körper, dann ist $K[X_1,...,X_n]$ Noethersch.

BEWEIS.

 $K[X_1]$ ist ein Hauptidealring, insbesondere Noethersch. Nach dem Hilbertschen Basisatz ist dann auch $K[X_1,...,X_n]$ Noethersch.

2.18. Behauptung

K[X,Y] ist kein Hauptidealring.

2 Ringe 2.2 Polynomringe

BEWEIS.

Wäre (X,Y) ein Hauptideal in R=K[X,Y], d.h. RX+RY=Rf=(f) für ein $f=f(X,Y)\in R$, dann sind f=gX+hY und $f\mid X$, $f\mid Y$. Aus $f\mid X$ folgt $\deg_Y f=0$, also $f=f(X)\in K[X]\setminus\{0\}$; gleichzeitig folgt aus $f\mid Y$, dass auch $\deg_X f=0$, d.h. $f=a\in K\setminus\{0\}$. Einsetzung der Null ergibt: a=g(0,0)0+h(0,0)0=0, ein Widerspruch.

2.19. Wiederholung

1. Seien $R \subseteq R'$ Ringe und $a_1, ..., a_n \in R'$. Dann ist $R[X_1, ..., X_n] \to R'$, $f \mapsto f(a_1, ..., a_n)$ ein Homomorphismus, der Einsetzungshomomorphismus von f an der Stelle $(a_1, ..., a_n)$

2.
$$(a_1,...,a_n) \in R'$$
 heißt Nullstelle von f , falls $f(a_1,...,a_n) = 0$.

2.20. LEMMA (Faktorisierung)

 $a \in R$ ist eine Nullstelle von $f \in R[X] \Leftrightarrow f = (X - a)g$ für ein $g \in R[X]$.

BEWEIS.

 \Rightarrow Sei $f \neq 0$. Dann gibt es $g, r \in R[X]$ mit f = (X - a)g + r und deg r < 1, d.h. $r \in R$. Wegen f(a) = 0 folgt r = 0, also f = (X - a)g.

2.21. SATZ

Ist R ein Integritätsbereich, dann besitzt $f \in R[X] \setminus \{0\}$ höchstens deg f viele Nullstellen in R.

BEWEIS.

Wir führen eine Induktion über $n = \deg f$. Der Fall n = 0 ist klar. Gelte die Behauptung also für ein n. Sei dann a eine Nullstelle von $f \in R[X]$ mit $\deg(f) = n$. Dann ist f = (X - a)g für ein $\deg g = n - 1$. Wegen f(b) = 0, $b \neq a$ ist g(b) = 0 und mit der Induktionsvoraussetzung folgt: f hat höchstens f Nullstellen. \Box

2.22. KOROLLAR (Interpolation)

Seien K ein Körper, $a_1, ..., a_n$ paarweise verschiedene Elemente von K und $b_1, ..., b_n \in K$ beliebig. Dann gibt es genau ein Polynom $f \in K[X]$ mit deg $f \leq n-1$ und $f(a_i) = b_i$.

BEWEIS.

- 1. Eindeutigkeit: Seien $f, g \in K[X]$ mit $f(a_i) = b_i = g(a_i)$ und deg $f \le n 1$, deg $g \le n 1$. Dann sind $(f g)(a_i) = 0$ und deg $(f g) \le n 1$, also f g = 0 und damit f = g.
- 2. Existenz: Definiere

$$f = \sum_{i=1}^{n} b_i \frac{(X - a_1)(X - a_2) \cdots (X - a_{i-1})(X - a_{i+1}) \cdots (X - a_n)}{(a_i - a_1)(a_i - a_2) \cdots (a_i - a_{i-1})(a_i - a_{i+1}) \cdots (a_i - a_n)},$$

dann gilt $f(a_i) = b_i$ für alle i. f heißt Interpolationspolynom nach Lagrange.

Alternativ kann man auch nach dem Newtonsches Interpolationsverfahen vorgehen: Mache den Ansatz

$$f = c_0 + c_1(X - a_1) + c_2(X - a_1)(X - a_2) + \dots + c_{n-1}(X - a_1) + \dots + c_{n-1}(X - a_n)$$

und bestimme die Koeffizienten c_i iterativ:

a)
$$f(a_1) = b_1 \Rightarrow b_1 =: c_0$$
.

b)
$$f(a_2) = b_2 \Rightarrow b_2 = b_1 + c_1(a_2 - a_1)$$
, d.h. $c_1 = \frac{b_2 - b_1}{a_2 - a_1}$ u.s.w.

WS 2006/2007 25 Martin Gubisch

2.3 Primideale und maximale Ideale

2.23. WIEDERHOLUNG

- 1. Sei R ein kommutativer Ring mit Eins. Ein R-Ideal $P \neq R$ heißt Primideal, falls aus $xy \in P$ folgt $x \in P$ oder $y \in P$.
- 2. $\{0\}$ ist genau dann ein Primideal in R, wenn R ein Integritätsbereich ist.
- 3. Ein R-Ideal I heißt maximales Ideal, wenn für beliebiges R-Ideal J gilt: $I \subseteq J \Rightarrow I = J$.
- 4. Jedes maximale Ideal ist ein Primideal.
- 5. Sei $I \subsetneq R$ ein Ideal, dann gilt: I ist maximal $\Leftrightarrow R/I$ ist ein Körper. Insbesondere gilt: Ist I maximal, dann ist I ein Primideal:

2.24. SATZ

Ein R-Ideal $\mathcal{P} \neq R$ ist Primideal $\Leftrightarrow R/\mathcal{P}$ ist Integritätsbereich.

BEWEIS.

- ⇒ Seien \mathcal{P} ein Primideal und $(x + \mathcal{P})(y + \mathcal{P}) = 0 + \mathcal{P} = \mathcal{P}$. Zu zeigen: $x + \mathcal{P} = \mathcal{P}$ oder $y + \mathcal{P} = \mathcal{P}$. Es gilt $(x + \mathcal{P})(y + \mathcal{P}) = xy + \mathcal{P} = \mathcal{P}$ genau dann, wenn $xy \in \mathcal{P}$. Dann ist $x \in \mathcal{P}$ oder $y \in \mathcal{P}$, also $x + \mathcal{P} = \mathcal{P}$ oder $y + \mathcal{P} = \mathcal{P}$.
- \Leftarrow Seien R/\mathcal{P} ein Integritätsbereich und $xy \in \mathcal{P}$. Wir zeigen: \mathcal{P} ist ein Primideal. Aus $xy \in \mathcal{P}$ folgt $xy + \mathcal{P} = \mathcal{P}$, d.h. $(x + \mathcal{P})(y + \mathcal{P}) = \mathcal{P}$ und damit $x + \mathcal{P} = \mathcal{P}$ oder $y + \mathcal{P} = \mathcal{P}$, d.h. $x \in \mathcal{P}$ oder $y \in \mathcal{P}$.

2.4 Teilbarkeit in Integritätsbereichen

2.25. Wiederholung

Seien R ein Integritätsbereich und $a, b \in R$.

- 1. a teilt b (in Zeichen: $a \mid b$) : \Leftrightarrow es gibt ein $c \in R$ mit ac = b.
- 2. a ist assoziiert zu b (in Zeichen: $a \sim b$) : \Leftrightarrow es gibt ein $c \in R^{\times}$ mit $ac = b \Leftrightarrow a \mid b$ und $b \mid a$.
- 3. $a \neq 0$ heißt unzerlegbar oder irreduzibel, falls $a \notin R^{\times}$ und aus a = bc folgt, dass $b \in R^{\times}$ oder $c \in R^{\times}$.
- 4. Für das von a in R erzeugte Ideal (a) := Ra gilt: $a \mid b \Leftrightarrow (b) \subseteq (a)$ und $a \sim b \Leftrightarrow (a) = (b)$.
- 5. $a_0, a_1, ..., a_n, ...$, heißt Teilerkette, falls $a_{i+1} \mid a_i \text{ und } a_i \nmid a_{i+1} \Leftrightarrow (a_0) \subsetneq (a_1) \subsetneq \cdots \subsetneq (a_n) \subsetneq \cdots$.

2.26. Bemerkung

- 1. In Noetherschen Ringen gibt es keine unendlichen Teilerketten, denn jede aufsteigende Kette von Idealen bricht ab.
- 2. Gibt es in R keine unendlichen Teilerketten, so ist jedes $a \in R \setminus \{0\}$ eine Einheit oder ein Produkt von endlich vielen irreduziblen Elementen aus R.

2.27. WIEDERHOLUNG

- 1. $p \in R \setminus (R^{\times} \cup \{0\})$ heißt Primelement, falls aus $p \mid ab$ folgt, dass $p \mid a$ oder $p \mid b$, d.h. falls $ab \in (p)$ impliziert, dass $a \in (p)$ oder $b \in (p)$ gilt.
 - Primelemente sind irreduzibel. Weiter ist p genau dann prim, wenn (p) ein Primideal ist.
- 2. Ist R ein Hauptidealring und Integritätsbereich, so sind alle irreduzible Elemente prim und jedes $a \in R \setminus (R^{\times} \cup \{0\})$ ist bis auf Reihenfolge und Einheiten eindeutiges Produkt von irreduziblen Elementen.

Martin Gubisch 26 WS 2006/2007

Ist R nur Integritätsbereich, für den diese beiden Bedingungen gelten, so heißt R ein ZPE-Ring ("Zerlegung in Primelemente eindeutig") oder ein faktorieller Ring.

3. Seien $a,b\in R\setminus\{0\}$ mit $a=e_1\prod_{i=1}^np_i^{\nu_i}$ und $b=e_2\prod_{i=1}^np_i^{\mu_i}$. Dann heißt

$$\operatorname{\mathbf{ggT}}(a,b) := \prod_{i=1}^n p_i^{\min\{\nu_i,\mu_i\}}$$

der größte gemeinsame Teiler von a und b und

$$\frac{\mathsf{kgV}}(a,b) := \prod_{i=1}^n p_i^{\max\{\nu_i,\mu_i\}}$$

das kleinste gemeinsame Vielfache von a und b. Diese sind bis auf eine Einheit eindeutig bestimmt.

4. Es gilt $a \mid b \Leftrightarrow \nu_i \leq \mu_i$ für alle i und damit $\operatorname{ggT}(a,b) \mid a$ und $\operatorname{ggT}(a,b) \mid b$. Weiter gilt für alle $d \in R$: Falls $d \mid a$ und $d \mid b$, dann auch $d \mid \operatorname{ggT}(a,b)$. Durch diese Eigenschaften ist der größte gemeinsame Teiler von a und b (bis auf Einheiten) eindeutig festgelegt.

Weiter gilt: $(a,b) \subseteq (c)$ und $(a,b) \subseteq (d) \Rightarrow (c) \subseteq (d)$, d.h. (c) ist das kleinste Hauptideal über (a,b). In Hauptidealringen gilt sogar: (a,b) = (c) und c = xa + by für gewisse $x,y \in R$.

2.28. Korollar

Ein Noetherscher Integritätsbereich ist genau dann faktoriell, wenn alle irreduziblen Elemente prim sind.

BEWEIS.

- ⇒ Klar nach Definition von faktoriellen Ringen.
- \Leftarrow Ist R Noethersch, so gibt es keine unendlichen Teilerketten in R, d.h. jedes $a \in R \setminus (R^{\times} \cup \{0\})$ ist endliches Produkt irreduzibler Elemente. Weiter gilt: Sind alle irreduziblen Elemente prim, so ist die Produktdarstellung eindeutig.

2.5 Teilbarkeit in Polynomringen

2.29. Wiederholung

Sei R ein faktorieller Ring (insbesondere Integritätsbereich), z.B. $R = \mathbb{Z}$ oder $R = \mathbb{R}[X]$.

- 1. $K := \frac{\mathsf{Quot}(R)}{\mathsf{Quot}(R)} := \{\frac{a}{b} \mid a, b \in R, b \neq 0\}$ heißt $\frac{\mathsf{Quotientenk\"{o}rper}}{\mathsf{Quot}(\mathbb{R}[X])} = \mathbb{R}(X)$.
- 2. R^{\times} ist die Menge der invertierbaren Elemente von R und bildet eine Gruppe, die Einheitengruppe. Beispiele sind $\mathbb{Z}^{\times} = \{\pm 1\}$, $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ unf $(R[X])^{\times} = R^{\times}$.

2.30. Definition

 $f \in R[X]$ heißt primitives Polynom, falls $f = a_0 + a_1X + \cdots + a_nX^n$ und $ggT(a_0, ..., a_n) \in R^{\times}$.

2.31. Beispiel

 $2+10X-36X^2-3X^4$ ist in \mathbb{Z} primitiv. $2+10X-36X^2$ nicht.

2.32. Definition

Seien R faktorieller Ring und $f = a_0 + a_1 X + \cdots + a_n X^n$. $ggT(a_0, ..., a_n) =: I(f)$ heißt Inhalt von f.

2.33. Bemerkung

- 1. I(f) ist bis auf Einheiten eindeutig bestimmt.
- 2. Für $f(X) = I(f)f_0(X)$ ist $f_0(X)$ primitiv (d.h. $I(f_0) = 1$).

2.34. Beispiel

- 1. Ist R = K ein Körper, dann ist jedes $f \in K[X] \setminus \{0\}$ primitiv.
- 2. Genau dann ist $a_0 \in R$ primitiv, wenn a_0 eine Einheit ist.
- 3. Sind $f \in R[X]$ irreduzibel und $\deg f > 0$, dann ist f primitiv, denn aus $f = I(f)f_0$, $\deg f = \deg f_0$ folgt $I(f) \in R^{\times}$.

2.35. LEMMA (Gauß)

Das Produkt primitiver Polynome ist wieder primitiv.

BEWEIS.

Seien $f = a_0 + a_1 X + \dots + a_n X^n$ und $g = b_0 + b_1 X + \dots + b_m X^m$ beide primitiv und $a_n \neq 0$, $b_m \neq 0$. Dann ist $fg = c_0 + x_1 X + \dots + c_{n+m} X^{n+m}$ mit $c_{n+m} = a_n b_m \neq 0$. Angenommen, es gäbe ein primes p, das alle c_i teilt, $i = 1, \dots, n+m$. Wähle k, l minimal mit $p \nmid a_k$ und $p \nmid b_l$. Dann würde gelten

$$c_{k+l} = \sum_{\substack{r+s \\ = \\ k+l}} a_r b_s = \sum_{\substack{r < k \\ \text{oder} \\ s < l}} a_r b_s + a_l b_l$$

und $p \mid c_{k+l}, \ p \mid \sum_{\substack{r < k \text{ oder} \\ s < l}} a_r b_s$, aber $p \nmid a_l b_l$, was nicht möglich ist.

2.36. SATZ

Seien R ein faktorieller Integritätsbereich und $f, g \in R[X]$.

Dann gilt: $f \mid g$ in $R[X] \Leftrightarrow f \mid g$ in $K[X] = \operatorname{Quot}(R)[X]$ und $I(f) \mid I(g)$ in R.

BEWEIS.

- ⇒ Ist fh = g mit $h \in R[X]$, dann $h \in K[X]$. Setze $f = I(f)f_0$, $h = I(h)h_0$, $g = I(g)g_0$ mit f_0, g_0, h_0 primitiv. Dann ist $I(f)I(h)f_0h_0 = I(g)g_0$ und nach dem Lemma von Gauß ist f_0h_0 primitiv, also I(f)I(h) = I(g) (bis auf Einheiten in R). Also I(f)I(h) = I(fh), d.h. $I(f) \mid I(g)$ in R.
- \Leftarrow Sei fh = g mit $h \in K[X]$, d.h. $h = \frac{b}{c}h_0$ mit $h_0 \in R[X]$ primitiv. Nach Voraussetzung gilt I(f)a = I(g) für ein $a \in R$, also $I(f)f_0\frac{b}{c}h_0 = I(g)g_0 = I(f)ag_0$, d.h. $\frac{b}{c}f_0h_0 = ag_0 \Leftrightarrow bf_0h_0 = acg_0$, d.h. $b \sim ac$, also $\frac{b}{c} \in R$. Dann aber auch $h \in R[X]$.

2.37. Korollar

- 1. Seien R faktoriell und $a \in R$ irreduzibel in R. Dann ist a irreduzibel in R[X].
- 2. Ist $g \in R[X]$ irreduzibel in R[X] mit $\deg g > 1$, dann ist g irreduzibel in K[X].
- 3. Ist $g \in R[X]$ primitive und irreduzibel in K[X], so ist g irreduzibel in R[X].

BEWEIS.

- 1. Klar.
- 2. Gelte $f \mid g$ in K[X], $\times f \in R[X]$ primitiv, dann $f \mid g$ in R[X], d.h. $f \sim g$ oder $f \sim 1$ in R[X], also auch insbesondere in K[X].

3. Sei $f \in R[X]$ mit $f \mid g$ in R[X], dann $f \mid g$ in K[X] (d.h. $\deg f = \deg g$ oder $\deg f = 0$) und $I(f) \mid I(g) = 1$, also I(f) = 1. Dann $f \sim g$ oder $f \sim 1$ in R[X].

2.38. Beispiel

Sei $R = \mathbb{Z}$, d.h. $K = \mathbb{Q}$. $q = 2X^2 + 4 \in \mathbb{Q}[X]$ ist reduzibel in $\mathbb{Z}[X]$, da $q = 2(X^2 + 2)$, aber irreduzibel in $\mathbb{Q}[X]$, da 2 eine Einheit in $\mathbb{Q}[X]$ ist.

2.39. SATZ (Gauß)

Ist R faktoriell, so auch R[X].

BEWEIS.

- 1. Sei $f_1, f_2, f_3, ...$ eine Teilerkette in R[X], d.h. $f_{i+1} \mid f_i$. Dann auch $I(f_{i+1}) \mid I(f_i)$ und $\deg f_{i+1} \leq \deg f_i$. Also ist $I(f_1), I(f_2), I(f_3), ...$ eine Teilerkette in R und es gilt $\deg f_1 \geq \deg f_2 \geq \deg f_3 \geq \cdots$ in K[X]. Beides bricht ab, da R faktoriell ist. Also gibt es $n \in \mathbb{N}$, so dass für alle $m \geq n$ gilt: $I(f_n) \sim I(f_m)$ in R und $f_n \sim f_m$ in K[X], d.h. $f_n \sim f_m$ in R[X]. Also gibt es keine unendlichen Teilerketten in R[X].
- 2. Sei $f \in R[X]$ irreduzibel mit $\deg f > 0$. Dann gilt: $f \mid gh$ in R[X], d.h. $f \mid gh$ in K[X], also $f \mid g$ oder $f \mid h$ in K[X]. Da I(f) = 1, folgt weiter: $f \mid g$ oder $f \mid h$ in R[X], d.h. f ist prim in R[X]. Sei jetzt $f \in R$, dann gilt $f \mid I(gh) = I(g)I(h)$ nach dem Lemma von Gauß. Da R faktoriell ist, ist f prim in R, d.h. $f \mid I(g)$ oder $f \mid I(h)$, also $f \mid g$ oder $f \mid h$ in R[X] und damit f prim in R[X]. \square

2.40. Bemerkung

K[X,Y] ist faktoriell, da K[Y] faktoriell ist. Per Induktion folgt dann: $K[X_1,...,X_n]$ ist faktoriell. \Diamond

2.41. SATZ (Eisenstein-Kriterium)

Seien R ein faktorieller Ring, $p \in R$ prim und $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$ primitiv. Gilt $p \mid a_i$ für alle $0 \le i \le n-1$, $p \nmid a_n$ und $p^2 \nmid a_0$, so ist f irreduzibel in R[X].

BEWEIS.

Sei f = gh für gewisse $g, h \in R[X]$ mit $g \nsim f$ und $h \nsim f$, d.h. $\deg g > 0$ und $\deg h > 0$. Seien $g = b_0 + b_1 X + \dots + b_r X^r$ mit $b_r \neq 0$, 0 < r und $h = c_0 + c_1 X + \dots + c_s X^s$ mit $c_s \neq 0$, 0 < s. Dann gelten $a_0 = b_0 c_0$ und $p^2 \nmid a_0$, d.h. $p^2 \nmid b_0$ oder $p^2 \nmid c_0$, etwa $p^2 \nmid b_0$. Damit gilt $p \mid c_0$, denn $p \mid a_0$. Sei j minimal mit $p \nmid c_{j+1}$. Dann ist $0 \leq j < s$, denn $p \nmid a_n = b_r c_s$. Es gilt

$$a_{j+1} = \sum_{\substack{l+k\\j+1}} b_l c_k = b_0 c_{j+1} + b_1 c_j + b_2 c_{j-1} + \cdots \text{ mit } p \mid b_0 c_{j+1}, \ p \nmid b_1 c_j, \ p \nmid b_2 c_{j-1}, \ \dots,$$

also $p \nmid a_{j+1}$, d.h. j+1=n=s+r>s, Widerspruch.

2.42. Bemerkung (Kreisteilungspolynome & Einheitswurzeln)

- 1. Seien $p \in \mathbb{N}$ prim und $R = \mathbb{Z}$. $\Phi_p(X) := 1 + X + X^2 + \dots + X^{p-1}$ heißt das p-te Kreisteilungspolynom. Es gilt $(X 1)\Phi_p(X) = X^p 1$. Für $z \in \mathbb{C}$ gelten $z^p = 1 \Rightarrow |z| = 1$ und $|z|^2 = \text{Re}(z)^2 + \text{Im}(z)^2 = 1$, d.h. die p-te Einheitswurzel $z = e^{\frac{2\pi i}{p}}$ liegt auf dem Einheitskreis.
- 2. Φ_p ist irreduzibel in $\mathbb{Q}[X]$. Wir zeigen dazu: $\Phi_p(X+1)$ ist irreduzibel in $\mathbb{Q}[X]$. Einsetzen von X+1 für X in $(X-1)\Phi_p(X)=X^p-1$ ergibt:

$$X\Phi_p(X+1) = (X+1)^p - 1 = X^p + \binom{p}{1}X^{p-1} + \dots + \binom{p}{p-1}X.$$

Also ist $\Phi_p(X+1) = X^{p-1} + \binom{p}{1}X^{p-2} + \dots + \binom{p}{p-1}$. Wir wissen: $p \mid \binom{p}{1}, \ p \mid \binom{p}{2}, \ \dots, \ p \mid \binom{p}{p-1} = p$. Die Einsetzung $h[X] \to h(g)$ mit $g \in R[X]$ definiert einen Ringhomomorphismus $\sigma_g : R[X] \to R[X]$.

WS 2006/2007 29 Martin Gubisch

3.1 Grundbegriffe 3 Körper

Für g = aX + b mit $a \in R^{\times}$ ist σ_g ein Automorphismus von R[X]:

$$f(X) \mapsto f(aX + b) \mapsto f\left(a\frac{X - b}{a} + b\right) = f(X)$$
.

Also ist f genau dann irreduzibel, wenn $\sigma_g(f)$ irreduzibel ist für g = aX + b, $a \in \mathbb{R}^{\times}$. Nach Eisenstein ist damit $\Phi_p(X)$ irreduzibel in $\mathbb{Q}[X]$.

 \Diamond

2.43. Beispiel

$$X^{17} + 3$$
 und $X^5 - 36X + 2$ sind irreduzibel in $\mathbb{Z}[X]$.

3 Körper

3.1 Grundbegriffe

3.1. Wiederholung

- 1. Ein Körper $(K, +, \cdot)$ ist ein kommutativer Ring mit Eins, so dass $K^{\times} = K \setminus \{0\}$.
- 2. Betrachte den (Ring-) Homomorphismus $\varphi: \mathbb{Z} \to K, \ n \mapsto n \cdot 1$ mit

$$0 \cdot 1 = 0$$
, $n \cdot 1 = 1 + \dots + 1$ und $-n \cdot \dots 1 = -(1 + \dots + 1)$

für alle $n \in \mathbb{N}$. Dann ist $\operatorname{Bild}(\varphi) \subseteq K$ ein Integritätsbereich und $\operatorname{Kern}(\varphi)$ ist ein Primideal, denn $\varphi(\mathbb{Z}) \cong \mathbb{Z}/\operatorname{Kern}(\varphi)$. Die Primideale in \mathbb{Z} sind aber gerade $\{0\}$ und $p\mathbb{Z}$ mit p prim. Im Fall $\operatorname{Kern}(\varphi) = \{0\}$ ist φ injektiv, d.h. eine Einbettung von \mathbb{Z} in K (in Zeichen: $\mathbb{Z} \hookrightarrow K$). Andernfalls ist $\operatorname{Kern}(\varphi) = p\mathbb{Z}$ (d.h. $p \cdot 1 = 0$) und es gilt $\operatorname{Bild}(\varphi) = \mathbb{Z}/p\mathbb{Z} =: \mathbb{F}_p \hookrightarrow K$.

3. \mathbb{Q} und \mathbb{F}_p sind Primkörper, besitzen also keine echten Unterkörper. Jeder Primkörper ist isomorph zu \mathbb{F}_p für eine Primzahl p oder zu \mathbb{Q} . Sei allgemein K ein Körper, dann ist

$$\underline{\mathrm{Prim}}(K) := \bigcap_{\substack{k \subseteq K \\ k \text{K\"{\"{o}}}\mathrm{rper}}}$$

der Primkörper von K. Insbesondere ist char(K) = char(Prim(K)).

- 4. Gilt $\operatorname{Kern}(\varphi) = p\mathbb{Z}$, so heißt K ein Körper der Charakteristik p (in Zeichen: $\operatorname{char}(K) = p$). Dagegen setzen wir $\operatorname{char}(\mathbb{Q}) := 0$. Für Körper $K \hookrightarrow L$ gilt $\operatorname{char}(K) = \operatorname{char}(L)$. Speziell folgt aus $\mathbb{Q} \subseteq K$ also $\operatorname{char}(K) = 0$ bzw. aus $\mathbb{F}_p \subseteq K$, dass $\operatorname{char}(K) = p$.
- 5. Sei $\operatorname{char}(K) = p$. Dann ist $\sigma_p : K \to K$ mit $\sigma_p(a) := a^p$ ein Ringhomomorphismus, denn $1^p = 1$, $(ab)^p = a^pb^p$ und $(a+b)^p = a^p + b^p$ dies folgt mit $\frac{p!}{k!(p-k)!} = \frac{(p-1)!}{k!(p-k)!}$ ausn dem Binomischen Lehrsatz. σ_p ist injektiv, denn ist $a \in \operatorname{Kern}(\varphi)$, dann $0 = a^p$, also a = 0. Ist K endlich, so ist σ_p auch surjektiv, also $\sigma_p \in \operatorname{Aut}(K)$, der Frobenius-Automorphismus.
- 6. Sei $\varphi: K \to L$ ein Körperhomomorphismus, d.h. Ringhomomorphismus zwischen Körpern. Dann ist φ entweder injektiv oder trivial, denn Kern (φ) ist ein Ideal in K; die einzigen Ideale in K sind aber $\{0\}$ und K selbst: Sind $I \subseteq K$ ein Ideal und $a \in I \setminus \{0\}$, dann ist $a \cdot \frac{b}{a} \in I$ für alle $b \in K$, d.h. $I = K.\Diamond$

3.2. Definition

Seien K ein Körper, k ein Unterkörper von K und A eine Teilmenge von K. Definiere

$$k[A] := \bigcap_{\substack{K \supseteq R \text{ Ring} \\ k \cup A \subset R}} R \qquad \text{und} \qquad k(A) := \bigcap_{\substack{K \supseteq L \text{ K\"orper} \\ \overline{k} \cup A \subset L}} L.$$

k[A] heißt der von A in K über k erzeugte Ring und k(A) heißt der von A in K über k erzeugte Körper.

Im Fall $A = \{a_1, ..., a_n\}$ setzen wir $k[a_1, ..., a_n] := k[A]$ und $k(a_1, ..., a_n) := k(A)$.

 \Diamond

3.3. Bemerkung

1. Seien $k \subseteq K$ Körper und $a_1, ..., a_n \in K$. Dann gelten:

$$k[a_1,...,a_n] = \{f(a_1,...,a_n) \mid f \in k[X_1,...,X_n]\}$$

ist ein Ring, der in allen $R \subseteq K$ mit $k \cup \{a_1, ..., a_n\} \subseteq R$ enthalten ist, und

$$k(a_1,...,a_n) = \left\{ \frac{f(a_1,...,a_n)}{g(a_1,...,a_n)} \mid f,g \in k[X_1,...,X_n], \ g(a_1,...,a_n) \neq 0 \right\}$$

ist der Quotientenkörper von $k[a_1,...,a_n]$.

2.
$$k(A \cup B) = k(A)(B)$$
, denn für $L \subseteq K$ gilt: $k \cup (A \cup B) \subseteq L \Leftrightarrow k(A) \cup B \subseteq L$.

3.2 Körpererweiterungen

3.4. Definition

Seien $K \subseteq L$ Körper. Dann heißt L Körpererweiterung von K (in Zeichen: L|K).

Fasse L als K-Vektorraum auf. $[L:K] := \dim_K(L)$ heißt der Grad von L|K.

3.5. Beispiel

1. $\mathbb{R} \subseteq \mathbb{C}$: $[\mathbb{C} : \mathbb{R}] = 2$. Eine Basis ist etwa (1, i), dann $\mathbb{C} = \{a \cdot 1 + b \cdot i \mid a, b \in \mathbb{R}\}$. Es gilt

$$\mathbb{C} = \mathbb{R}(i) = \{ \frac{f(i)}{g(i)} \mid f, g \in \mathbb{R}[X], \ g(i) \neq 0 \} = \{ a + bX \mid a, b \in \mathbb{R} \} = \mathbb{R}[i].$$

Allgemein ist $\mathbb{R}[X] \subseteq \mathbb{R}(X)$.

2. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$: $[\mathbb{Q} : \mathbb{Q}(\sqrt{2})] = 2$ mit Basis $(1, \sqrt{2})$. Es gilt

$$\mathbb{Q}(\sqrt{2}) = \left\{ \frac{f(\sqrt{2})}{g(\sqrt{2})} \mid f, g \in \mathbb{R}[X], g(\sqrt{2}) \neq 0 \right\}$$
$$= \left\{ \frac{a + b\sqrt{2}}{d + e\sqrt{2}} \mid a, b, c, d \in \mathbb{Q}, c \neq 0 \text{ oder } d \neq 0 \right\}$$
$$= \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\},$$

denn mit quadratischer Ergänzung gilt

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}}\frac{c-d\sqrt{2}}{c-d\sqrt{2}} \in \mathbb{Q} + \mathbb{Q}\sqrt{2}.$$

3. $\mathbb{Q} \subseteq \mathbb{Q}(X)$: $[\mathbb{Q}(X):\mathbb{Q}] = \infty$, denn 1, X, X^2, \dots sind \mathbb{Q} -linear unabhängig.

4. $\mathbb{Q} \subseteq \mathbb{R}$: $[\mathbb{R} : \mathbb{Q}] = \infty$, der Beweis folgt später.

3.6. SATZ (Gradsatz)

Seien $k \subseteq K \subseteq L$ Körper. Dann gilt: [L:k] = [L:K][K:k].

Im endlichdimensionalen Fall gilt weiter: Sind $(x_1,...,x_n)$ eine Basis von K über k und $(y_1,...,y_m)$ eine Basis von L über K, so ist $(x_1y_1, ..., x_1y_m, ..., x_2y_1, ..., ..., x_ny_m)$ Basis von L über k.

BEWEIS.

1. Lineare Unabhängigkeit: Gelte

$$0 = \sum_{i=1}^{m} \sum_{i=1}^{n} \alpha_{ij}(x_i y_j) = \sum_{i=1}^{m} \left(\sum_{i=1}^{n} \alpha_{ij} x_i \right) y_j =: \sum_{i=1}^{m} \beta_j y_j$$

mit $\beta_i \in K$.

 \Diamond

Da die y_j linear unabhängig über K sind, sind alle $\beta_j = 0$. Da die x_i linear unabhängig über K sind, sind alle $\beta_j = \sum \alpha_{ij} x_i = 0$, d.h. auch alle $\alpha_{ij} = 0$. Also sind alle $x_i y_j$ linear unabhängig.

2. Erzeugendensystem: Sei $a \in L$, dann $a = \sum \beta_j y_j$ für gewisse $\beta_j \in K$, wobei $\beta_j = \sum \alpha_{ij} x_i$ für gewisse $\alpha_{ij} \in k$. Also ist

$$a = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \alpha_{ij} x_i \right) y_j = \sum_{j=1}^{m} \sum_{i=1}^{n} \alpha_{ij} (x_i y_j).$$

3.7. Korollar

Seien $k \subseteq K \subseteq L$ Körper. Dann gelten:

- 1. Gilt [K:k] = [L:k], dann ist [L:K] = 1, d.h. L = K.
- 2. Ist [L:k] prim, dann gilt k=K oder K=L.
- 3. Zwischen $\mathbb R$ und $\mathbb C$ gibt es keinen echten Zwischenkörper.

3.8. Definition

Sind $k \subseteq K$ und K = k(a), so heißt K eine einfache Erweiterung von k und a heißt ein primitives Element der Erweiterung K|k.

Sind $k \subseteq K$, so heißt $a \in K$ algebraisch über k, falls es ein $f \in k[X] \setminus \{0\}$ gibt mit f(a) = 0. Andernfalls heißt a transzendent über k. Speziell heißen algebraische Elemente von $\mathbb{C}[\mathbb{Q}]$ algebraische Zahlen.

3.9. Beispiel

- 1. *i* ist ein primitives Element von $\mathbb{C}|\mathbb{R}$.
- 2. $\sqrt{2}$, i und $\sqrt[3]{5}$ sind algebraische Zahlen (zu $X^2-2=0$, $X^2+1=0$ und $X^3-5=0$).
- 3. π und e sind transzendente Zahlen. Der Beweis ist sehr schwierig, für π : Lindemann, 1882.

3.10. Wiederholung

- 1. Seien $k \subseteq K$ und $a \in K$. Dann heißt $\varphi_a : k[X] \to K$, $f \mapsto f(a)$ ein Einsetzungshomomorphismus.
- 2. Kern $(\varphi_a) = \{ f \in k[X] \mid f(a) = 0 \}$ ist ein k[X]-Ideal, also ein Hauptideal. Falls Kern $(\varphi_a) \neq \{0\}$, so gibt es genau ein normiertes Polynom $f_a \in k[X]$ mit Kern $(\varphi_a) = (f_a) = f_a k[X]$, denn gelte $(f_a) = (f'_a)$, dann $f_a \sim f'_a$ und aus der Normiertheit folgt $f_a = f'_a$.
- 3. f_a ist irreduzibel, da Primideal. $Irr(a, k) := Min(a, k) := f_a$ heißt das irreduzible Polynom oder Minimalpolynom von a über k.
- 4. f_a ist dasjenige normierte und irreduzible Polynom $f \in k[X] \setminus \{0\}$, für das gilt f(a) = 0. Sei nämlich f ein solches Polynom, dann folgt aus f(a) = 0, dass $f \in \text{Kern}\varphi_a = (f_a)$. Da f irreduzibel, also $f_a \mid f$ und da f normiert, folgt $f = f_a$.

3.11. Beispiel

- 1. $Irr(\sqrt{5}, \mathbb{Q}) = X^2 5$.
- 2. $Irr(\sqrt{5}, \mathbb{R}) = X \sqrt{5}$.
- 3. $Irr(\sqrt{-1}, \mathbb{R}) = X^2 + 1$.
- 4. $Irr(\sqrt[3]{2}, \mathbb{Q}) = X^3 2$.
- 5. $\operatorname{Irr}(\exp(\frac{2\pi i}{5}),\mathbb{C})=X^4+X^3+X^2+X+1$ (Irreduzibilität nach Eisenstein-Kriterium).
- 6. $Irr(\alpha, k) = X \alpha$ für $\alpha \in k$.

3.12. SATZ

Seien $k \subseteq K$ und $a \in K$. Dann sind äquivalent:

- 1. a ist algebraisch über k.
- 2. Es gilt k[a] = k(a).
- 3. Für den Grad der Erweiterung k(a)|k gilt $[k(a):k]<\infty$.

BEWEIS.

- 1. (1) \Rightarrow (2): Sei a algebraisch über k. Da (f_a) Primideal, ist (f_a) maximal, d.h. $k[X]/(f_a) \cong k[a]$ nach dem Homomorphiesatz für φ_a . Da $k[X]/(f_a)$ ein Körper ist, muss auch k[a] einer sein.
- 2. (2) \Rightarrow (3): Gelte k[a] = k(a), d.h. Bild $(\varphi_a) = k[a] \cong k[X]/(f_a)$ ist ein Körper. Also ist Kern $(\varphi_a) \neq \{0\}$ sonst wäre k[X] ein Körper, d.h. es gibt ein $f \in k[X] \setminus \{0\}$ mit f(a) = 0. Habe f die Darstellung $f(X) = \alpha_0 + \alpha_1 X + \cdots + \alpha_n X^n$, \times $\alpha_n = 1$. Wegen f(a) = 0 ist dann

$$a^{n} = -\alpha_{0} - \alpha_{1}a - \dots - \alpha_{n-1}a^{n-1} \in k + ka + \dots + ka^{n-1} = \operatorname{span}(1, a, \dots, a^{n-1}) =: V.$$

V ist ein k-Vektorraum mit $\dim(V) \leq n$; aus $a^n \in V$ folgt, dass auch

$$a^{n+1} = -\alpha_0 a - \alpha_1 a^2 - \dots - \alpha_{n-1} a^n \in ka + \dots + ka^n \subseteq \text{span}(1, a, \dots, a^{n-1}) = V.$$

Per Induktion folgt: $k[a] \subseteq V$, also nach Voraussetzung auch $k(a) \subseteq V$, d.h. $\dim_k(k(a)) \le n < \infty$.

3. (3) \Rightarrow (1): Angenommen, a wäre transzendent über k, d.h. $\varphi_a: k[X] \to K$ ist injektiv. Weiter ist $\varphi_a: k[X] \to k[a]$ ein Epimorphismus, d.h. $k[X] \cong k[a]$ als Ringe. Wegen $\varphi_a(\alpha) = \alpha$ für jedes $\alpha \in k$ ist $k[X] \cong k[a]$ als k-Vektorraum. Wäre nun $\dim_k(k[X]) = \infty$, dann $\dim_k(k[a]) = \infty$, d.h. $\dim_k(k(a)) = \infty$ im Widerspruch zur Voraussetzung.

3.13. Korollar

Seien $k \subseteq K$ Körper, $a \in K$ und $n = \deg(\operatorname{Irr}(a, k))$.

Dann gilt $k(a) = k[a] = k \oplus ka \oplus \cdots \oplus ka^{n-1}$, d.h. $(1, a, ..., a^{n-1})$ ist eine Basis von k(a)|k.

BEWEIS.

Nur noch die lineare Unabhängigkeit von $\{1,\ a,\ ...,\ a^{n-1}\}$ ist zu zeigen.

Gelte $\beta_0 + \beta_1 a + \cdots + \beta_{n-1} a^{n-1} = 0$ für β_0 , ..., $\beta_{n-1} \in k$. Setze $g(X) := \beta_0 + \beta_1 X + \cdots + \beta_{n-1} X^{n-1}$. Wäre g nicht das Nullpolynom, dann $f_a \mid g$, da g(a) = 0. Dies ist ein Widerspruch, da $\deg g \leq \deg f_a$. \square

3.14. Beispiel

1. Seien $a = \sqrt{5}$ und $k = \mathbb{Q}$, dann $\mathbb{Q}(\sqrt{5}) = \mathbb{Q} \oplus \mathbb{Q}\sqrt{5}$ (als k-Vektorraum) mit Körperoperationen

$$(\alpha + \beta\sqrt{5}) + (\gamma + \delta\sqrt{5}) = (\alpha + \gamma) + (\beta + \delta)\sqrt{5},$$

$$(\alpha + \beta\sqrt{5})(\gamma + \delta\sqrt{5}) = (\alpha\gamma + 5\beta\delta) + (\alpha\delta + \beta\gamma)\sqrt{5}.$$

- 2. Sind $a = \sqrt{-1}$ und $k = \mathbb{R}$, dann $\mathbb{R}(\sqrt{-1}) = \mathbb{R} \oplus \mathbb{R}\sqrt{-1}$.
- 3. Für $a = \sqrt[3]{2}$, $k = \mathbb{Q}$ ist $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q} \oplus \sqrt[3]{2} \oplus \mathbb{Q}\sqrt[3]{4}$.

3.15. Definition

K|k heißt eine algebraische Körpererweiterung, falls jedes $a \in K$ algebraisch über k ist.

Andernfalls heißt k transzendent.

3.16. SATZ

Sei $k \subseteq K$ eine Körpererweiterung. Dann gelten:

- 1. Ist $[K:k] < \infty$, dann ist K|k algebraisch und es gibt $a_1, ..., a_n \in K$ mit $K = k(a_1, ..., a_n)$.
- 2. Sind $a_1,...,a_n \in K$ algebraisch über k, dann ist $K' := k(a_1,...,a_n)$ algebraisch über k und für den Grad der Körpererweiterung gilt $[K':k] < \infty$

BEWEIS.

1. Seien $\dim_k(K) = m$, $a \in K$. Dann ist $\{1, a, ..., a^m\}$ linear abhängig über k, d.h. es gibt $\alpha_0, ..., \alpha_m \in k$ mit $\alpha_0 + \alpha_1 a + \cdots + \alpha_m a^m = 0$ und nicht alle $\alpha_i = 0$. Setze $g(X) := \alpha_0 + \alpha_1 X + \cdots + \alpha_m X^m$. Dann sind $g \in k[X] \setminus \{0\}$ und g(a) = 0. Ist $(a_1, ..., a_m)$ Basis von K über k, so ist $K = k(a_1, ..., a_m)$:

$$K = ka_1 + \dots + ka_m \subseteq k[a_1, \dots, a_m] \subseteq k(a_1, \dots, a_m) \subseteq K.$$

2. Sei a_1 algebraisch über k, dann ist $[k(a_1):k]<\infty$. Sei a_2 algebraisch über k, dann ist a_2 algebraisch über $k(a_1)$, d.h. $[k(a_1)(a_2):k(a_1)]<\infty$. Beachte dabei: $k(a_1)(a_2)=k(a_1,a_2)$. Nach der Gradgleichung ist dann $[k(a_1,a_2):k]=[k(a_1,a_2):k(a_1)][k(a_1):k]<\infty$ u.s.w. bis $[K':k]=[k(a_1,...,a_n):k]<\infty$ und mit 1. folgt: K'|k algebraisch.

3.17. Korollar

Seien K|k eine Körpererweiterung und $a, b \in K$ algebraisch über k. Dann sind auch $a \pm b$, ab und $\frac{a}{b}$ algebraisch über k.

Insbesondere ist $L := \{a \in K \mid a \text{ ist algebraisch ""uber } k\}$ ein Teilkörper von K.

3.18. Bemerkung

 $\mathbb{Q} := \{a \in \mathbb{C} \mid a \text{ ist algebraisch "über } \mathbb{Q} \}$ heißt Körper der algebraischen Zahlen.

3.19. Korollar

Seien $k \subseteq K \subseteq L$. Dann gilt: L|k ist algebraisch $\Leftrightarrow K|k$ und L|K sind algebraisch (Transitivität).

BEWEIS.

- \Rightarrow Klar.
- \Leftarrow Sei $a \in L$. Dann gibt es $f \in K[X] \setminus \{0\}$ mit f(a) = 0, d.h. $f = a_0 + a_1 X + \cdots + a_n X^n$ mit $a_i \in K$. $k(a_0, ..., a_n) | k$ ist algebraisch und $[k(a_0, ..., a_n) : k] < \infty$, also auch $[k(a_0, ..., a_n)(a) : k(a_0, ..., a_n)] < \infty$, da a algebraisch über $k(a_0, ..., a_n)$. Damit $[k(a_0, ..., a_n, a) : k] < \infty$, d.h. a algebraisch über k. \square

3.3 Konstruktionen mit Zirkel und Lineal

3.20. Bemerkung

Wir wollen im Folgenden untersuchen, welche **Konstruktionen** in der Ebene \mathbb{C} nur mit Hilfe von **Zirkel** und **Lineal** möglich sind.

Erlaubt sind die folgenden Konstruktionen:

- 1. Zu zwei bereits konstruierten Punkten $P, Q \in \mathbb{C}, P \neq Q$, die **Gerade** G(P,Q) durch P und Q.
- 2. Zu zwei bereits konstruierten Punkten $P,Q\in\mathbb{C},\ P\neq Q,$ den **Kreis** K(P,Q) mit Mittelpunkt P durch Q.
- 3. Konstruktion neuer Punkte durch **Schnitte** von zwei Geraden, zwei Kreisen oder einer Geraden mit einem Kreis.

Martin Gubisch 34 WS 2006/2007

3.21. Definition

Sei $M \subseteq \mathbb{C}$. Dann ist Kon(M) die Menge aller aus M konstruierbaren Punkte, d.h. aller $z \in \mathbb{C}$, zu denen es eine endliche Folge $M = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n \subseteq \mathbb{C}$ gibt mit $z \in M_n$ und M_{ν} entsteht aus $M_{\nu-1}$ durch einen elementaren Konstruktionsschritt $(\nu = 1, ..., n)$, d.h. $M_{\nu} = M_{\nu-1} \cup \{x, y\}$.

3.22. Bemerkung

Seien $0, 1 \in M \subseteq \mathbb{C}$. Dann gelten:

- 1. Kon(M) ist ein Oberkörper von $\mathbb{Q}(M \cup \overline{M})$. Insbesondere ist \mathbb{Q} ist aus $\{0,1\}$ konstruierbar.
- 2. Ist $a \in \mathbb{C}$ konstruierbar, dann liegt auch \sqrt{a} in Kon(M).

3.23. Lemma

Sei L ein Unterkörper von $\mathbb C$ mit $L=\overline L$ und $i\in L$ und sei $z\in \mathbb C$ beliebig.

Dann gilt: Ist $z \in L$ konstruierbar, so gibt es ein $u \in L \cap \mathbb{R}$ mit $z \in L(\sqrt{u})$.

BEWEIS.

Gilt $z = a + ib \in \mathbb{C}$ für gewisse $a, b \in \mathbb{R}$, dann sind $a = \frac{1}{2}(z + \overline{z})$ und $b = \frac{i}{2}(z - \overline{z})$, d.h. für jedes konstruierbare $z \in \mathbb{C}$ sind auch Re(z) und Im(z) konstruierbar.

- 1. Schnitt zweier Geraden: Gegeben seien bereits konstruierte Punkte p_1, q_1, p_2 und $q_2 \in L$ mit $p_1 \neq q_1$ und $p_2 \neq q_2$. Dann definieren (p_1, q_1) und (p_2, q_2) zwei Geraden $G_1 = G(p_1, q_1)$ und $G_2 = G(p_2, q_2)$ in \mathbb{C} , die sich durch $g_1, g_2 : \mathbb{R} \to \mathbb{C}$ mit $g_1(\lambda) = p_1 + \lambda q_1$ und $g_2(\mu) = p_2 + \mu q_2$ parametrisieren lassen. Schneiden sich G_1, G_2 in einem Punkt $z \in \mathbb{C}$, so existieren $\lambda, \mu \in \mathbb{R}$ mit $z = g_1(\lambda) = g_2(\mu)$. Die Parameter λ und μ sind also Lösungen eines inhomogenen linearen Gleichungssystems über $L \cap \mathbb{R}$, bestehend aus zwei Gleichungen, mit Koeffizienten $Re(p_i), Im(p_i), Re(q_i), Im(q_i)$ (i = 1, 2). Damit liegt z in L, setze also u = 1.
- 2. Schnitt einer Geraden mit einem Kreis: Seien p_1 , p_2 , q_1 und q_2 bereits konstruiert mit $p_1 \neq p_2$ und $q_1 \neq q_2$. Sei z ein Schnittpunkt der Geraden $G(p_1, p_2)$ mit dem Kreis $K(q_1, q_2)$, dann existiert ein $\lambda \in \mathbb{R}$ mit

$$p_1 + \lambda p_2 = z$$
 und $|z - q_1|^2 = |q_2 - q_1|^2$.

Einsetzen von z in die zweite Gleichung ergibt: λ löst

$$(\operatorname{Re}(p_1) + i\operatorname{Im}(p_1) + \lambda \operatorname{Re}(p_2) + i\lambda \operatorname{Im}(p_2) - \operatorname{Re}(q_1) - i\operatorname{Im}(q_1))^2$$

= $(\operatorname{Re}(q_2) + i\operatorname{Im}(q_2) - \operatorname{Re}(q_1) - i\operatorname{Im}(q_2))^2$,

d.h. Lösung des quadrartischen Systems $\gamma_0 + \gamma_1 \lambda + \gamma_2 \lambda^2 = 0$, wobei die Koeffizienten γ_0 , γ_1 und γ_2 gegeben sind durch

$$((\operatorname{Re}(p_1) - \operatorname{Re}(q_1)) + i(\operatorname{Im}(p_1) - \operatorname{Im}(q_1)))^2 - ((\operatorname{Re}(q_2) - \operatorname{Re}(q_1)) + i(\operatorname{Im}(q_2) - \operatorname{Im}(q_1)))^2 + 2(\operatorname{Re}(p_2) + i\operatorname{Im}(p_2))((\operatorname{Re}(p_1) - \operatorname{Re}(q_1)) + i(\operatorname{Im}(p_1) - \operatorname{Im}(q_1)))\lambda + (\operatorname{Re}(p_2) + i\operatorname{Im}(p_2))^2\lambda^2 = 0.$$

Definiere u also als die Diskriminante $u := \gamma_1^2 - 4\gamma_0\gamma_2$, dann ist $z \in L(\sqrt{u})$.

3. Seien p_1 , p_2 , q_1 und q_2 bereits konstruiert und z ein Schnittpunkt von $K(p_1, p_2)$ mit $K(q_1, q_2)$, d.h. es gelten

$$|z - p_1|^2 = |p_2 - p_1|^2$$
 und $|z - q_1|^2 = |q_2 - q_1|^2$.

Dies liefert für x := Re(z) und y := Im(z) das nichtlineare Gleichungssystem

$$\left\{ \begin{array}{ll} x^2 + y^2 + \gamma_1 x + \gamma_2 y + \lambda & = & 0 \\ x^2 + y^2 + \delta_1 x + \delta_2 y + \mu & = & 0 \end{array} \right.$$

für gewisse Koeffizienten γ_1 , γ_2 , δ_1 , δ_2 , λ , $\mu \in L$. Differenz der beiden Gleichungen ergibt ein inhomogenes lineares Gleichungssystem. Setze also wieder u = 1.

3.24. SATZ (Descartes)

Sei $M \subseteq \mathbb{C}$ mit $0, 1 \in M$. Dann sind äquivalent:

- 1. z ist aus M elementar konstruierbar.
- 2. Es gibt eine Kette von Zwischenkörpern $\mathbb{Q}(M \cup \overline{M}) = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_m \subseteq \mathbb{C}$ mit $z \in L_m$ und $[L_{\nu} : L_{\nu-1}] = 2$ für alle $\nu \in \{1, ..., m\}$.

BEWEIS.

- 1. (1) \Rightarrow (2): Es existiere eine Kette von Konstruktionsschritten $M = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_m \subseteq \mathbb{C}$ mit $z \in M_m$, $M_{\nu} = M_{\nu-1} \cup \{z_{\nu}, z_{\nu}'\}$. Setze $L_0 := \mathbb{Q}(M \cup \overline{M})$ und $L_1 := L_0(i)$. Dann gilt $L_1 = \overline{L}_1$ und es gibt $u_1 \in L_1 \cap \mathbb{R}$ mit $z_1, z_1' \in L_1(\sqrt{u_1})$. Sezte $L_2 := L_1(\sqrt{u_1})$, also $M_1 \subseteq L_2$ und $L_2 = \overline{L}_2$... u.s.w. bis L_{m+1} mit $M_m \subseteq L_{m+1}$.
- 2. (2) \Rightarrow (1). Wir zeigen per Induktion über ν , dass $L_{\nu} \subseteq \text{Kon}(M)$ für alle $\nu = 1, ..., m$. Der Fall $\nu = 0$ ist klar: $L_0 \subseteq \text{Kon}(M)$. Gelte die Behauptung also für $0, ..., \nu 1$. Sei $L_{\nu-1} \subseteq \text{Kon}(M)$. Es gilt $L_{\nu} = L_{\nu-1}(x)$ für ein $x \in L_{\nu} \setminus L_{\nu-1}$. Dies ist eine endliche Erweiterung, d.h. x ist algebraisch über $L_{\nu-1}$. x muss Nullstelle eines quadratischen Polynoms sein, d.h. es gibt $a, b \in L_{\nu-1}$ mit $x^2 + ax + b = 0$, also $x = -\frac{a}{2} \pm \frac{1}{2} \sqrt{a^2 4b} \in \text{Kon}(M)$, da Kon(M) abgeschlossen ist unter Körperoperationen und Wurzelziehen. Weiter $L_{\nu} = L_{\nu-1} + L_{\nu-1}x \subseteq \text{Kon}(M)$, da $x \in \text{Kon}(M)$. Also $z \in L_m \subseteq \text{Kon}(M)$.

3.25. Korollar

Seien $M \subseteq \mathbb{C}$ mit $0, 1 \in M$ und $L = \mathbb{Q}(M \cup \overline{M})$. Dann gilt für alle $z \in \text{Kon}(M)$: [L(z) : L] ist eine Zweierpotenz.

BEWEIS.

Seien $L \subseteq L_1 \subseteq \cdots \subseteq L_m$ und $z \in L_m$. Dann sind $L(z) \subseteq L_m$ und $[L_m : L] = 2^m$, also $L \subseteq L(z) \subseteq L_m$. Die Gradformel liefert $2^m = [L_m : L] = [L_m : L(z)][L(z) : L]$, d.h. $[L(z) : L] = 2^{\nu}$ mit einem $\nu \le m$. \square

3.26. Bemerkung (Anwendungen aus der euklidischen Geometrie)

- 1. **Quadratur des Kreises.** Gesucht ist ein Quadrat mit Kantenlänge $\sqrt{\pi}$. Wäre $\sqrt{\pi}$ konstruierbar aus $\{0,1\}$, so wäre $\sqrt{\pi}$ algebraisch über \mathbb{Q} , ein Widerspruch.
- 2. **Delisches Problem.** Gesucht ist ein Würfel mit Kantenlänge $\sqrt[3]{2}$. Wäre $\sqrt[3]{2}$ aus $\{0,1\}$ konstruierbar, dann $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=2^{\nu}$. Das ist unmöglich, da deg $\mathrm{Irr}(\sqrt[3]{2},\mathbb{Q})=\deg(X^3-2)=3$.
- 3. Winkeldreiteilung. Gegeben sei der Winkel $\alpha = \frac{\pi}{3}$, dann ist $\cos \frac{\alpha}{3}$ eine Nullstelle des normierten Polynoms $f(X) = X^3 \frac{3}{4}X \frac{1}{8}$. f ist irreduzibel über \mathbb{Q} , denn mit der Substitution $X = \frac{1}{2}(1+Z)$ folgt $f(X) = Z^3 + 3Z 3$; dieses ist irreduzibel nach Eisenstein. Also ist $f = \operatorname{Irr}(\cos \frac{\alpha}{3}, \mathbb{Q})$. Wegen deg $\operatorname{Irr}(\cos \frac{\alpha}{3}, \mathbb{Q}) = 3 \neq 2^{\nu} = [\mathbb{Q}[\cos \frac{\alpha}{3}] : \mathbb{Q}]$ für alle $\nu \in \mathbb{N}$, ist die Dreiteilung des 60°-Winkels unmöglich.
- 4. Konstruktion eines regelmäßiges p-Ecks. Sei p prim. Die Ecken $e_1, e_2, ..., e_p$ eines regelmäßigen p-Ecks lassen sich darstellen als $e_1 = \exp \frac{2\pi i}{p}, e_2 = \exp \frac{4\pi i}{p}, ..., e_p = \exp \frac{2p\pi i}{p} = 1$. Notwendige Bedingung für $\exp \frac{2\pi i}{p} \in \operatorname{Kon}(\{0,1\})$ ist $\deg \operatorname{Irr}(\exp \frac{2\pi i}{p},\mathbb{Q}) = 2^m$ für ein $m \in \mathbb{N}$. Nun ist $\exp \frac{2\pi i}{p}$ eine Nullstelle des Polynoms $f(X) = X^p 1 = (X-1)(X^{p-1} + X^{p-2} + \dots + X + 1) = (X-1)\Phi_p(X)$ mit p-tem Kreisteilungspolynom Φ_p . Dieses ist irreduzibel über \mathbb{Z} , also auch über \mathbb{Q} , d.h. $\operatorname{Irr}(\exp \frac{2\pi i}{p},\mathbb{Q}) = \Phi_p(X)$, also $p-1=2^m$. Als unmittelbare Konsequenz erhalten wir: Das 7-Eck und das 11-Eck lassen sich nicht konstruieren.

Weiter gilt $m=2^n$, denn sei $t\neq 1$ ungerade mit m=st. Dann ist

$$2^{m} + 1 = (2^{s})^{t} + 1 = (2^{s} + 1)((2^{s})^{t-1} - (2^{s})^{t-1} + \dots + 1),$$

ein Widerspruch. Also ist die Bedingung $p=2^{2^n}+1$ notwendig für die Konstruierbarkeit. Solche p heißen Fermat-Primzahlen. Wir zeigen später: Die Bedingung ist auch hinreichend, d.h. genau dann ist das regelmäßige p-Eck konstruierbar, wenn p eine Fermat-Primzahl ist. Die einzigen derzeit bekannten Fermat-Primzahlen sind im übrigen 3, 5, 17 und 65537.

3.4 Der Zerfällungskörper

3.27. Wiederholung

Seien $k \subseteq K$ eine Körpererweiterung und $f \in k[X]$. Dann gelten:

- 1. Genau dann ist $a \in K$ eine Nullstelle von f, wenn (X a) ein Teiler von f in K[X] ist.
- 2. f hat höchstens deg f viele Nullstellen in K.

\Diamond

3.28. Definition

Ein $f \in k[X]$ zerfällt in K, falls es $a_1, ..., a_n \in K$ und $b \in k$ gibt mit

$$f(X) = b \prod_{i=1}^{n} (X - a_i).$$

K heißt der Zerfällungskörper von f über k (in Zeichen: $K = \mathbf{Zfk}(f, k)$), falls es $a_1, ..., a_n \in K$ und $b \in k$ gibt mit

$$f(X) = b \prod_{i=1}^{n} (X - a_i)$$
 und $K = k(a_1, ..., a_n)$.

3.29. Beispiel

- 1. \mathbb{C} ist der Zerfällungskörper von X^2+1 über \mathbb{R} : Es gilt $\mathbb{C}=\mathbb{R}(i)=\mathbb{R}\oplus i\mathbb{R}$ als Vektorraum.
- 2. $\mathbb{Q}(\sqrt{2})$ ist der Zerfällungskörper von X^2-2 über \mathbb{Q} , denn es gelten $X^2-2=(X+\sqrt{2})(X-\sqrt{2})$ und $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{2},-\sqrt{2})=\mathbb{Q}\oplus\mathbb{Q}(\sqrt{2})$.
- 3. $\mathbb{Q}(\sqrt[3]{2})$ ist nicht der Zerfällungskörper von X^3-2 , denn $\mathbb{Q}(\sqrt[3]{2})\subseteq\mathbb{R}$ und X^3-2 lässt sich zerlegen in $X^3-2=(X-\sqrt[3]{2})(X^2+X\sqrt[3]{2}+\sqrt[3]{4})$, wobei der letztere Faktor keine reellen Nullstellen hat.
- 4. $\mathbb{Q}(\sqrt[3]{2},\sqrt{-3})$ ist der Zerfällungskörper von X^3-2 , denn die Nullstellen von $X^2+X\sqrt[3]{2}+\sqrt[3]{4}$ sind $-\frac{1}{2}\sqrt[3]{2}\pm\frac{1}{2}\sqrt[3]{2}\sqrt{-3}$. Es gilt $[\mathbb{Q}(\sqrt[3]{2},\sqrt{-3}):\mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{2},\sqrt{-3}):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=2\cdot 3=6=3!.$

3.30. Bemerkung

Allgemein gilt: $[K:k] \leq n!$, falls $n = \deg f$ und K Zerfällungskörper von f über k.

\Diamond

3.31. SATZ

Sei $f \in k[X]$. Dann gibt es $K \supseteq k$ mit K Zerfällungskörper von f über k.

BEWEIS.

Œ sei f normiert und es gelte $f \notin k$. Schreibe $f = f_1 \cdots f_m$ mit $f_i \in k[x]$ irreduzibel und $n = \deg f$, insbesondere $m \leq n$.

Wir führen eine Induktion über n-m: Gelte zunächst n-m=0, dann n=m, also $f_i=X-a_i\in k[X]$, also ist k der Zerfällungskörper von f, d.h. $\deg(f_i)=1$ und k=K, womit der Induktionsanfang gemacht wäre.

Sei nun n-m>0, etwa $\deg(f_1)>1$. Da f_1 irredizibel in einem Hauptidealring, ist $(f_1)_{k[X]}$ prim in einem Hauptidealring, d.h. (f_1) ist maximal und damit $k[X]/(f_1)=:L$ ein Körper. f_1 hat eine Nullstelle in L, nämlich $X+(f_1)=:\overline{x}$, denn $\overline{f_1(X)}=f_1(\overline{x})$; da $f_1(X)\in(f_1)$, folgt $f_1(\overline{x})=0$ in L. Also ist $k\subseteq L$ und es gibt ein $a\in L$ mit $f_1(a)=0$. Damit ist $f_1(X)=(X-a)g_1(X)$ für ein $g_1\in L[X]$. Über L gilt also: $f=(X-a)h_2\cdots h_{\widetilde{m}}$ mit $m<\widetilde{m}$. Wegen $n-\widetilde{m}< n-m$, gibt es nach Induktionsvoraussetzung ein Teilkörper $K\supseteq L$, so dass K der Zerfällungskörper von f über L ist, d.h. $f=\prod(X-a_i)$ und $K=L(a_1,...,a_n)$, E and E and E and E and E and E and E are finitely likely E and E are finitely likely E and E are finitely E are finitely E are finitely E and E are finitely E are finitely E and E are finitely E are finitely E are finitely E are finitely E and E are finitely E are finitely E are finitely E and E are finitely E are finitely E and E are finitely E are finitely E and E are finitely E are finitely E are finitely E and E are finitely E are finitely E are finitely E are finitely E and E are finitely E and E are finitely E are finitely E and E are finitely E

3.32. Bemerkung

Sei K ein Zerfällungskörper über k, dann gilt $[K:k]<\infty$, denn $K=k(a_1,...,a_n)$ und alle a_i sind algebraisch über k, also $[K:k]\leq n!$.

3.33. Lemma

Sei $\varphi: k \to k'$ ein Körperisomorphismus. Dann gibt es einen eindeutig bestimmten Ringisomorphismus $\Phi: k[X] \to k'[X']$ mit $\Phi_{|k} = \varphi$ und $\Phi(X) = X'$.

BEWEIS.

1. Eindeutigkeit: Sei Ψ ein beliebiger Ringhomomorphismus mit $\Psi_{|k} = \varphi$ und $\Psi(X) = X'$. Dann gilt:

$$\Psi(a_0 + \dots + a_n X^n) = \Psi(a_0) + \dots + \Psi(a_n) \Psi^n(X)$$
$$= \varphi(a_0) + \dots + \varphi(a_n) (X')^n$$
$$= \Phi(a_0 + \dots + a_n X^n).$$

2. Existenz: Setze $\Phi(a_0 + \cdots + a_n X^n) := \varphi(a_0) + \cdots + \varphi(a_n)(X')^n$. Dies definiert einen Ringhomomorphismus. Φ ist surjektiv, da φ surjektiv. Außerdem ist Φ injektiv, denn sei $\Phi(a_0 + \cdots + a_n X^n) = 0$, dann $\varphi(a_0) + \cdots + \varphi(a_n)(X')^n = 0$, also sind alle $\varphi(a_i) = 0$ und damit alle $a_i = 0$, da φ injektiv ist. Also ist auch $\operatorname{Kern}(\Phi) = 0$.

3.34. Lemma

Seien $\varphi: k \to k'$ ein surjektiver Körperhomomorphismus und $\Phi: k[X] \to k'[X']$ seine Fortsetzung mit $\Phi(X) = X'$. Weiter seien $K \supseteq k$ und $K' \supseteq k'$ Körpererweiterungen, $a \in K$ und $f = \operatorname{Irr}(a, k)$.

Dann stimmt die Anzahl der Fortsetzungen $\Psi: k(a) \to K'$ mit $\Psi_{|k} = \varphi$ mit der Anzahl der verschiedenen Nullstellen von $\Phi(f)$ in K überein.

BEWEIS.

Seien $\Psi: k(a) \to K'$ ein Körperisomorphismus und $\Phi: k[X] \to k'[X']$ seine Fortsetzung. Dann ist $\Psi(a)$ eine Nullstelle von $\Phi(f)$:

$$0 = \Psi(0)$$

$$= \Psi(f(a))$$

$$= \Psi(a_0 + \dots + a_{n-1}a^{n-1} + a^n)$$

$$= \varphi(a_0) + \dots + \varphi(a_{n-1})\Psi^{n-1}(a) + \Psi^n(a)$$

$$= \Phi(f)(\Psi(a)),$$

Sei nun $a' \in K'$ eine Nullstelle von $\Phi(f)$, dann definiert

$$\Psi(b_0 + \dots + b_{n-1}a^{n-1}) := \varphi(b_0) + \dots + \varphi(b_{n-1})(a')^{n-1}$$

eine eindeutige Fortsetzung von φ . Dabei sind Eindeutigkeit und additive Verträglichkeit klar. Zur multiplikativen Verträglichkeit. Seien hierfür $f := \operatorname{Irr}(a, k)$ und $f' := \operatorname{Irr}(a', k')$. Betrachte das Diagramm

$$K\ni g(a) \qquad k(a)=k[a] \xrightarrow{\qquad \Psi \qquad} k'[a']=k'(a') \qquad g'(a')\in K'$$

$$\downarrow \qquad \qquad \uparrow \\ g(\overline{X}) \qquad k[X]/\underbrace{\frac{\Phi'}{(f)}} k'[X']/\underbrace{f'}) \qquad g'(\overline{X}')$$

$$k \xrightarrow{\qquad \varphi \qquad } k' \\ \qquad \qquad \downarrow \qquad \qquad \downarrow \\ f\ni k[X] \xrightarrow{\qquad \Phi \qquad} k'[X']\in f'=\Phi(f)$$

 ρ_a und $\rho_{a'}$ sind injektive Ringhomomorphismen, also multiplikativ verträglich, ebenso Φ' . Dann ist aber auch $\Psi = \rho_{a'} \circ \Phi' \circ \rho_a^{-1}$ einer.

Also gibt es mindestens so viele Einbettungen wie Nullstellen. Da die Einbettung für eine feste Nullstelle nach Lemma 3.33 eindeutig bestimmt ist, folgt die Behauptung.

3.35. Korollar

Seien $k \subseteq K$ mit $a, a' \in K$ und Irr(a, k) = Irr(a', k).

Dann gibt es genau einen Isomorphismus $\Psi: k(a) \to k(a')$ mit $\Psi_{|k} = \mathrm{id}$ und $\Psi(a) = a'$.

3.36. Satz (Fortsetzungssatz)

Seien $k \subseteq K$ und $k' \subseteq K'$ Körpererweiterungen, $\varphi : k \to k'$ ein Körperepimorphismus und Φ eine Fortsetzung von φ auf k[X]. Weiter seien $f \in k[X]$ ein Polynom, K ein Zerfällungskörper von f und K' ein Zerfällungskörper von $f' = \Phi(f)$.

Dann gibt es eine surjektive Fortsetzung $\Psi: K \to K'$ von φ und die Anzahl dieser Fortsetzungen von φ ist kleiner oder gleich dem Grad der Körpererweiterung [K:k]. Gleichheit gilt, falls f' lauter verschiedene Nullstellen in K' hat.

BEWEIS.

 \times sei f normiert. Wir führen eine Induktion über den Erweiterungsgrad [K:k].

- 1. Gelte [K:k]=1. Dann zerfällt f in k[X], d.h. f' zerfällt in k'[X], also K'=k'.
- 2. Sei nun [K:k]>1. Es gibt einen irreduziblen Teiler g von f in k[X] mit $\deg g>1$. Seien $a_1,...,a_n\in K$ und $b_1,...,b_n\in K'$ mit

$$f = \prod_{i=1}^{n} (X - a_i), \quad g = \prod_{i=1}^{m} (X - a_i), \quad f' := \Phi(f) = \prod_{i=1}^{n} (X - b_i) \quad \text{und} \quad \Phi(g) = \prod_{i=1}^{m} (X - b_i)$$

mit $1 < m \le n$. Seien $\Psi_j : k(a_1) \to k'$ $(1 \le j \le r)$ mit r gleich der Anzahl der Nullstellen von g' in K', d.h. $r \le m$. Es gilt r = m genau dann, wenn alle $b_1, ..., b_m$ paarweise verschieden sind. Setze $L := k(a_1)$. Da K der Zerfällungskörper von f über k, ist er auch der über L, denn Zerfällungskörper entstehen ja gerade durch Adjunktion der Nullstellen, und K' ist der Zerfällungskörper von f' über $\Psi_j(L)$.

Nach der Gradformel gilt $[K:L] = \frac{[K:k]}{[L:k]} = \frac{[K:k]}{m} < [K:k]$, da m > 1, und mit der Induktionsvorausstzung folgt:

- a) Ψ_i hat eine Fortsetzung auf K.
- b) Die Anzahl der Fortsetzungen ist kleiner oder gleich [K:L].
- c) Gleichheit gilt, falls $f' = \Phi(f)$ lauter verschiedene Nullstellen hat.

Mit Lemma 3.34 gibt es eine Fortsetzung $\Psi: K \to K'$ von φ . Dann ist $\Psi_{|L} = \Psi_j$ für ein $j \leq r$, also ist die Anzahl der Fortsetzungen von φ auf K kleiner oder gleich $r \cdot [K:L] \leq m \cdot [K:L] = [K:k]$. Falls f' weiter lauter verschiedene Nullstellen in K' hat, so gilt r = m und die Anzahl dieser Fortsetzungen ist gleich [K:k].

3.37. KOROLLAR (Zerfällungskörper)

Zu jedem Körper k und jedem $f \in k[X]$ gibt es bis auf Isomorphie über k (d.h. die Einschränkung auf k ist die Identität) nur einen Zerfällungskörper.

3.5 Der algebraische Abschluss

3.38. Definition

Ein Körper K heißt algebraisch abgeschlossen, falls über K jedes Polynom $f \in K[X]$ zerfällt.

K heißt der algebraische Abschluss von k, falls K algebraisch abgeschlossen und die Körpererweiterung K|k algebraisch ist.

3.39. Beispiele

- 1. C ist algebraisch abgeschlossen (Fundamentalsatz der Algebra).
- 2. \mathbb{C} ist der algebraische Abschluss von \mathbb{R} : $\mathbb{C} = \mathbb{R}(i)$.
- 3. \mathbb{C} ist kein algebraischer Abschluss von \mathbb{Q} , denn π ist über \mathbb{Q} transzendent.

3.40. Satz (Algebraischer Abschluss)

Jeder Körper K hat bis auf Isomorphie genau einen algebraischen Abschluss.

BEWEIS.

1. Eindeutigkeit: Seien K|k und K'|k' algebraische Erweiterungen, K, K' algebraisch abgeschlossen und $\varphi: k \to k'$ ein Isomorphismus. Betrachte

$$\mathcal{M} := \{ \varphi_1 : k_1 \to k_1' \text{ surjektiv } | k \subseteq k_1 \subseteq K, \ k' \subseteq k_1' \subseteq K' \text{ und } \varphi_{1|k} = \varphi \}.$$

Wir definieren eine Relation \leq auf \mathcal{M} durch

$$\varphi_1 \preccurlyeq \varphi_2 \quad :\iff \quad k_1 \subseteq k_2, \ k'_1 \subseteq k'_2 \text{ und } \varphi_{2|k_1} = \varphi_1.$$

Jede aufsteigende Kette $(\varphi_i)_{i\in I}$ mit $\varphi_i: k_i \to k_i'$ besitzt eine obere Schranke φ_I in \mathcal{M} , nämlich $\varphi_I: \bigcup \{k_i \mid i \in I\} \to \bigcup \{k_i' \mid i \in I\}$ mit $\varphi_I(a) := \varphi_i(a)$, falls $a \in k_i$. Beachte: φ_I ist ein wohldefinierter Epimorphismus, $\bigcup k_i$ ist ein Teilkörper von K und $\bigcup k_i'$ ist ein Teilkörper von K'. Also ist $\varphi_I \in \mathcal{M}$. Nach Zorns Lemma gibt es ein maximales $\varphi_m: l_m \to k_m'$. Wir zeigen: $k_m = K$ und $k_m' = K'$.

Falls $k_m \subsetneq K$, gibt es $a \in K \setminus k_m$. Dann ist $f = \operatorname{Irr}(a, k_m)$ und es existiert ein $a' \in K'$ mit f(a') = 0 (genauer $\Phi_m(f)(a') = 0$). Dann gibt es einen Isomorphismus $\Psi : k_m(a) \to k'_m(a')$, also war φ_m nicht maximal. Analog erhalten wir zu $K' \neq k'_m$ ein $a' \in K' \setminus k'_m$; Korollar 3.37 liefert $\Psi^{-1} : k'_m(a') \to k_m(a)$ im Widerspruch zur Maximalität von φ_m .

2. Existenz: Wähle zu jedem $f \in k[X] \setminus k$ eine Unbestimmte X_f und betrachte den Polynomring (Integritätsbereich) $R = k[X_f \mid f \in k[X] \setminus k]$; für unendliches I definieren wir

$$k[X_i \mid i \in I] := \bigcup_{\substack{E \subseteq I \\ E \text{ and } I}} k[X_i \mid i \in E].$$

Sei A ein Ideal in R das von $\{f(X_f) \mid f \in k[X] \setminus k\}$ erzeugt werde. Wähle mit Zorns Lemma ein maximales Ideal $M \supseteq A$. Dazu müssen wir zeigen, dass A echt ist, d.h. 1 nicht in A liegt. Wäre $1 \in A$, dann $1 = \sum g_i f_i(X_{f_i})$ mit $g_1, ..., g_n \in R$. Die g_i sind Polynome, etwa in $X_{f_1}, ..., X_{f_n}, X_{f_{n+1}}, ..., X_{f_n}$. Seien $\alpha_1, ..., \alpha_n$ Nullstellen von $f_1, ..., f_n$ mit $\alpha_1, ..., \alpha_n$ aus dem Zerfällungskörper von $f = f_1 \cdots f_n$ über k. Die Einsetzung α_i in X_{f_i} , $1 \le i \le n$ und 0 in X_{f_j} , $n < j \le m$ ergibt:

$$1 = \sum_{i=1}^{n} g_i(\alpha_1, ..., \alpha_n, 0, ..., 0) f_i(\alpha_i) = 0,$$

ein Widerspruch.

Da M ein maximales Ideal ist, ist K':=R/M ein Körper. Betrachte den Restklassenepimorphismus $\varphi:R\to R/M=:K',\ g\mapsto \overline{g}=g+M.$ Da $\varphi_{|k}:k\to R/M$ injektiv ist, können wir $a\in k$ mit \overline{a} identifizieren. Dann ist

$$\overline{g(X_{f_1},...,X_{f_m})} = \overline{g}(\overline{X}_{f_1},...,\overline{X}_{f_m}) = g(\overline{X}_{f_1},...,\overline{X}_{f_m})$$

wegen der Homomorphie von g und Identifikation; da $f(X_f) \in M$, gilt $0 = \overline{f(X_f)} = f(\overline{X}_f)$, d.h. \overline{X}_f ist eine Nullstelle von f in K'. Setze $K = \{a \in K' \mid a \text{ algebraisch "über } k\}$, dann ist K algebraisch "über k. Wir haben damit gezeigt: Zu k gibt es einen algebraischen Oberkörper K, in dem jedes $f \in k[X] \setminus k$ eine Nullstelle hat.

Iteriere diesen Prozess: Zu K_n gibt es eine algebraische Erweiterung K_{n+1} . Dort hat jedes Polynom $f \in K_n[X] \backslash K_n$ eine Nullstelle. Zeige: Der Körper $\mathcal{K} := \bigcup_{i \in I} K_n$ ist algebraisch abgeschlossen.

Sei $f \in \mathcal{K}[X] \setminus \mathcal{K}$ mit Darstellung $f = X^n + a_{n-1}X^{n-1} + \dots + a_0$. $a_i \in \mathcal{K}$, \times alle $a_i \in K_n$, also hat f Nullstellen in $K_{n+1} \subseteq \mathcal{K}$.

3.41. Bemerkung

Alternativ hätte man auch über einen Koeffizientenvergleich argumentieren können: Aus

$$X^{n} + a_{n-1}X^{n-1} + \dots + a_{0} = \prod_{i=1}^{n} (X - \alpha_{i})$$

folgt:

$$\begin{array}{rcl}
-a_{n-1} & = & (\alpha_1 + \alpha_2 + \dots + \alpha_n) & =: & s_1(\alpha_1, \dots, \alpha_n) \\
a_{n-2} & = & (\alpha_1\alpha_2 + \alpha_1\alpha_3 + \dots + \dots + \alpha_{n-1}\alpha_n) & =: & s_2(\alpha_1, \dots, \alpha_n) \\
-a_{n-3} & = & (\alpha_1\alpha_2\alpha_3 + \alpha_1\alpha_2\alpha_4 + \dots + \dots + \alpha_{n-2}\alpha_{n-1}\alpha_n) & =: & s_3(\alpha_1, \dots, \alpha_n) \\
& \vdots & & \vdots & & \vdots \\
(-1)^n a_0 & = & (\alpha_1\alpha_2 \dots \alpha_n) & =: & s_n(\alpha_1, \dots, \alpha_n).
\end{array}$$

Definiere $R = k[X_{f,1},...,X_{f,d} \mid f \in k[X] \setminus K, d = \deg f]$. Sei A das von

$$\{s_i(X_{f,1},...,X_{f,d}) \mid a_{n-i} \text{ teilt } f = X^d + a_{d-1}X^{d-1} + \cdots + a_0, \ 1 \le i \le d, \ d = \deg f, \ f \in k[X] \setminus k\}$$

erzeugte R-Ideal und M sei maximal mit $A \subseteq M$, dann ist K' := R/M ein Körper. Also ist

$$s_i(\overline{X}_{f,1},...,\overline{X}_{f,d}) = (\pm)a_{d-1} \Longrightarrow f = X^d + \dots + a_0 = \prod_{i=1}^n (X - \overline{X}_{f,i})$$

mit $\overline{X}_{f,i} \in K'$, d.h. in K' zerfällt jedes Polynom $f \in k[X] \setminus k$. Konstruiere aus K' ein K wie oben, dann zerfällt jedes $f \in k[X] \setminus k$ in einem algebraischen Oberkörper K.

3.42. SATZ

Jeder algebraisch abgeschlossene Körper ist unendlich.

BEWEIS.

Sei $K = \{a_0, ..., a_n\}$ algebraisch abgeschlossen. Setze $f(X) := 1 + \prod \{(X - a_i) \mid i = 0, ..., n\} \in K[X]$. Dann hat f eine Nullstelle in K, etwa a_i , also ist $0 = f(a_i) = 1$, ein Widerspruch.

3.6 Separable Polynome

3.43. Wiederholung

Seien $k \subseteq K$ Körper, $a \in K$ und $f \in k[X]$ zerfalle in K.

- 1. $\mu(f,a) := \max\{n \in \mathbb{N}_0 \mid (X-a)^n \text{ teilt } f \text{ in } K[X]\}$ heißt die Vielfachheit der Nullstelle a von f.
- 2. Ist $f = b(X a_1)^{\mu_1} \cdots (X a_m)^{\mu_m}$ mit $b \in k$ und $a_i \in K$ paarweise verschieden, i = 1, ..., m, dann gilt $\mu_i = \mu(f, a_i)$.
- 3. Die μ_i sind unabhängig von der Wahl des Körpers K, in dem f zerfällt, denn der Zerfällungskörper von f ist bis auf Isomorphie eindeutig bestimmt.

WS 2006/2007 41 Martin Gubisch

 \Diamond

 \Diamond

3.44. Definition

Sei $f \in k[X] \setminus k$. Dann heißt f separabel, falls jeder irreduzible Faktor von f in seinem Zerfällungskörper nur einfache Nullstellen hat.

Seien $k \subseteq K$ Körper und $a \in K$ algebraisch über k. Dann heißt a separabel über k, falls Irr(a, k)separabel ist.

3.45. Beispiel

(X-a) und $(X-a)^2$ sind separabel.

3.46. Definition

Sei R ein Ring. Die Abbildung

$$D: R[X] \to R[X], \qquad \sum_{i=0}^{n} a_i X^i \mapsto \sum_{i=1}^{n} i a_i X^{i-1}$$

heißt die formale Derivation oder formale Differenziation auf R[X].

3.47. Bemerkung

Für alle $a, b \in R$ und alle $f, g \in R[X]$ gelten:

- 1. D(af + bg) = aD(f) + bD(g), d.h. D ist linear.
- 2. D(fg) = fD(g) + D(f)g.

3.48. Bemerkung

Wir argumentieren nun stets im Zerfällungskörper über k.

3.49. SATZ

Ein normiertes $f \in k[X] \setminus k$ hat nur einfache Nullstellen $\Leftrightarrow (f, D(f)) = (1)$.

BEWEIS.

Habe f die Darstellung $f = \prod_{i=1}^{n} (X - a_i)^{\nu_i}$ mit a_i paarweise verschieden, i = 1, ..., n.

- \Rightarrow Seien alle $\mu_i = 1$. Dann ist $D(f) = \sum \prod (X a_i)$.
 - Sei $j \neq j_0$, dann gilt $(X a_{j_0}) \mid \prod_{i \neq j} (X a_i)$, da $(X a_{j_0})$ ein Faktor des Produkts ist.

Aber: $(X - a_{j_0}) \nmid \prod_{i \neq j_0}$, d.h. $(X - a_{j_0}) \nmid D(f)$, d.h. $\{f, D(f)\}$ teilerfremd, also (f, D(f)) = (1).

 \Leftarrow Es sei ein $\mu_i > 1$, etwa $\mu_1 > 1$, dann $\mathrm{D}(f) = \sum_j \mu_j (X - a_j)^{\mu_j - 1} \prod_{i \neq j} (X - a_i)^{\mu_i}$. Dann teilt $(X - a_1)$ jeden Summanden, also auch $\mathrm{D}(f)$, d.h. $(X - a_1)$ teilt $(f, \mathrm{D}(f))$ und damit gilt

 $(f, D(f)) \neq (1).$ П

3.50. Bemerkung

Wir definieren $a \mid (b) :\Leftrightarrow a \mid b$. Dies ist wohldefiniert, denn im Hauptidealring und Integritätsbereich ist das erzeugende Element eines Ideals bis auf Einheiten eindeutig bestimmt.

In Hauptidealringen gilt: (a, b) = (ggT(a, b)), denn $ggT(a, b) = c \Leftrightarrow (a, b) = (c)$.

3.51. Korollar

- 1. Sei $f \in k[X] \setminus k$ normiert und irreduzibel über k[X]. Dann gilt: f ist separabel $\Leftrightarrow D(f) \neq 0$.
- 2. $\operatorname{char}(k) = 0 \Rightarrow \operatorname{jedes} f \in k[X] \setminus k$ ist separabel.

 \Diamond

 \Diamond

BEWEIS.

- 1. \Rightarrow Sei D(f) = 0. Dann ist $(f, D(f)) = (f, 0) = (f) \neq (1)$, d.h. f ist nicht separabel.
 - \Leftarrow Sei $D(f) \neq 0$, dann $f \nmid D(f)$, da deg $f > \deg D(f)$. Dann (f, D(f)) = (1), da f bereits irreduzibel.
- 2. Falls $f \notin k$, dann ist $D(f) \neq 0$.

3.52. LEMMA

Sind $k \subseteq K$ eine Körpererweiterung und $f, g \in k[X]$.

Dann gilt: (f,g) = (1) in $k[X] \Leftrightarrow (f,g) = (1)$ in K[X].

BEWEIS.

- \Rightarrow Sei $h_1f + h_2g = 1$ für gewisse $h_1, h_2 \in k[X]$. Gäbe es ein $h \in K[X] \setminus K$ mit $h \mid f$ und $h \mid g$, dann auch $h \mid (h_1f + h_2g) = 1$, was unmöglich ist.
- \Leftarrow Sei $h \in k[X]$ mit $h \mid f$ und $h \mid g$ in k[X]. Dann gelten die Teilbarkeitsrelationen auch in K[X].

3.53. Definition

k heißt perfekt oder vollkommen, falls jedes $f \in k[X] \setminus k$ separabel ist.

3.54. Bemerkung

Insbesondere sind alle Körper k mit char(k) = 0 vollkommen.

3.55. LEMMA

Sei char(k) = p. Dann gilt $D(f) = 0 \Leftrightarrow \text{es gibt } g \in k[X] \text{ mit } f(X) = g(X^p)$.

BEWEIS.

- \Rightarrow Habe f die Darstellung $f(X) = a_0 + a_1 X + \dots + a_m X^m$. Falls $D(f) = a_1 + 2a_2 X + \dots + ma_m X^{m-1} = 0$, dann sind alle a_i mit $p \nmid i$ bereits 0. Also ist $f = a_0 + a_p X^p + a_{2p} (X^p)^2 + \dots + a_{lp} (X^p)^l$. Setze $g(X) := a_0 + a_p X + a_{2p} X^2 + \dots + a_{lp} X^l$, dann $f(X) = g(X^p)$.
- \Leftarrow Sei $f(X) = a_0 + a_1 X^p + \dots + a_n (X^p)^n$, dann $D(f) = a_1 p X^{p-1} + \dots + a_n n p X^{np-1} = 0$.

3.56. Beispiel

Seien $k = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ und $f(X) = 1 + X^2 + X^4$, dann $D(f) = 2X + 4X^3 = 0$.

3.57. SATZ

Gelte dim k = p, dann ist k vollkommen $\Leftrightarrow k = k^p = \{a^p \mid a \in k\}$.

Beweis.

- ⇒ Sei k vollkommen. Wir nehmen an, es gelte $k^p \subseteq k$, etwa $a \in k \setminus k^p$. Betrachte $f(X) = X^p a$. Es gilt $D(f) = pX^{p-1} = 0$, da char(k) = p. Außerdem ist f irreduzibel, denn sei f = gh mit irreduziblem g und K der Zerfällungskörper von g, dann hat g in K eine Nullstelle b, d.h. $f(b) = b^p a = 0$, also $a = b^p$ in K. Damit gilt $f(X) = X^p b^p = (X b)^p$ in K[X], da auch char(K) = p. Dann $g(X) = (X b)^m$ für ein $m \in \mathbb{N}$. Da g irreduzibel in k[X] und k vollkommen, folgt m = 1, also $g(X) = X b \in k[X]$. Also liegt k0 in k1 und damit k2 in k3, was im Widerspruch zur Annahme steht.
- \Leftarrow Seien φ_p der Epimorphismus $\varphi_p: k \to k, \ a \to a^p$ und $f \in k[X]$ irreduzibel. Wir zeigen: $D(f) \neq 0$.

WS 2006/2007 43 Martin Gubisch

 \Diamond

Wäre D(f) = 0, dann $f(X) = g(X^p)$, also

$$f(X) = a_0 + a_1 X^p + a_2 X^{2p} + \dots + a_n X^{np}$$

= $b_0^p + b_1^p X^p + b_2 (X^2)^p + \dots + b_n^p (X^n)^p$
= $(b_0 + b_1 X + \dots + b_n X^n)^p$,

d.h. f kann nicht reduzibel sein.

3.58. Beispiel

- 1. Sei k endlich, etwa dim k=p. Dann ist $\varphi_p: k \to k$, aa^p ist ein Homomorphismus, da $(a+b)^p=a^p+b^p$ und $(ab)^p=a^pb^p$. Außerdem ist φ_p injektiv und damit auch surjektiv, da k endlich ist, d.h. φ_p ist ein Isomorphismus, also $k=k^p$, d.h. jeder endliche Körper ist vollkommen.
- 2. $\mathbb{F}_p(X)$ ist nicht vollkommen, denn $k \supseteq k^p$, z.B. $X \neq (\frac{f}{g})^p$, sonst $g^pX = f^p$ und $p \mid \deg f^p$, $p \nmid \deg g^pX$, was nicht sein kann.

4 Galoistheorie

4.1 Die Galoisgruppe einer Erweiterung

4.1. DEFINITION

Sei $k \subseteq K$ eine Körpererweiterung.

$$Gal(K|k) := Aut(K,k) = \{\sigma : K \to K \mid \sigma \text{ ist Automorphismus mit } \forall a \in k : \sigma(a) = a\}$$

heißt die Galoisgruppe der Körpererweiterung K|k.

4.2. Bemerkung

Es gilt für alle $a, b \in k$ und alle $x, y \in K$:

$$\sigma(ax + by) = \sigma(a)\sigma(x) + \sigma(b)\sigma(y) = a\sigma(x) + b\sigma(y).$$

Damit gilt: Falls $\sigma \in \text{Gal}(K|k)$, dann $\sigma \in \text{Hom}(K,K)$, also ist σ durch seine Werte auf einer k-Basis von K schon eindeutig bestimmt.

4.3. Beispiel

- 1. Sei $\sigma:\mathbb{Q}\to\mathbb{Q}$ ein Automorphismus. Dann gilt: $\sigma=\mathrm{id}.$
- 2. Seien $K = \mathbb{Q}(\sqrt{2}) = \mathbb{Q} \oplus \mathbb{Q}\sqrt{2}$ und $k = \mathbb{Q}$, dann legt $\sigma(\sqrt{2}) := -\sqrt{2}$ schon $\sigma \in \text{Aut}(K, k)$ eindeutig fest.
- 3. Sei allgemeiner $K = k(\alpha) = k \oplus k\alpha$ mit $Irr(\alpha, k) = X^2 a$ für ein $a \in k$. Dann definiert $\sigma(\alpha) := -\alpha$ einen k-Automorphismus, denn $\alpha, -\alpha$ sind die Nullstellen von $X^2 a$. Ein solcher Automorphismus bildet Nullstellen auf Nullstellen ab:

$$0 = \sigma(0) = \sigma(\alpha^2 - a) = (\sigma(\alpha))^2 - \sigma(a) = (\sigma(\alpha))^2 - a$$

d.h. $\sigma(\alpha)$ ist eine Nullstelle von $X^2 - a$.

Dadurch erhalten wir das folgende Lemma:

4.4. LEMMA

Ist $K = k(\alpha)$ eine algebraische Erweiterung, dann ist |Gal(K|k)| gleich der Anzahl der verschiedenen Nullstellen von $Irr(\alpha, k)$ in K.

4.5. Beispiel

- 1. Seien $K = \mathbb{Q}(\sqrt[3]{2}), \ k = \mathbb{Q}$, also $\operatorname{Irr}(\sqrt[3]{2}, \mathbb{Q}) = X^3 2$. Dann $|\operatorname{Gal}(K|k)| = 1$, denn $X^3 2$ hat in \mathbb{R} nur eine Nullstelle.
- 2. Seien K endlich mit char(K) = p und $k = \mathbb{F}_p$. Dann gilt: $\sigma_p : K \to K, \ x \mapsto x^p \in \operatorname{Gal}(K|k)$.
- 3. Seien $\operatorname{char}(K) = p, \ a \in k \setminus k^p, \ z.B. \ k = \mathbb{F}_p(X), \ \operatorname{und} \ X^p a \in k[X] \ \operatorname{mit} \ \operatorname{Zerf\"{a}llungsk\"{o}rper} \ K.$ Dann gibt es ein $b \in K$ mit $b^p = a$, also $X^p a = X^p b^p = (X b)^p, \ \operatorname{d.h.} \ K = k(b) = k \oplus kb \oplus kb^2 \oplus \cdots \oplus kb^{p-1}.$ Sei $\sigma \in \operatorname{Gal}(K|k), \ \operatorname{dann} \ \operatorname{ist} \ \sigma(b) \ \operatorname{eine} \ \operatorname{Nullstelle} \ \operatorname{von} \ X^p a, \ \operatorname{d.h.} \ \sigma(b) = b, \ \operatorname{also} \ \operatorname{auch} \ \sigma(b^m) = (\sigma(b))^m = b^m, \ \operatorname{d.h.} \ \sigma = \operatorname{id.} \ \operatorname{Damit} \ \operatorname{folgt}: \ |\operatorname{Gal}(K|k)| = 1.$

4.6. Bemerkung

Seien k ein Körper, K|k die transzendente Körpererweiterung

$$K = k(t) = \left\{ \frac{a_0 + a_1t + \dots + a_nt^n}{b_0 + b_1t + \dots + b_mt^m} \mid n, m \in \mathbb{N}, \ a_i, b_i \in K, \text{ nicht alle } b_i = 0 \right\}$$

und $\sigma \in \operatorname{Aut}(K|k)$. Dann ist auch $\sigma(t) =: t^*$ transzendent über k, sonst gäbe es $c_0, ..., c_r \in k$ mit $c_0 + c_1 t^* + \cdots + c_r (t^*)^r = 0$ und durch Anwendung von σ^{-1} erhält man wegen $\sigma^{-1}(t^*) = t$, dass $c_0 + c_1 t + \cdots + c_r t^r = 0$ im Widerspruch zur Transzendenz von t über k. Es gilt

$$\sigma\left(\frac{a_0 + a_1t + \dots + a_nt^n}{b_0 + b_1t + \dots + b_mtm}\right) = \frac{a_0 + a_1t^* + \dots + a_n(t^*)^n}{b_0 + b_1t^* + \dots + b_m(t^*)^m}.$$

Also ist σ durch den Wert $\sigma(t) = t^*$ schon eindeutig festgelegt.

Ansatz: $t^* := \frac{at+b}{ct+d}$ mit $ad-bc \neq 0$ liefert einen Automorphismus: Betrachte die Möbiustransformation

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} =: \left(\begin{array}{cc} a^* & b^* \\ c^* & d^* \end{array}\right).$$

Dann liefert $\tau:=t^{**}:=\frac{a^*t+b^*}{c^*t+d^*}$ den zu σ inversen Automorphismus: $\tau(t^*)=t^{**}=t$.

Sei nun allgemein $t^* = \sigma(t) := \frac{f(t)}{g(t)}$ für geeignete $f,g \in k[t]$, die wir Œ als teilerfremd annehmen: (f,g) = (1). Setze $L := k(\sigma(t)) = k(t^*) \subseteq K = k(t)$, also K = L(t). Dann ist t algebraisch über L, denn $\operatorname{Irr}(t,L) \sim f(X) - t^*g(X)$ wegen $f(t) - t^*g(t) = 0$ nach Definition von t^* . Die Irreduzibilität erhält man so: Setze h(X,T) := f(X) - Tg(X). Dann ist $h(X,t^*)$ irreduzibel über L, denn f,g sind teilerfremd, also h irreduzibel in $k[X,t^*]$. Mit Gauß ist h dann irreduzibel in $k(t^*)[X]$, da h als Polynom in X primitiv ist. Mit $k(t^*) = L$ folgt die Irreduzibilität von h über L.

Also ist K = L(t) und es gilt $[K : L] = \deg h(X)$. Da σ Automorphismus, gilt $L = k(\sigma(t)) = K$, also [L : K] = 1, d.h. $\deg h(X) = \deg(f(X) - \sigma(t)g(X)) = 1$, also $\deg f \leq 1$, $\deg g \leq 1$. Damit ist

$$\operatorname{Aut}(k(t)|k) = \left\{ \sigma : k(t) \to k(t) \;\middle|\; \sigma(t) = \frac{at+b}{ct+d} \; \text{mit} \; a,b,c,d \in k, \; ad-bc \neq 0 \right\}.$$

4.7. LEMMA

Sei K der Zerfällungskörper von $f \in k[X]$. Dann gilt:

 $|Gal(K|k)| \leq [K:k]$, wobei Gleichheit erfüllt ist, falls f separabel ist.

BEWEIS.

Nach dem Fortsetzungssatz 3.36 ist die Anzahl der Isomorphismen $\Psi: K \to K$ mit $\Psi_{|k} = \mathrm{id}$ kleiner oder gleich dem Grad [K:k] der Körpererweiterung K|k und gleich [K:k], wenn f lauter verschiedene Nullstellen hat. Schreibe $f = p_1^{\nu_1} \cdots p_m^{\nu_m}$, alle p_i paarweise verschieden, irreduzibel und Œ normiert. Ist dann f separabel, dann sind alle p_i separabel, d.h. $g := p_1 \cdots p_m$ ist separabel, also hat g lauter verschiedene Nullstellen und K ist auch Zerfällungskörper von g, d.h. die Anzahl der Ψ ist m.

4.8. DEFINITION

Ist G eine Untergruppe von Aut(K), dann heißt

$$Fix(G) := \{ a \in K \mid \forall \sigma \in G : \sigma(a) = a \}$$

der Fixkörper von G.

4.9. Bemerkung

1. Fix(G) ist ein Körper: Seien $a, b \in Fix(G)$ und $\sigma \in G$, d.h. $\sigma(a) = a$ und $\sigma(b) = b$, dann auch

$$\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$$
 und $\sigma(ab) = \sigma(a)\sigma(b) = ab$,

also auch
$$\sigma(-a) = -\sigma(a) = -a$$
, $\sigma(a^{-1}) = \sigma(a)^{-1} = a^{-1}$ und $\sigma(0) = 0$, $\sigma(1) = 1$.

2. Sei $k \subseteq K$ eine Körpererweiterung. Dann gelten:

$$\begin{array}{lll} \text{Fix}: \{ \text{Untergruppen von } \text{Gal}(K|k) \} & \longrightarrow & \{ \text{Zwischenk\"{o}rper von } k \subseteq K \}; \\ \text{Gal}: \{ \text{Untergruppen von } \text{Gal}(K|k) \} & \longleftarrow & \{ \text{Zwischenk\"{o}rper von } k \subseteq K \}. \end{array}$$

- 3. Sei G < Gal(K|k), dann $Fix(G) \supseteq k$.
- 4. Gelte $k \subseteq L \subseteq K$, dann ist $Gal(K|L) \subseteq Gal(K|k)$, denn sei $\sigma \in Gal(K|L)$, dann ist $\sigma(l) = l$ für alle $l \in L$, also insbesondere $\sigma(a) = a$ für alle $a \in k$, d.h. $\sigma \in Gal(K|k)$.

4.10. Satz (Galoiskorrespondenz)

Für $G_1, G_2 < Gal(K|k), k \subseteq L_1, L_2 \subseteq K$ gelten:

- 1. Falls $G_1 \subseteq G_2$, dann $Fix(G_2) \subseteq Fix(G_1)$.
- 2. Falls $L_1 \subseteq L_2$, dann $Gal(K|L_2) \subseteq Gal(K|L_1)$.
- 3. $\operatorname{Fix}(\operatorname{Gal}(K|L_1)) \supseteq L_1$ und $\operatorname{Gal}(K|\operatorname{Fix}(G_1)) \supseteq G_1$.

BEWEIS.

- 1. Sei $a \in \text{Fix}(G_2)$. Dann ist $\sigma(a) = a$ für alle $\sigma \in G_2$, also insbesondere $\sigma(a) = a$ für alle $\sigma \in G_1$, d.h. $\sigma \in \text{Fix}(G_1)$.
- 2. Sei $\sigma \in \operatorname{Gal}(K|L_2)$. Dann gilt $\sigma(a) = a$ für alle $a \in L_2$, also insbesondere $\sigma(a) = a$ für alle $a \in L_1$, d.h. $\sigma \in \operatorname{Gal}(K|L_1)$.
- 3. Sei $l \in L_1$. Dann gilt $\sigma(l) = l$ für alle $\sigma \in \operatorname{Gal}(K|L_1)$, also $l \in \operatorname{Fix}(\operatorname{Gal}(K|L_1))$. Sei $\sigma \in G_1$. Dann gilt $\sigma(a) = a$ für alle $a \in k$, also $\sigma \in \operatorname{Gal}(K|\operatorname{Fix}(G_1))$.

4.11. LEMMA (Artin)

Seien K ein Körper und G eine Untergruppe von Aut(K). Dann gilt: $[K : Fix(G)] \leq |G|$.

BEWEIS.

Setze k := Fix(G), Œ n = |G| endlich. Seien $u_1, ..., u_m \in K$ mit m > n. Wir zeigen: $u_1, ..., u_m$ sind k-linear abhängig. Sei dazu $G = \{\text{id} = \sigma_1, ..., \sigma_n\}$. Betrachte das homogene lineare Gleichungssystem

$$\sigma_{1}(u_{1})X_{1} + \cdots + \sigma_{1}(u_{m})X_{m} = 0
\vdots & \vdots & \vdots & \ddots
\sigma_{n}(u_{1})X_{1} + \cdots + \sigma_{n}(u_{m})X_{m} = 0$$
(*)

Wir haben n Zeilen, m Unbestimmte und m > n, d.h. es gibt eine nicht-triviale Lösung $(a_1, ..., a_m) \in K^m$. Wir zeigen: $(a_1, ..., a_m) \in k^m$. Sei hierfür $(b_1, ..., b_m)$ eine nicht-triviale Lösung mit minimaler Anzahl

 $b_i \neq 0$, Œ $b_1 \neq 0$, sogar Œ $b_1 = 1$. Angenommen, $b_2 \notin k$, d.h. es gibt $\sigma_j \in G$ mit $\sigma_j(b_2) \neq b_2$. Dann gilt für alle $1 \leq i \leq n$:

$$0 = \sigma_j(0)$$

$$= \sigma_j(\sigma_i(u_1)b_1 + \dots + \sigma_i(u_m)b_m)$$

$$= \sigma_j \circ \sigma_i(u_1)\sigma_j(b_1) + \dots + \sigma_j \circ \sigma_i(u_m)\sigma_j(b_m).$$

Außderdem ist

$$G = \{\sigma_1, ..., \sigma_n\} = \{\sigma_i \circ \sigma_1, ..., \sigma_i \circ \sigma_n\},\$$

d.h. σ_j permutiert lediglich die Zeilen von (*). Also ist $(\sigma_j(b_1),...,\sigma_j(b_m))$ ebenfalls eine Lösung von (*) und damit auch $(b_1 - \sigma_j(b_1),...,b_m - \sigma_j(b_m))$. Nun gelten aber: $b_1 - \sigma_j(b_1) = 1 - 1 = 0$, $b_2 - \sigma_j(b_2) \neq 0$ und $b_i = 0$, d.h. $b_i - \sigma_j(b_i) = 0$ für alle $1 \leq i \leq n$, d.h. wir erhalten einen zusätzlichen Nulleintrag, aber nicht die triviale Lösung. Dies steht im Widerspruch zur Minimalität der Anzahl der $b_i \neq 0$.

4.2 Galoiserweiterungen & Hauptsatz der Galoistheorie

4.12. Definition

Sei $k \subseteq K$ algebraisch. K heißt separabel über k, falls Irr(a, k) separabel ist für alle $a \in K$.

K heißt normal über k, falls jedes irreduzible $f \in k[X]$ mit einer Nullstelle in K über K in Linear-faktoren zerfällt.

K|k heißt eine Galoiserweiterung, falls K der Zerfällungskörper eines separablen Polynoms $f \in k[X]$ ist.

4.13. Bemerkung

Ist k vollkommen und ist $K \supseteq k$ algebraisch, dann ist K|k separabel.

4.14. SATZ

Für $k \subseteq K$ sind äquivalent:

- 1. K|k ist eine Galoiserweiterung.
- 2. k = Fix(G) für eine gewisse endliche Untergruppe G von Gal(K|k).
- 3. K|k ist endlich dimensional, normal und separabel.

BEWEIS.

1. (1) \Rightarrow (2): Setze G = Gal(K|k) und L = Fix(G). Zu zeigen: k = L.

Es ist $k \subseteq L \subseteq K$ mit $f \in k[X]$ separabel und K der Zerfällungskörper von f über k. Also |G| = [K:k] nach Lemma 4.7 und f separabel über L, K Zerfällungskörper von f über L, d.h. $|\operatorname{Gal}(K|L)| = [K:L]$. Gleichzeitig ist $\operatorname{Gal}(K|L) \subseteq \operatorname{Gal}(K|k) = G$. Sei $\sigma \in G$. Dann $\sigma_L = \operatorname{id} \Rightarrow \sigma \in \operatorname{Gal}(K|L)$, d.h. $G = \operatorname{Gal}(K|L)$. Damit $[K:k] = [K:L] \Rightarrow k = L$. Wir haben also sogar gezeigt: $k = \operatorname{Fix}(\operatorname{Gal}(K|k))$.

2. (2) \Rightarrow (3): Sei k = Fix(G) mit G < Gal(K|k) und G endlich. Nach dem Lemma von Artin 4.11 ist $[K:k] \leq |G| < \infty$. Sei $f \in k[X]$ irreduzibel und normiert mit f(a) = 0 für ein $a \in K$. Zu zeigen: f zerfällt in K[X] in lauter verschiedene Linearfaktoren.

Betrachte dazu $\{\sigma(a) \mid \sigma \in G\} = \{a = a_1, ..., a_m\}$, wobei $a_1, ..., a_m$ die m verschiedene Nullstellen von f seien; insbesondere also $m \leq |G|$. Für $\varphi \in G$ gilt: $\{a_1, ..., a_m\} = \{\varphi(a_1), ..., \varphi(a_m)\}$. Wir definieren $g(X) = (X - a_1) \cdots (X - a_m) \in K[X]$. Die Koeffizienten von g sind invariant unter $\varphi \in G$, denn $\varphi(g) = (X - \varphi(a_1)) \cdots (X - \varphi(a_m)) = (X - a_1) \cdots (X - a_m)$, d.h. $g \in k[X]$, d.h. $g \mid f$ in k[X] und da beide normiert, folgt g = f. Also zerfällt f in K in lauter verschiedene Linearfaktoren.

3. (3) \Rightarrow (1): Sei K|k eine endliche Erweiterung, dann ist $K = k(a_1, ..., a_n)$ algebraisch. Sei $f_i = \text{Irr}(a_i, k)$. Da K|k separabel, zerfällt f_i in paarweise verschiedene Linearfaktoren in K und da K|k normal, ist $f := f_1 \cdots f_n$ separabel und K ist der Zerfällungskörper von f.

WS 2006/2007 47 Martin Gubisch

4.15. Korollar

Für Galoiserweiterungen gelten:

Fix \circ Gal = id auf den Zwischenkörpern $k \subseteq L \subseteq K$ und Gal \circ Fix = id auf den Untergruppen von Gal(K|k).

BEWEIS.

- 1. Wir haben eben gezeigt: $\operatorname{Fix}(\operatorname{Gal}(K|k)) = k$. Mit K|k ist auch K|L eine Galoiserweiterung, denn da K der Zerfällungskörper von $f \in k[X]$ ist, ist K auch der Zerfällungskörper von $f \in L[X]$. Also gilt auch $\operatorname{Fix}(\operatorname{Gal}(K|L)) = L$.
- 2. Seien G eine endliche Untergruppe von $\operatorname{Gal}(K|k)$ und $L := \operatorname{Fix}(G)$. Wir wissen, dass $G \subseteq \operatorname{Gal}(K|L)$ gilt, und wollen zeigen, dass $G = \operatorname{Gal}(K|L)$, wobei K|L eine Galoiserweiterung ist. Nach Lemma 4.7 ist $|\operatorname{Gal}(K|L)| \leq [K:L]$ und nach dem Lemma von Artin 4.11 gilt $[K:L] \leq |G|$. Wir erhalten also $|G| \leq |\operatorname{Gal}(K|L)| = [K:L] \leq |G|$, d.h. $G = \operatorname{Gal}(K|L)$.

$$K \iff \{\mathrm{id}\}$$

$$U \mapsto \bigcap$$

$$Fix(H) = L \iff H = Gal(K|L)$$

$$U \mapsto \bigcap$$

$$k \iff G$$

Also sind die Abbildungen Fix und $\operatorname{Gal}(K|\cdot)$ bijektiv und invers zueinander.

4.16. Satz (Hauptsatz der Galoistheorie)

Sei K|k eine Galoiserweiterung. Dann sind die Zuordnungen $\mathrm{Fix}(H)$ und $\mathrm{Gal}(K|L)$ zwischen Untergruppen H der Galoisgruppe $G=\mathrm{Gal}(K|k)$ und den Zwischenkörpern L von $k\subseteq K$ bijektiv und invers zueinander.

Weiter gelten:

- 1. $H_1 \supseteq H_2 \Leftrightarrow \operatorname{Fix}(H_1) \subseteq \operatorname{Fix}(H_2)$.
- 2. |H| = [K : Fix(H)] und [Fix(H) : k] = [G : H].
- 3. H ist Normalteiler von $G \Leftrightarrow \operatorname{Fix}(H)$ ist normal über k. In diesem Fall gilt: $\operatorname{Gal}(\operatorname{Fix}(H)|k) \cong G/H$.

BEWEIS.

1. Noch zu zeigen: $Fix(H_1) \subseteq Fix(H_2) \Rightarrow H_1 \supseteq H_2$. Es gilt

$$\operatorname{Fix}(H_1) \subseteq \operatorname{Fix}(H_2) \implies H_1 = \operatorname{Gal}(K|\operatorname{Fix}(H_1)) \supseteq \operatorname{Gal}(K|\operatorname{Fix}(H_2)) = H_2.$$

2. Setze L := Fix(H). Nach Lemma 4.7 gilt |H| = Gal(Fix(H)) = Gal(K|L) = [K : L], da K|L separabel ist. Weiter gilt nach dem Gradsatz:

$$[L:K] = \frac{[K:k]}{[K:L]} = \frac{|G|}{|H|} = [G:H].$$

3. a) Es gilt $\sigma(L) = \text{Fix}(\sigma H \sigma^{-1})$ für $\sigma \in \text{Gal}(K|k)$:

$$(\sigma\tau\sigma^{-1})(a)=a$$
 für alle $\tau\in H\Leftrightarrow (\tau\sigma^{-1})(a)=\sigma^{-1}(a)$ für alle $\tau\in H\Leftrightarrow \sigma^{-1}(a)\in \mathrm{Fix}(H)=L$ $\Leftrightarrow a\in\sigma(L).$

b) Es gilt
$$\sigma_1(L) = \sigma_2(L) \Leftrightarrow \sigma_1 H \sigma_1^{-1} = \sigma_2 H \sigma_2^{-1}$$
:
$$\sigma_1(L) = \sigma_2(L) \Leftrightarrow \operatorname{Fix}(\sigma_1 H \sigma_2^{-1})$$

$$\sigma_1(L) = \sigma_2(L) \Leftrightarrow \operatorname{Fix}(\sigma_1 H \sigma_1^{-1}) = \operatorname{Fix}(\sigma_2 H \sigma_2^{-1})$$
$$\Leftrightarrow \sigma_1 H \sigma_1^{-1} = \sigma_2 H \sigma_2^{-1}.$$

- c) Es gilt $H \triangleleft G \Leftrightarrow \sigma(L) = L$ für alle $\sigma \in G$.
- \Rightarrow Definiere res : $G \to \operatorname{Gal}(L|k)$ durch $\sigma \mapsto \sigma_{|L}$. res ist ein Gruppenhomomorphismus, denn es gilt $(\sigma \circ \tau)_{|L} = \sigma_{|L} \circ \tau_{|L}$. Setze $\overline{G} := \operatorname{Bild}(\operatorname{res})$. Dann ist \overline{G} eine Untergruppe von $\operatorname{Gal}(L|k)$. $k = \operatorname{Fix}(G) \Rightarrow k \subseteq \operatorname{Fix}(\overline{G})$, sogar $k = \operatorname{Fix}(\overline{G})$. Also ist (L|k) eine Galoiserweiterung und damit normal. Weiter gilt: $\operatorname{Kern}(\operatorname{res}) = H$, denn $\sigma_{|L} = \operatorname{id}$, d.h. $\sigma \in \operatorname{Gal}(K|L) = H$.
- \Leftarrow Sei L normal über k, d.h. L|k ist Galoisch, und sei $\sigma \in G$. Zu zeigen: $\sigma(L) = L$. L ist der Zerfällungskörper eines separablen Polynoms $f \in k[X]$, d.h. $f(X) = \prod (X - a_i)$ mit $L = k(a_1, ..., a_m)$. σ permutiert die a_i , d.h. $\sigma(L) \subseteq L$ und da $[L:k] < \infty$, folgt $\sigma(L) = L$.

 $\operatorname{Gal}(\operatorname{Fix}(H)|k) \cong G/H$ erhält man dann aus dem Homomorphiesatz, angewandt auf den Einschränkungshomomorphismus res.

4.3 Anwendungen der Galoistheorie

4.17. LEMMA

Seien K ein Körper und G eine endliche Untergruppe von K^{\times} . Dann ist G zyklisch.

BEWEIS.

Sei $a \in G$ mit $\operatorname{Ord}(a) = n$, wobei n das kleinste gemeinsame Vielfache der Ordnungen aller Elemente in G bezeichnet. Dann sind alle $b \in G$ Nullstellen von $X^n - 1$. Also ist $|G| \leq n$ und zugleich $\operatorname{Ord}(a) = n$, d.h. $|a^{\mathbb{Z}}| = n \leq |G|$, also $G = a^{\mathbb{Z}}$.

4.18. Satz (Satz vom primitiven Element)

Sei $K = k(a_1, ..., a_n)$ mit alle a_i algebraisch über k und $a_2, ..., a_n$ separabel über k. Dann gibt es ein primitives Element $\delta \in K$ mit $K = k(\delta)$, d.h. K|k ist einfach.

Beweis.

 \times betrachten wir den Fall n=2; der Rest folgt mit Induktion.

- 1. Ist k endlich, dann ist auch K endlich. Nach Lemma 4.17 sind endliche multiplikative Untergruppen von K stets zyklisch, also $K = k(a^{\mathbb{Z}}) = k(a)$.
- 2. Ist k unendlich, so betrachte $K = k(\alpha, \beta)$, α, β algebraisch, β separabel über k. Seien $f = \operatorname{Irr}(\alpha, k)$, $g = \operatorname{Irr}(\beta, k)$ und L der Zerfällungskörper von fg über K, d.h. L enthalte alle Nullstellen $\alpha = \alpha_1, ..., \alpha_n$ von f und $\beta = \beta_1, ..., \beta_m$ von g. Wähle $c \in k$, so dass $\alpha_i + c\beta_j \neq \alpha_1 + c\beta_1$ für alle $j \neq 1$ und alle i, d.h. $c \neq \frac{\alpha_1 \alpha_i}{\beta_j \beta_1}$ (dies ist möglich, da k unendlich ist). Setze $\delta := \alpha_1 + c\beta_1 = \alpha + c\beta$. Dann $k(\delta) \subseteq k(\alpha, \beta) = K$. Wir zeigen also noch: $k(\alpha, \beta) \subseteq k(\delta)$.

 β ist Nullstelle von g(X) und von $f(\delta - cX) =: f_1(X)$. Sei $\gamma \in L \setminus \{\beta\}$ eine Nullstelle von g, d.h. $\gamma = \beta_j$ für ein $j \neq 1$. Dann $\delta - c\gamma = \delta - c\beta_j \neq \alpha_i$ für alle i, also $f(\delta - c\gamma) = f_1(\gamma) \neq 0$. Da β separabel, folgt $X - \beta = \operatorname{ggT}(g, f_1)$ in f_1 und $g \in k(\delta)[X]$, also gibt es $\epsilon \in k(\delta)$ und $h_1, h_2 \in k(\delta)[X]$ mit $\epsilon(X - \beta) = h_1 f_1 + h_2 g$, d.h. $\epsilon(X - \beta) \in k(\delta)[X]$, also $\frac{\epsilon \beta}{\epsilon} = \beta \in k(\delta)$. Dann auch $\alpha = \delta - c\beta \in k(\delta)$, d.h. $k(\alpha, \beta) \subseteq k(\delta)$.

4.19. Korollar

Ist K|k endlich und separabel, dann ist die Körpererweiterung einfach.

Sind k vollkommen und K|k algebraisch, dann gilt: K|k ist endlich $\Leftrightarrow K|k$ ist einfach.

4.20. SATZ (Fundamentalsatz der Algebra)

Sei (R, \leq) ein reell abgeschlossener Körper, d.h. alle $x \geq 0$ seien Quadrate und jedes Polynom ungeraden Grades habe eine Nullstelle in R.

Dann ist $C := R(\sqrt{-1})$ algebraisch abgeschlossen. Speziell ist $\mathbb{C} := \mathbb{R}(\sqrt{-1})$ algebraisch abgeschlossen.

BEWEIS.

1. C ist quadratisch abgeschlossen: Definiere $i := \sqrt[4]{-1}$. Zu x + iy setze

$$w = \begin{cases} & \sqrt[+]{\frac{x + \sqrt[+]{x^2 + y^2}}{2}} + i \sqrt[+]{\frac{-x + \sqrt[+]{x^2 + y^2}}{2}}, & y \ge 0, \\ & \sqrt[+]{\frac{x + \sqrt[+]{x^2 + y^2}}{2}} - i \sqrt[+]{\frac{-x + \sqrt[+]{x^2 + y^2}}{2}}, & y < 0 \end{cases}.$$

Dann gilt $x + iy = w^2$.

2. Jedes Polynom vom Grad 2 zerfällt über C in Linearfaktoren: Sei $f = aX^2 + bX + c \in C[X]$. Dann ist

$$f(X) = a\left(X + \frac{b + \sqrt{b^2 - 4ac}}{2}\right)\left(X + \frac{b - \sqrt{b^2 - 4ac}}{2}\right) \in C[X],$$

denn nach 1. existiert $\sqrt{b^2 - 4ac}$ in C. Also hat C keine Erweiterung [K:C] vom Grad 2, sonst $K = C(\alpha)$ und es gäbe ein irreduzibles Polynom vom Grad 2, ein Widerspruch.

3. C hat keine endliche Erweiterung [k:C]: Angenommen, es gäbe eine endliche Erweiterung k|C mit $[k:C] \geq 2$. Seien $f = \operatorname{Irr}(\alpha,R)$ mit $k = R(\alpha)$ und K der Zerfällungskörper von f über k. Dann ist K|R eine echte Galoiserweiterung. $G := \operatorname{Gal}(K|R)$ ist endlich, denn |G| = [K:R], etwa $2^m n$, $2 \nmid n$. Sei U eine 2-Sylow-Untergruppe von G, also $|U| = 2^m$. Dann ist $[\operatorname{Fix}(U):R]$ ungerade. Sei $\operatorname{Fix}(U) = R(\beta)$, d.h. deg $\operatorname{Irr}(\beta,R) = n$. Da R reell abgeschlossen ist, folgt n = 1, d.h. $\operatorname{Fix}(U) = R$. Also ist $\operatorname{Gal}(K|R) = G$ eine 2-Gruppe.

 $H := \operatorname{Gal}(K|C)$ ist eine Untergruppe von G vom Index 2: $|H| = 2^{m-1}$. Ist m-1 > 0, so gibt es eine Untergruppe H_1 von H mit $|H_1| = 2^{m-2}$, also $[H:H_1] = 2 = [\operatorname{Fix}(H_1):\operatorname{Fix}(H)]$. Dies ist unmöglich, da C keine Erweiterung vom Grad 2 erlaubt. Also m-1=0, d.h. K=C.

4.21. DEFINITION

 $a \in K$ heißt n-te Einheitswurzel, falls $a^n = 1$, d.h. falls a Nullstelle von $X^n - 1$ ist.

Der Zerfällungskörper von X^n-1 über $\mathbb Q$ heißt der n-te Kreisteilungskörper.

 α heißt n-te primitive Einheitswurzel, falls $Ord(\alpha) = n$.

Sei $a \in K$. Dann heißt $X^n - a \in k[X]$ reines Polynom.

4.22. Bemerkung

Seien $\operatorname{char}(k)=0$ und K der Zerfällungskörper von X^n-1 über k. Da X^n-1 teilerfremd zu nX^{n-1} , hat X^n-1 n verschiedene Nullstellen $\alpha_1,...,\alpha_n$ in K. Die Menge aller Nullstellen von X^n-1 ist eine endliche Untergruppe von K^\times , also zyklisch nach Lemma 4.17. Damit ist $\{\alpha_1,...,\alpha_n\}=\{1,\alpha,...,\alpha^{n-1}\}=:U_n$ eine Gruppe.

4.23. SATZ

Seien $\operatorname{char}(k) = 0$ und K der Zerfällungskörper von $X^n - 1 \in k[X]$.

Dann ist Gal(K|k) abelsch.

BEWEIS.

Seien $K = k(\alpha)$, α eine primitive n-te Einheitswurzel und $\sigma \in \operatorname{Gal}(K|k)$. σ ist eindeutig bestimmt durch $\sigma(\alpha) = \alpha^m$ für ein $m \in \mathbb{Z}$, denn es gilt $\sigma(\alpha^l) = (\alpha^m)^l = \alpha^{ml}$. Also ist $\sigma_{|U_n} \in \operatorname{Aut}(U_n, \cdot)$ und $G = \operatorname{Gal}(K|k) \cong \{\sigma_{|U_n} \mid \sigma \in G\} < \operatorname{Aut}(U_n, \cdot)$. Es ist $(\mathbb{Z}_n, +) \cong (U_n, \cdot)$ mit $i \mapsto \alpha^i$; beachte dabei: $\alpha^i \alpha^j = \alpha^{i+j}$. Zu zeigen ist also: $\operatorname{Aut}(\mathbb{Z}_n, +)$ ist abelsch. Wir wissen: \mathbb{Z}_n^{\times} ist abelsch. Es genügt also zu zeigen, dass $\operatorname{Aut}(\mathbb{Z}_n, +) \cong \mathbb{Z}_n^{\times}$.

- 1. Sei $m \in \mathbb{Z}_n^{\times}$. Dann wird durch $\Psi : i \mapsto mi$ ein Automorphismus auf $(\mathbb{Z}, +)$ definiert: Für alle i, j gilt $\Psi(i+j) = m(i+j) = mi + mj = \Psi(i) + \Psi(j)$; da $m \neq 0$, gilt $\operatorname{Kern}(\Psi) = 0$, also Ψ injektiv, und mit $j \in (\mathbb{Z}_n, +) \Rightarrow j = m(m^{-1}j)$ folgt: Ψ ist surjektiv.
- 2. Sei $\tau: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ ein Automorphismus. Dann ist τ durch $\tau(1)$ festgelegt: Aus $\tau(1) = m$ folgt $\tau(i) = im, \ 0 \le i \le m$. Weiter gibt es für jede Einheit $m \in (\mathbb{Z}, +)$ einen Automorphismus $\tau: i \mapsto mi$, denn $\tau^{-1}(i) = im^{-1}$.
- 3. m_1m_2 induziert $i \mapsto (m_1m_2)i = m_1(m_2i) = (\tau_1 \circ \tau_2)(i)$.

4.24. SATZ

Seien $a \in k$, K der Zerfällungskörper von $X^n - a$ und $X^n - 1$ zerfalle in k, d.h. k enthält alle n-ten Einheitswurzeln.

Dann ist Gal(K|k) zyklisch.

BEWEIS.

Sei $U_n = \langle \alpha \rangle$, $|U_n| = n$ und $w \in K$ mit $w^n = a$, d.h. $(w\alpha^j)^n = a$ und $w\alpha^j$ $(0 \le j \le n-1)$ sind alle Nullstellen von $X^n - a$ und K = k(w) ist der Zerfällungskörper von $X^n - a$. Betrachte $\Psi : \operatorname{Gal}(K|k) \to U_n$ mit $\sigma \mapsto \beta \in U_n$, falls $\sigma(w) = \beta w$. Es gilt $\sigma \circ \tau \mapsto \beta_{\sigma \circ \tau} = \beta_{\sigma} \beta_{\tau}$, denn

$$\beta_{\sigma \circ \tau} w = (\sigma \circ \tau)(w) = \sigma(\tau(w)) = \sigma(\beta_{\tau} w) = \beta_{\tau} \sigma(w) = \beta_{\tau} \beta_{\sigma} w = \beta_{\sigma} \beta_{\tau} w,$$

da U_n zyklisch, also abelsch. Gilt $\beta_{\sigma}=1$ (d.h. liegt σ im Kern von Ψ), dann $\sigma(w)=\beta_{\sigma}w=w$, d.h. $\sigma=\mathrm{id}$. Also ist Ψ ein injektiver Homomorphismus, d.h. $\Psi(\mathrm{Gal}(K|k))$ ist eine Untergruppe von U_n , also zyklisch.

4.25. SATZ

Seien K|k eine Galoiserweiterung, $\operatorname{Gal}(K|k) \cong \mathbb{Z}_p$ mit p prim und k enthalte alle p-ten Einheitswurzeln. Dann gibt es ein $d \in K$ mit K = k(d) und $d^p = a \in k$.

BEWEIS.

Seien $\alpha \in k$ primitive p-te Einheitswurzel, $\langle \alpha \rangle = \{1, \alpha, \alpha^2, ..., \alpha^{p-1}\}$, $\operatorname{Gal}(K|k) = \langle \sigma \rangle = \{\operatorname{id}, \sigma, ..., \sigma^{p-1}\}$ und $c \in K \setminus k$ beliebig. Da [k(c):k] = p und $k \subseteq k(c) \subseteq K$, gilt dann K = k(c). Zu $\beta \in \langle \alpha \rangle$ definiere $(\beta, c) := c + \sigma(c)\beta + \sigma^2(c)\beta^2 + \cdots + \sigma^{p-1}(c)\beta^{p-1}$, die Lagrangesche Resolvente. Dann ist

$$\sigma((\beta,c))\beta = \sigma(c)\beta + \sigma^2(c)\beta^2 + \dots + \sigma^{p-1}(c)\beta^{p-1} + \sigma^p(c)\beta^p = (\beta,c);$$

beachte dabei: $\beta^p = (\alpha^i)^p = (\alpha^p)^i = 1$ für $0 \le i \le p-1$ und $\sigma^p(\beta) = \mathrm{id}(\beta) = \beta$. Wir erhalten $\sigma((\beta,c)) = (\beta,c)\beta^{-1}$, d.h. $\sigma((\beta,c)^p) = \sigma((\beta,c))^p\beta^{-p} = (\beta,c)^p$, folglich ist $(\beta,c)^p$ invariant unter σ und damit auch unter σ^2 , σ^3 , Also ist $\sigma \in \mathrm{Fix}(G) = k$. Setze $\beta_i := \alpha^i \in \langle \alpha \rangle$ für $0 \le i \le p-1$ und betrachte das inhomogene lineare Gleichungssystem

$$X_{1} + \beta_{0}X_{2} + \cdots + \beta_{0}^{p-1}X_{p} = (\beta_{0}, c)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$X_{1} + \beta_{p-1}X_{2} + \cdots + \beta_{p-1}^{p-1}X_{p} = (\beta_{p-1}, c)$$

$$(*)$$

Dieses wird gelöst von $(c, \sigma(c), ..., \sigma^{p-1}(c))$. Wir zeigen: Es gibt keine weiteren Lösungen. Dazu betrachten

wir die Van-der-Monde-Determinante

$$\det \begin{pmatrix} 1 & \beta_0 & \cdots & \beta_0^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & \beta_{p-1} & \cdots & \beta_{p-1}^{p-1} \end{pmatrix} = \prod_{i < j} (\beta_i - \beta_j) \neq 0.$$

Es können nicht alle (β_i, c) in k liegen, sonst läge auch c in k. Also gibt es ein i_0 mit $(\beta_{i_0}, c) \in K \setminus k$. Wir wählen $d := (\beta_{i_0}, c)$, dann gilt $d^p \in k$.

4.26. SATZ (Konstruktion regelmäßiger *p*-Ecke)

Sei p eine Fermat-Primzahl, d.h. $p \in \mathbb{N}$ prim mit $p = 2^s + 1$ für ein $s \in \mathbb{N}$.

Dann ist $\alpha := \exp(\frac{2\pi i}{p})$ mit Zirkel und Lineal konstruierbar.

Insbesondere sind das regelmäßige Fünfeck und das regelmäßige Siebzehneck konstruierbar.

BEWEIS.

 $K_p:=\mathbb{Q}(\alpha)$ ist der Zerfällungskörper von X^p-1 über $\mathbb{Q},\ K_p|\mathbb{Q}$ ist eine Galoiserweiterung und die zugehörige Galoisgruppe $G:=\mathrm{Gal}(K_p|\mathbb{Q})$ eine 2-Gruppe, denn $|G|=[K_p:\mathbb{Q}]=p-1=2^s$. Dann hat $G:=G_s$ eine Untergruppe G_{s-1} mit $|G_{s-1}|=2^{s-1}$, also $[G_s:G_{s-1}]=2$. Entsprechend gibt es $G_{s-2}< G_{s-1}$ mit $|G_{s-2}|=2^{s-2}$..., also hat G eine Kompositionsreihe

$$\{\mathrm{id}\}=G_0 \lhd G_1 \lhd G_2 \lhd \cdots \lhd G_{s-1} \lhd G_s = G.$$

Dann gilt auch für die zugehörigen Fixkörper

$$K_p = \text{Fix}(\{\text{id}\}) \supseteq L_1 \supseteq L_2 \supseteq \cdots \supseteq L_{s-1} \supseteq L_s = \mathbb{Q},$$

dass $[L_{s-1}:\mathbb{Q}]=2$ und $[L_{i-1}:L_i]=2$ für alle *i*. Nach Satz 3.24 ist α dann mit Zirkel und Lineal konstruierbar.

4.27. DEFINITION

Seien $\operatorname{char}(k) = 0$ und $f \in k[X] \setminus k$ normiert. Wir sagen, f = 0 ist (mit Radikalen) über k auflösbar, falls es eine Kette

$$k = K_1 \subseteq K_2 \subseteq \cdots \subseteq K_m = K$$

von Körpern gibt mit $K_{i+1} = K_i(d_i)$, $d_i^{n_i} = a_i \in K_i$ für ein $n_i \in \mathbb{N}$, so dass K den Zerfällungskörper von f über k umfasst.

4.28. Bemerkung

Setze $\sqrt[n_i]{a_i} := d_i$. Dann gilt: $K_{i+1} = K_i \left(\sqrt[n_i]{a_i}\right) = K_i \oplus K_i \sqrt[n_i]{a_i} \oplus \cdots \oplus K_i \sqrt[n_i]{a_i^{n_i-1}}$.

4.29. Satz (Auflösbarkeit in Radikale)

Seien $\operatorname{char}(k) = 0$ und $f \in k[X] \setminus k$ normiert. Dann gilt:

f(X) = 0 ist über k auflösbar \Leftrightarrow die Galoisgruppe des Zerfällungskörpers von f über k ist auflösbar.

BEWEIS.

 \Leftarrow Sei K der Zerfällungskörper von f über k, (f, f') = (1), d.h. f hat keine mehrfachen Nullstellen. Weiter seien $G = \operatorname{Gal}(K|k)$, n = |G| = [K:k], G auflösbar und α eine primitive n-te Einheitswurzel, d.h. $\alpha^{\mathbb{Z}}$ beinhaltet alle Nullstellen von $X^n - 1$. Gesucht ist eine Körperkette $k = K_1 \subseteq K_2 \subseteq \cdots \subseteq K_m$, $K \subseteq K_m$, mit $K_{i+1} = K_i (\sqrt[n_i]{d_i})$, $d_i \in K_i$, d.h. eine Radikalerweiterung.

Setze $K_1 = k$ und $K_2 = K_1(\alpha)$. Seien $a_1, ..., a_r$ alle Nullstellen von f in $K \setminus k$, also $K = k(a_1, ..., a_r)$ und [K : k] = r. $K(\alpha)|k(\alpha)$ ist eine Galoiserweiterung und $K(\alpha)$ ist der Zerfällungskörper von f über $k(\alpha)$. Zu $H := \operatorname{Gal}(K(\alpha)|k(\alpha))$ ist $\Phi : H \to G$, $\sigma \mapsto \sigma_{|K}$ injektiv, denn $\sigma_{|K} = \operatorname{id}$, d.h. $\sigma(a_i) = a_i$ für alle

i, also $\sigma=\mathrm{id}$. Φ definiert also einen Isomorphismus zwischen H und G, d.h. nach Homomorphiesatz: $H\cong U< G$. Da G auflösbar ist, ist auch H auflösbar. Nach Satz 1.51 gibt es eine Normalreihe $H=H_2\rhd H_3\rhd\cdots\rhd H_m=\{1\}$ mit H_j/H_{j+1} zyklisch von Primzahlordnung. Setze $K_i:=\mathrm{Fix}(H_i)$ für $2\leq i\leq m$. Dann $K_2\subseteq K_3\subseteq\cdots\subseteq K_m=K(\alpha)$ und wegen $H_i\rhd H_{i+1}$ ist K_{i+1} Galoisch über K_i und $\mathrm{Gal}(K_{i+1}|K_i)\cong H_i/H_{i+1}\cong \mathbb{Z}_{p_i}$ nach dem Hauptsatz der Galoistheorie.

Wegen $p_i := |H_i/H_{i+1}| = |H_i|/|H_{i+1}| | |H| | |G|$ liegt in K_i jede p_i -te Einheitswurzel, denn es gilt $1 = \alpha^n = \alpha^{p_i s} = (\alpha^{p_i})^s$, d.h. α ist eine p_i -te Einheitswurzel. Damit $K_{i+1} = K_i(\sqrt[p_i]{d_i})$ für ein $d_i \in K_i$ $(2 \le i \le m)$.

 \Rightarrow Seien $k = K_1 \subseteq K_1 \subseteq \cdots \subseteq K_m = K$ mit $K_{i+1} = K_i(d_i)$, $d_i^{n_i} = a_i \in K_i$ und $\mathrm{Zfk}(f,k) \subseteq K$. Wir suchen einen Oberkörper $L \supseteq K$, so dass L|k Galoisch ist und $\mathrm{Gal}(L|k)$ auflösbar ist, dann ist $\mathrm{Gal}(\mathrm{Zfk}(f,k)|k) \cong \mathrm{Gal}(L|k)/\mathrm{Gal}(L|\mathrm{Zfk}(f,k))$, also auflösbar.

Konstruktion von L: Betrachte

$$k = K_1 \subseteq K_2 = K_1(d_1) = k(d_1) \subseteq k(d_1, d_2) \subseteq \cdots \subseteq k(d_1, ..., d_{m-1}) = K,$$

d.h. $[K:k] < \infty$. Nach dem Satz vom primitiven Element 4.18 ist K = k(b) für ein $b \in K$. Setze $g = \operatorname{Irr}(b,k)$ und $K^* := \operatorname{Zfk}(g,k)$. Dann ist $K^*|k$ Galoisch. Setze $G^* := \operatorname{Gal}(K^*|k)$ mit $|G| < \infty$ und $G^* = \{\operatorname{id} = \sigma_1, ..., \sigma_r \mid r = [K^*:k]\}$.

Für $F := k(\sigma_1(K) \cup \cdots \cup \sigma_r(K))$ gilt $\sigma_i(F) = F$ für alle i = 1, ..., r, also ist F|k eine normale Galoiserweiterung. Œ setze $K^* = F$. Es gilt $F = k(\sigma_1(d_1), ..., \sigma_1(d_{m-1}), \sigma_2(d_1), ..., \sigma_r(d_{m-1}))$, denn $\sigma_i(K) = k(\sigma_i(d_1), ..., \sigma_i(d_{m-1}))$. Wir erhalten also eine Radikalerweiterungskette

$$k \subseteq k(\sigma_1(d_1)) \subseteq \cdots \subseteq M := k(\sigma_1(d_1), \dots, \sigma_r(d_{m-2})) \subseteq K^* \subseteq M(\sigma_r(d_{m-1})).$$

Seien nun $n = \text{kgV}\{n_i\}$ und $L = K^*(\alpha)$, α primitive n-te Einheitswurzel. Da $K^*|k$ Galoisch, ist K^* Zerfällungskörper eines separablen Polynoms $h \in k[X]$. h zerfällt auch in L und L ist Zerfällungskörper von $h(X)(X^n - 1) \in k[X]$, also ist auch L|k Galoisch. Noch zu zeigen: Gal(L|k) =: G ist auflösbar.

$$K^* - K^*(\alpha) = L \iff \{id\}$$

$$K_{m} \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_2 - K_2(\alpha) \iff G_2$$

$$k = K_1 - K_1(\alpha) \iff G_1$$

Wir brauchen eine Normalreihe $G \rhd G_1 \rhd G_2 \rhd \cdots \rhd \{1\}$. $k(\alpha)|k$ ist abelsch, außderdem Galoisch, denn $k(\alpha)$ ist Zerfällungskörper von $X^n-1 \in k[X]$. $K_2(\alpha)|K_1(\alpha)$ ist normal, da $K_2(\alpha)=K_1(\alpha)(\sqrt[nt]{d_1})$, und abelsch, da zyklisch; $X^{n_1}-\alpha_1 \in K_1(\alpha)[X]$ und $n_1 \mid n$, d.h. $K_1(\alpha)$ enthält die n_1 -te Einheitswurzel. Mit dem Hauptsatz der Galoistheorie folgt dann: $G \rhd G_1 \rhd \cdots \rhd G_i \rhd G_{i+1} \rhd \cdots \rhd \{\text{id}\}$ und weiter $G_i/G_{i+1} \cong \operatorname{Gal}(K_{i+1}(\alpha)|K_i(\alpha))$ abelsch.

4.30. Korollar

Sei char(k) = 0. Dann ist jede Gleichung vom Grad $n \le 4$ über k auflösbar.

BEWEIS.

Sei $n = \deg f \leq 4$, f habe Œ keine mehrfachen Nullstellen in k (sonst zerlege f in $f_1^{\nu_1} \cdots f_m^{\nu_m}$ mit alle $f_i \in k[X]$ irreduzibel und betrachte $f_1 \cdots f_m$; dieses Polynom hat dann keine mehrfachen Nullstellen) und K der Zerfällungskörper von f über k. Dann gilt $\operatorname{Gal}(K|k) \cong G$ für ein $G < S_n$: Zu $K = k(\alpha_1, ..., \alpha_n)$ mit $\alpha_1, ..., \alpha_n \in K$ Nullstellen von f, ist $\sigma \in \operatorname{Gal}(K|k)$ eindeutig bestimmt durch die Permutation $\sigma : \{\alpha_1, ..., \alpha_n\} \mapsto \{\alpha_1, ..., \alpha_n\}$. Da für $n \leq 4$ die S_n und alle ihre Untergruppen auflösbar sind, ist dann auch $\operatorname{Gal}(K|k)$ auflösbar.

4.31. Lemma

Seien p eine Primzahl und H eine Untergruppe von S_p . Für alle $i, j \in \{1, ..., p\}$ gebe es ein $\sigma \in H$ mit $\sigma(i) = j$. Weiter enthalte H eine Transposition.

Dann gilt $H = S_p$.

 \Diamond

BEWEIS.

 $i \sim j : \Leftrightarrow i = j$ oder $(i \ j) \in H$ definiert eine äquivalenz
relation auf $\{1,...,p\}$, dann $i \sim j \Leftrightarrow \sigma(i) \sim \sigma(j)$ für alle $\sigma \in H$ und alle $i,j \in \{1,...,p\}$:

- \Rightarrow Sei $i \sim j$. Trivialerweise gilt $i = j \Rightarrow \sigma(i) = \sigma(j)$. Ist $i \neq j$, dann $(i \ j) \in H$ und $\sigma(i) \neq \sigma(j)$, da σ bijektiv. Also auch $\sigma(i \ j)\sigma^{-1} = (\sigma(i), \sigma(j)) \in H$, d.h. in jedem Fall $\sigma(i) \sim \sigma(j)$.
- \Leftarrow Sei $\sigma(i) \sim \sigma(j)$. Ist $\sigma(i) = \sigma(j)$, dann auch i = j, da σ invertierbar. Sonst $\sigma^{-1}(\sigma(i)\sigma(j))\sigma = (i \ j) \in H$.

Betrachte nun die äquivalenzklasse $[i] = \{j \in \{1,...,p\} \mid j \sim i\}$. Wir zeigen, dass alle äquivalenzklassen die gleiche Anzahl an Elementen haben. Sei $j \in [i] \Leftrightarrow j \sim i \Leftrightarrow \sigma(j) \sim \sigma(i) \Leftrightarrow \sigma(j) \in [\sigma(i)]$, also $|[i]| = |[\sigma(i)]|$. Sei $i \in \{1,...,p\}$. Dann gibt es für jedes $k \in \{1,...,p\}$ ein $\sigma \in H$ mit $\sigma(i) = k$, d.h. alle äquivalenzklassen haben die gleiche Anzahl S an Elementen.

Nun wissen wir aber, dass äquivalenzklassen disjunkt sind, d.h. $[\cdot]_1 \cup \cdots \cup [\cdot]_l = \{1, ..., p\}$. Wegen $|[\cdot]_k| = S$ für alle $k \in \{1, ..., l\}$ folgt Sl = p, d.h. S = 1 oder S = p. S = 1 ist unmöglich, sonst gäbe es gar keine Transpositionen in H, was im Widerspruch zur Voraussetzung steht. Also ist S = p, d.h. alle Transpositionen aus S_p liegen in H und damit $S_p = H$, da jede Permutation Produkt aus Transpositionen ist.

4.32. SATZ

Seien p eine Primzahl und $f \in \mathbb{Z}[X]$ irreduzibel mit deg f = p und genau zwei nicht reellen Nullstellen. Dann gilt $\operatorname{Gal}(\operatorname{Zfk}(f,\mathbb{Q})|\mathbb{Q}) \cong S_p$.

BEWEIS.

Sei a eine Nullstelle von f. Dann ist $\overline{f(a)} = 0 = f(\overline{a})$, also hat der Automorphismus τ mit $\tau(a) = \overline{a}$ aus $G = \operatorname{Gal}(\operatorname{Zfk}(f,\mathbb{Q})|\mathbb{Q})$ die Ordnung 2. $G \cong H < S_p$; dabei entspricht τ eine Transposition in S_p . H operiert transitiv auf den Nullstellen $\alpha_1, ..., \alpha_n$ von f: f ist irreduzibel, also kann ein beliebiges α_i auf jedes α_j abgebildet werden. Nach Lemma 4.31 gilt $H = S_p$.

4.33. Bemerkung (Nicht-Auflösbarkeit von Gleichungen fünften Grades)

 $f = X^5 - 2X^4 + 2$ ist irreduzibel nach Eisenstein und besitzt genau zwei komplexe Nullstellen.

Da S_5 nicht auflösbar ist, ist auch f nicht auflösbar.

4.4 Galoisgruppe & symmetrische Gruppe

4.34. Definition

Seien k ein Körper, $R = k[X_1, ..., X_n]$ und $K = \text{Quot}(R) = k(X_1, ..., X_n)$. Dann heißen

$$\begin{split} s_0 &:= 1, \\ s_1 &:= X_1 + \dots + X_n, \\ s_2 &:= X_1 X_2 + \dots + \dots + X_{n-1} X_n, \ \dots, \\ s_n &:= X_1 \cdot X_2 \cdots X_n \end{split}$$

bzw. allgemein für $\nu = 0, ..., n$

$$s_{\nu} := \sum_{\substack{1 \leq i_1 \\ < \dots < i \\ i_n < n}} X_{i_1} \cdots X_{i_{\nu}}$$

die elementaren symmetrischen Funktionen in $X_1, ..., X_n$.

4.35. Bemerkung

Für $\sigma \in S_n$ definiert $\varphi_{\sigma}(X_i) := X_{\sigma_i}$ einen Automorphismus φ_{σ} auf $k(X_1, ..., X_n)$.

Martin Gubisch 54 WS 2006/2007

 \Diamond

4.36. SATZ

 $K|k(s_1,...,s_n)$ ist eine Galoiserweiterung und es gilt $Gal(K|k(s_1,...,s_n)) = \{\varphi_\sigma \mid \sigma \in S_n\} \cong S_n$.

BEWEIS.

Setze $L := Fix(G) \supseteq k(s_1, ..., s_n)$. Zu zeigen: $L = k(s_1, ..., s_n)$. Betrachte das Polynom

$$f(X) := (X - X_1) \cdots (X - X_n) \in K[X] = \sum_{i=0}^{n} (-1)^i s_i X^{n-i} \in k(s_1, ..., s_n)[X].$$

f ist irreduzibel über $k(s_1,...,s_n)$, da $G \cong S_n$ transitiv auf den Nullstellen von f operiert, und außerdem separabel. Es gilt

$$Zfk(f, k(s_1, ..., s_n)) = k(s_1, ..., s_n)(X_1, ..., X_n) = k(X_1, ..., X_n) = K$$

Wegen $n! \ge [K: k(s_1, ..., s_n)] \ge [K: L] = |G| = |S_n| = n!$ ist $[K: k(s_1, ..., s_n)] = [K: L]$, d.h. $L = k(s_1, ..., s_n)$.

4.37. DEFINITION

 $f \in K$ heißt symmetrische Funktion, falls $\varphi_{\sigma}(f) = f$ für alle $\sigma \in S_n$, d.h. falls $f \in \text{Fix}(G)$ mit $G = \{\varphi_{\sigma} \mid \sigma \in S_n\} \cong S_n$.

4.38. Bemerkung

Insbesondere gilt: Ist f symmetrisch, so ist $f \in k(s_1, ..., s_n)$.

4.39. Lemma

Die n! Monome $X_1^{\nu_1} \cdots X_n^{\nu_n}$ mit $0 \leq \nu_j \leq n-j$ bilden eine Modulbasis von $k[X_1,...,X_n]$ über $k[s_1,...,s_n]$, d.h. jedes $f \in k[X_1,...,X_n]$ hat eine eindeutige Darstellung

$$f = \sum_{\substack{1 \le j \le n \\ 0 \le \nu_j \le n - j}} p_{\nu_1, \dots, \nu_n} X_1^{\nu_1} \cdots X_n^{\nu_n}$$

mit $p_{\nu_1,...,\nu_n} \in k[s_1,...,s_n]$.

BEWEIS.

Es ist

$$(X - X_1) \cdots (X - X_n) = \sum_{i=0}^{n} (-1)^i s_i X^{n-i},$$

d.h. X_1 ist Nullstelle eines normierten Polynoms über $k[s_1,...,s_n]$ vom Grad n. Setze $s:=(s_1,...,s_n)$. Dann $X_1^n \in k[s]1+k[s]X_1+\cdots+k[s]X_1^{n-1}$, also sind X_1^{n+1} , X_1^{n+1} , ... $\in k[s]+k[s]X_1+\cdots+k[s]X_1^{n-1}$. X_2 ist Nullstelle von $(X_2)\cdots(X-X_n)\in k[s][X_1][X]$ und dieses Polynom ist normiert vom Grad n-1, d.h. X_2^{n-1} , X_2^n , X_2^{n+1} , ... $\in k[s,X_1]1+k[s,X_1]X_2+\cdots+k[s,X_1]X_2^{n-2}$. $k[s,X_1]\subseteq k[s]+k[s]X_1+\cdots+k[s]X_1^{n-1}$ u.s.w. ergibt: $k[s][X_1,...,X_n]$ wird als Modul über k[s] von folgenden $n(n-1)(n-2)\cdots 2=n!$ Monomen erzeugt:

$$X_1, \ldots, X_1^{n-1}, X_2, \ldots, X_2^{n-2}, X_1X_2, \ldots, X_1^{n-1}X_2^{n-2}, \ldots, \ldots$$

Dann wird der Körper $K = k(s)[X_1,...,X_n]$ über k(s) von diesen Polynomen erzeugt und da gilt $[k(s)[X_1,...,X_n]:k(s)]=n!$, sind diese linear unabhängig über k(s) bzw. k[s].

4.40. Bemerkung

k lässt sich auch durch einen beliebigen faktoriellen Ring ersetzen.

WS 2006/2007 55 Martin Gubisch

 \Diamond

4.41. SATZ

Jedes symmetrische Polynom ist ein Polynom in $s_1, ..., s_n$.

BEWEIS.

Sei $f \in k[X_1,...,X_n]$ symmetrisch. Dann ist $f \in k(s_1,...,s_n)$ und mit Lemma 4.39 folgt:

$$f = \sum p_{\nu_1, \dots, \nu_n} X_1^{\nu_1} \cdots X_n^{\nu_n}$$

mit $p_{\nu_1,...,\nu_n} \in k[s_1,...,s_n]$, d.h. $f = p_{0,...,0} \in k[s_1,...,s_n]$. Die Monome X^{ν} sind auch über $k(s_1,...,s_n)$ linear unabhängig.

4.42. Bemerkung

Die Galoisgruppe des Zerfällungskörpers von g über $k(s_1,...,s_n)$ ist die symmetrische Gruppe S_n . \diamond

5 Reelle Körper

5.1 Angeordnete Körper

5.1. Wiederholung

 \leq ist eine partielle Ordnung auf einer Menge A, falls für alle $a,b,c\in A$ gelten:

- 1. $a \leq a$,
- 2. $a \le b$ und $b \le c \Rightarrow a \le c$ und
- 3. $a \le b$ und $b \le a \Rightarrow a = b$.

 \leq heißt lineare Ordnung, falls zusätzlich für alle $a, b \in A$ gilt:

4. $a \leq b$ oder $b \leq a$.

Wir schreiben a < b für $a \le b$ und $a \ne b$.

5.2. Beispiel

 \subseteq als Mengeninklusion ist eine partielle Ordnung auf einer Menge von Mengen.

5.3. Definition

 (K, \leq) heißt angeordneter Körper, wenn K ein Körper ist und \leq eine lineare Ordnung auf K definiert mit

- 5. $a \le b \Rightarrow a + c \le b + c$ und
- 6. $0 \le a, b \Rightarrow 0 \le ab$ für alle $a, b \in K$.

5.4. Wiederholung

- 1. $a \le b \Leftrightarrow 0 \le b a$.
- 2. $0 \le a^2$, denn $0 \le a$ oder $a \le 0 \Leftrightarrow 0 \le a$ oder $0 \le -a$, also $0 \le aa = (-a)(-a) = a^2$.
- 3. Insbesondere ist 0 < 1.

5.5. Bemerkung

- 1. \mathbb{C} ist kein angeordneter Körper, denn wäre \leq eine Ordnung von \mathbb{C} , so $0 \leq i^2 = -1 \Rightarrow 1 \leq 0$.
- 2. $a \le b$ und $c \le d \Rightarrow a + c \le b + d$. $a \le b$ und $0 \le c \Rightarrow 0 \le bc ac \Leftrightarrow ac \le bc$.
- 3. $0 < a \Rightarrow 0 < a \frac{1}{a^2} = \frac{1}{a}$. Außerdem $0 < a < b \Rightarrow 0 < \frac{1}{b} < \frac{1}{a}$, denn $0 < b a \Rightarrow 0 < \frac{b a}{ab} = \frac{1}{a} \frac{1}{b} \Leftrightarrow \frac{1}{b} < \frac{1}{a}$.
- 4. $0 < ab \Leftrightarrow 0 < \frac{a}{b}$.

- 5. 0 < n für alle $n \in \mathbb{N}$, denn induktiv erhalten wir $0 < 1 = 1^2$ und $0 < n \Rightarrow 1 < n+1 \Rightarrow 0 < n+1$.
- 6. Insbesondere hat jeder angeordnete Körper K die Charakteristik 0, d.h. $\mathbb{Q} \subseteq K$.

5.6. Beispiel

- 1. (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind angeordnete Körper.
- 2. $\mathbb{Q}(\sqrt{2}) := \mathbb{Q}[X]/X^2 2 = \mathbb{Q} \oplus \mathbb{Q}\sqrt{2} = \mathbb{Q}(\overline{X})$. Betrachte den Automorphismus $\tau : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ mit $a + b\sqrt{2} \mapsto a b\sqrt{2}$ für $a, b \in \mathbb{Q}$ und die Einbettungen $\epsilon_1 : \mathbb{Q}(\sqrt{2}) \to \mathbb{R}$, $a + b\overline{X}a + b\sqrt{2}$ und $\epsilon_2 : \mathbb{Q}(\sqrt{2}) \to \mathbb{R}$, $a + b\overline{X} \mapsto a b_+\sqrt{2}$, d.h. $\epsilon_2 = \epsilon_1 \circ \tau$. Wir definieren \leq_1 und \leq_2 auf $\mathbb{Q}(\sqrt{2})$: Seien $\alpha, \beta \in \mathbb{Q}(\sqrt{2})$. Dann gelten:
 - a) $a \leq_1 b : \Leftrightarrow \epsilon_1(\alpha) \leq \epsilon_1(\beta)$ in \mathbb{R} , d.h. insbesondere $0 <_1 \overline{X}$.
 - b) $a \leq_2 b : \Leftrightarrow \epsilon_2(\alpha) \leq \epsilon_2(\beta)$ in \mathbb{R} , d.h. insbesondere $\overline{X} <_2 0$.

5.7. Definition

 (K, \leq) heißt archimedisch geordnet, falls es zu jedem $\alpha \in K$ ein $n \in \mathbb{N}$ gibt mit $\alpha \leq n$.

5.8. Bemerkung

 $\mathbb{R}(X)$ hat unendlich viele Anordnungen. Diese sind alle nicht-archimedisch.

5.9. Lemma

Ist (K, \leq) archimedisch geordnet, so liegt $\mathbb Q$ dicht in K, d.h. zu a < b gibt es stets ein $r \in \mathbb Q$ mit a < r < b.

BEWEIS.

Sei $a < b \Rightarrow 0 < b - a \Rightarrow 0 < \frac{1}{b-a} < m$ für ein $m \in \mathbb{N}$, da K archimedisch ist. Damit 1 < m(b-a), also ma < mb-1. Wähle $n \in \mathbb{Z}$ minimal mit $mb \le n+1$; dann $ma < mb-1 \le n < mb$, also $a < \frac{n}{m} < b$. \square

5.10. Definition

 (K, \leq) heißt schnittvollständig, falls für alle $U, O \subseteq K$ mit $U, O \neq \emptyset$ und $U \leq O$ (d.h. $u \leq o$ für alle $u \in U, o \in O$) ein $a \in K$ existiert mit $U \leq \{a\} \leq O$.

 $U \leq O$ heißt Dedekind-Schnitt, falls $U, O \neq \emptyset$, $U \leq O$ und $U \cup O = K$.

5.11. LEMMA

Jeder schnittvollständige Körper (K, \leq) ist archimedisch.

BEWEIS.

Gäbe es ein $a \in K$ mit $a > \mathbb{N}$, dann setze $U = \mathbb{N}$, $O = \{x \in K \mid x \geq \mathbb{N}\}$. Damit $U, O \neq \emptyset$ und $U \leq O$, also gibt es ein $x \in K$ mit $U \leq x \leq O$. Dann $\mathbb{N} \leq x \Rightarrow \mathbb{N} < x - 1$, also $x - 1 \in O$. Dann folgt aber $x \leq x - 1$, Widerspruch.

5.12. SATZ (Hölder)

Jeder archimedisch angeordnete Körper (K, \leq) lässt sich ordnungstreu in (\mathbb{R}, \leq) einbetten, d.h. es gibt einen Epimorphismus $\rho: K \to \mathbb{R}$ mit $\alpha \leq \beta \Rightarrow \rho(\alpha) \leq \rho(\beta)$ für alle $\alpha, \beta \in K$.

BEWEIS.

Definiere $\rho_{|\mathbb{Q}} = \text{id. Seien } a \in K, \ U_a := \{s \in \mathbb{Q} \mid s < a\} \text{ und } O_a := \{r \in \mathbb{Q} \mid a \leq r\}.$ Damit gilt WS 2006/2007

Martin Gubisch

 \Diamond

 $U_a \neq \emptyset, \ O_a \neq \emptyset$ und $U_a \cup O_a = \mathbb{Q}$. Betrachte nun $U_a, \ O_a$ in \mathbb{R} . Wähle $x \in \mathbb{R}$ mit $U_a \leq x \leq O_a$. Dann ist x eindeutig bestimmt, denn wäre $U_a \leq x' \leq O_a$, $\to x < x'$, dann wähle $t \in \mathbb{Q}$ mit x < t < x'. Aus t < x' folgt $t \in U_a$ und aus x < t folgt $t \in O_a$, was unmöglich ist, da die Mengen disjunkt sind. Setze $\rho(a) = x$. Dann gelten $\rho(a+b) = \rho(a) + \rho(b)$ und $\rho(ab) = \rho(a)\rho(b)$ und $\rho(ab) = \rho(a)\rho(b)$

5.13. Korollar

 (\mathbb{R}, \leq) ist bis auf Isomorphie der einzige schnittvollständige, angeordnete Körper.

Beweis.

Sei (K, \leq) schnittvollständig und damit auch archimedisch. Dann ist obiger Epimorphismus $\rho: K \to \mathbb{R}$ surjektiv.

5.14. Definition

Sei $T \subseteq K$. T heißt Präordnung oder Präpositivbereich, falls gelten:

- 1. $T + T \subseteq T$,
- 2. $T \cdot T \subseteq T$,
- 3. $K^2 \subseteq T$,
- 4. $-1 \notin T$.

T heißt Positivbereich, falls zusätzlich gilt:

5. $T \cup -T = K$.

5.15. Bemerkung

Ist T ein Positivbereich, so folgt 3. $K^2 \subseteq T$ schon aus den anderen Axiomen, denn $a \in T \Rightarrow a^2 = aa \in T$ und $a \notin T \Rightarrow -a \in T \Rightarrow a^2 = (-a)(-a) \in T$.

5.16. Beispiel

Sei \leq eine Anordnung auf K. Dann ist $P_{\leq} := \{a \in K \mid a \geq 0\}$ ein Positivbereich.

5.17. Bemerkung

Es gilt $P \cap -P = \{0\}$, denn gäbe es ein $x \in P \cap -P$, $x \neq 0$, dann $-1 = x(-x)(\frac{1}{x})^2 \in P$.

5.18. LEMMA

Sei $P \subseteq K$ ein Positivbereich. Dann definiert $a \le b : \Leftrightarrow b - a \in P$ eine Anordnung auf K.

BEWEIS.

- 1. $a \le a$ gilt, da $0 = 0^2 \in P$.
- 2. $a \le b$ und $b \le c \Rightarrow a \le c$ gilt, da $P + P \subseteq P$.
- 3. $a \le b$ und $b \le a \Rightarrow a = b$, denn $b a \in P$ und $-(b a) \in P \Rightarrow b a = 0 \Leftrightarrow b = a$.
- 4. Es gilt $a \leq b$ oder $b \leq a$, denn $P \cup -P = K$.
- 5. $a \le b \Rightarrow a + c \le b + c$ nach Definition von \le .
- 6. $0 \le a, b \Rightarrow 0 \le ab$ folgt aus $P \cdot P \subseteq P$.

5.19. Bemerkung

Wegen $P_{\leq_P} = P$ und $\leq_{P_{\leq}} = \leq$, entsprechen sich Anordnungsaxiome und Positivbereich bijektiv.

5.20. LEMMA

Seien $T \subseteq K$ eine Präordnung und $x \notin T$. Dann ist T' := T - xT eine Präordnung.

BEWEIS.

- 1. Es gilt $T' + T' \subseteq T'$, da T additiv abgeschlossen ist.
- 2. Es gilt $T' \cdot T' \subseteq T xT + x^2T \subseteq T xT = T'$.
- 3. Es gilt $K^2 \subseteq T'$, da bereits $K^2 \subseteq T$.
- 4. Falls $-1 = t_1 xt_2$, $t_1, t_2 \in T$ mit $t_2 \neq 0$, dann läge auch $x = (t_1 + 1)\frac{t_2}{t_2^2}$ in T.

5.21. LEMMA

Es gilt: T ist bzgl. \subseteq eine maximale Präordnung $\Leftrightarrow T$ ist ein Positivbereich.

BEWEIS.

- \Rightarrow Sei $x \not\in T.$ Dann $-x \in T xT \supseteq T$ und daT maximal, gilt $T = T xT \Rightarrow -x \in T.$
- \Leftarrow Wir nehmen an, dass $T \subsetneq T'$. Sei $x \in T' \setminus T$, dann $-x \in T \Rightarrow -x \in T'$, also $x \in T' \cap -\widetilde{T'}$. Dann gilt aber x = 0, was unmöglich ist, da $x \notin T$.

5.22. SATZ

Sei T eine Präordnung. Dann gilt:

$$T = \bigcap_{\substack{P \supseteq T \\ P \text{ Positivhereich}}} P$$

BEWEIS.

- \subseteq Klar nach Konstruktion.
- ⊇ Wir nehmen an, es gibt $x \in \bigcap \{P \supseteq T \mid P \text{ Positivbereich}\}$ mit $x \notin T$. $T' := T xT \supseteq T$ ist eine Präordnung. Mit Zorns Lemma wählen wir eine maximale Präordnung Q über T'. Dann ist Q ist ein Positivbereich mit $T \subseteq Q$. Weiter gilt $-x \in T' \subseteq Q$ und $x \in Q$. Also ist $x \in Q \cap -Q = \{0\}$, ein Widerspruch.

5.23. Bemerkung

Betrachte die Menge aller Quadratsummen über K,

$$\sum K^2 := \left\{ \sum_{i=1}^n a_i^2 \mid n \in \mathbb{N}, \ a_i \in K \right\}.$$

Es gilt

$$\sum K^2 + \sum K^2 \subseteq \sum K^2, \qquad \sum K^2 \cdot \sum K^2 \subseteq \sum K^2 \qquad \text{und} \qquad K^2 \subseteq \sum K^2.$$

Dies motiviert zu folgendem Lemma:

5.24. LEMMA

Es gilt: K besitzt eine Anordnung $\Leftrightarrow -1 \notin \sum K^2$.

BEWEIS.

- \Rightarrow Klar, da $\sum a^2 > 0$ für alle $a \in K$.
- \Leftarrow Sei $-1 \notin \sum K^2$, dann ist $\sum K^2$ eine Präordnung. Wähle mit Zorns Lemma eine maximale Präordnung P über $\sum K^2$. Dann ist P ein Positivbereich.

5.25. Definition

Ein Körper K heißt reeller Körper, wenn er eine Anordnung besitzt.

5.26. Bemerkung

- 1. Nach Lemma 5.24 wäre eine äquivalente Formulierung: $-1 \notin \sum K^2$.
- 2. Ist K reell, dann ist $\sum K^2$ in allen Präordnungen von K enthalten.

5.2 Fortsetzungen von Anordnungen

5.27. Wiederholung

Sei L|K eine Körpererweiterung. $(K, \leq_1) \subseteq (L, \leq_2)$: \Leftrightarrow für alle $a, b \in K$ gilt: $a \leq_1 b \Leftrightarrow a \leq_2 b$. äquivalente Formulierung: $(K, P_1) \subseteq (L, P_2)$: $\Leftrightarrow P_2 \cap K = P_1$.

5.28. LEMMA

Es sind äquivalent:

- 1. Ein Positivbereich P von K lässt sich auf L fortsetzen.
- 2. $T_L(P):=\left\{\sum_{i=1}^n p_i\beta_i^2\mid n\in\mathbb{N},\ p_i\in P,\ \beta_i\in L\right\}$ ist eine Präordnung von L.

BEWEIS.

- \Rightarrow Sei $(K, P) \subseteq (L, P')$, dann $T_L(P) + T_L(P) \subseteq T_L(P)$, $T_L(P) \cdot T_L(P) \subseteq T_L(P)$ und $L^2 \subseteq T_L(P)$. Weiter gilt $T_L(P) \subseteq P'$, denn alle Summanden liegen in P', also auch die ganze Summe. Wegen $-1 \notin P'$ liegt auch -1 nicht in $T_L(P)$.
- \Leftarrow Seien $T_L(P)$ eine Präordnung und $P'\supseteq T_L(P)$ Positivbereich von L. Dann ist $P'':=P'\cap K\supseteq P$ Positivbereich von K. Damit P=P'', da Positivbereiche maximale Präordnungen sind.

5.29. SATZ

Seien $L = K(\sqrt{a}), a \in K \setminus K^2$ und P ein Positivbereich von K. Dann gilt:

P hat eine Fortsetzung auf $L \Leftrightarrow a \in P$.

BEWEIS.

- \Rightarrow Sei $(K, P) \subseteq (L, P')$. Dann gilt für jedes $a \in L$, dass $a = (\sqrt{a})^2 \in P' \cap K = P$.
- \Leftarrow Sei $a \in P$. Wir zeigen: $-1 \notin T_L(P)$. Läge -1 in $T_L(P)$, d.h. $-1 = \sum a_i(x_i + y_i\sqrt{a})^2$ mit $a_i \in P$ und $x_i, y_i \in K$, dann $-1 = \sum a_ix_i^2 + a_iay_i^2 \in P$, ein Widerspruch. Nach Lemma 5.28 ist P damit fortsetzbar.

5.30. Beispiel

- 1. (\mathbb{Q}, \leq) lässt sich auf $\mathbb{Q}(\sqrt{2})$ fortsetzen.
- 2. (\mathbb{Q}, \leq) lässt sich nicht auf $\mathbb{Q}(\sqrt{-2})$ fortsetzen.

5.31. SATZ

Sei [L:K] = 2n + 1. Dann lässt sich jeder Positivbereich P von K auf L fortsetzen.

BEWEIS.

Angenommen, es gäbe ein Gegenbeispiel (L, K, P) von minimalem Grad. Nach dem Satz vom primitiven

Martin Gubisch 60 WS 2006/2007

Element 4.18 gilt: $L = K(\alpha) = K[X]/(f)$ mit $f = \text{Irr}(\alpha, K)$, deg f = 2n + 1. Nach Annahme liegt -1 in $T_L(P)$, d.h. es gibt $a_i \in P$ und $\gamma_i \in L$ mit $-1 = \sum a_i \gamma_i^2$ in K[X]/(f). Also gilt

$$1 + \sum_{i} a_i f_i^2 = fh \tag{*}$$

für gewisse $f_i, h \in K[X]$, Œ deg $f_i \leq 2n$. Die linke Seite von (*) hat geraden Grad (da Leitkoeffizienten von $a_i f_i^2$ aus P sind, können sich die Leitmonome nicht gegenseitig auslöschen) und dieser Grad beträgt höchstens 4n. Also hat h ungeraden Grad von höchstens 2n-1. Wähle einen irreduziblen Faktor h_1 von h mit ungeradem Grad. Sei β eine Nullstelle von h_1 . Dann ist $(K(\beta), K, P)$ ein Gegenbeispiel von echt kleinerem Grad als (K, L, P). Setzt man β in (*) ein, ergibt sich $1 + \sum a_i f_i^2(\beta) = 0$. Wegen $-1 \in T_{K(\beta)}(P)$ lässt sich P auf $K(\beta)$ nicht fortsetzen, ein Widerspruch.

5.32. SATZ

Jeder Positivbereich P von K lässt sich auf K(X) fortsetzen.

Reweis

X ist transzendent über K. Wir nehmen an, -1 liegt in $T_{K[X]}(P)$, d.h. $-1 = \sum_i a_i f_i^2$ für gewisse $f_i \in K[X]$. Schreibe $f_i = \frac{g_i}{h}$ mit $g_i, h \in K[X]$ und \times teile kein irreduzibler Faktor von h alle g_i , also $h^2 + \sum_i a_i g_i^2 = 0$. Einsetzen von 0 liefert $h^2(0) + \sum_i a_i g_i^2(0) = 0$ und alle Summanden liegen in P, also $0 = h(0) = g_i(0)$ für alle i. Damit $X \mid h$ und $X \mid g_i$ für alle i, ein Widerspruch.

5.3 Reell abgeschlossene Körper

5.33. Definition

Ein angeordneter Körper (K, \leq) heißt maximal angeordnet, falls sich \leq auf keine echte algebraische Erweiterung von K fortsetzen lässt.

Ein reeller Körper K heißt reell abgeschlossen, wenn er keine echte algebraische reelle Erweiterung besitzt.

5.34. Lemma

Ist (K, \leq) maximal angeordnet, so ist jedes nicht-negative Element von K ein Quadrat.

Insbesondere ist \leq die einzige Anordnung auf K.

Beweis.

Sei $a \in K$, $a \ge 0$. Angenommen, $a \notin K^2$. Dann ist $K(\sqrt{a})$ eine echte Erweiterung von K, auf die sich \le fortsetzen lässt, da $a \ge 0$, ein Widerspruch. Also ist $P_{\le} = K^2$. Ist Q nun ein weiterer Positivbereich von K, dann $P_{\le} \subseteq Q$ und damit $Q = P_{\le}$ wegen der Maximalität von P_{\le} .

5.35. Lemma

K ist reell abgeschlossen $\Leftrightarrow K$ besitzt genau eine Anordnung \leq und (K, \leq) ist maximal angeordnet.

BEWEIS.

- \Rightarrow Sei P ein Positivbereich von K. Dann ist (K, P) maximal angeordnet. Also ist nach Lemma 5.34 P die einzige Anordnung von K.
- \Leftarrow Hätte K eine echte algebraische reelle Erweiterung L, so hätte L eine Anodnung, welche die einzige Anordnung \leq von K fortsetzen würde, was im Widerspruch dazu steht, dass (K, \leq) bereits maximal angeordnet ist.

 \Diamond

5.36. SATZ (Artin & Schreier, 1926)

Es sind äquivalent:

- $1.\ K$ ist reell abgeschlossen.
- 2. K^2 ist Positivbereich von K und jedes $f \in K[X]$ von ungeradem Grad hat eine Nullstelle in K.
- 3. $K \neq K(\sqrt{-1})$ und $K(\sqrt{-1})$ ist algebraisch abgeschlossen.

BEWEIS.

- 1. (1) \Rightarrow (2): Ist K reell abgeschlossen, dann ist K^2 ein Positivbereich. Sei $p \in K[X]$ mit deg p ungerade. Zu zeigen: p hat eine Nullstelle in K. Œ sei p irreduzibel. Dann lässt sich $P = K^2$ auf K[X]/(p) fortsetzen. Wegen K[X]/(p) = K hat p eine Nullstelle in K.
- 2. (3) \Rightarrow (1): Wir zeigen $K^2 + K^2 = K^2$. Seien $a, b \in K$. Es gilt $a + b\sqrt{-1} = (x + y\sqrt{-1})^2$ für gewisse $x, y \in K$, d.h. $x^2 y^2 = a$ und 2xy = b. Also $a^2 + b^2 = x^4 2x^2y^2 + y^4 + 4x^2y^2 = (x^2 + y^2)^2 \in K^2$. Weiter gilt: $-1 \notin K^2$, also insbesondere $-1 \notin \sum K^2$, d.h. $\sum K^2$ bildet eine Präordnung. Damit gibt es auf K eine Anordnung, d.h. K ist reell.

Sei nun L eine algebraische Erweiterung von K. Da $K(\sqrt{-1})$ der algebraische Abschluss von K ist, gilt $K \subseteq L \subseteq K(\sqrt{-1})$. Aus $[K(\sqrt{-1}):K]=2$ folgt dann L=K oder $L=K(\sqrt{-1})$. Auf $K(\sqrt{-1})$ gibt es aber keine Anordnung.

3. (2) \Rightarrow (3): Dies ist der Fundamentalsatz der Algebra.

6 Übungsaufgaben

6.1 Aufgaben zur Gruppentheorie

6.1. Aufgabe

Seien G eine Gruppe und $Z(G) := \{a \in G \mid \forall x \in G : ax = xa\}$ ihr Zentrum. Man zeige:

- 1. Z(G) ist eine abelsche Untergruppe von G.
- 2. $Z(G) \triangleleft G$.
- 3. Ist G/Z(G) zyklisch, dann ist G abelsch.

6.2. Aufgabe

Seien G_1 , G_2 Gruppen, $H_1 < G_1$, $H_2 < G_2$ und $f: G_1 \to G_2$ ein Gruppenhomomorphismus. Man zeige oder widerlege:

1. $H_1 \triangleleft G_1 \Rightarrow f(H_1) \triangleleft G_2$.

2.
$$H_2 \triangleleft G_2 \Rightarrow f^{-1}(H_2) \triangleleft G_1$$
.

6.3. Aufgabe

Sei G eine endliche Gruppe. Man zeige:

- 1. Ist H eine p-Sylow-Untergruppe von G, dann gilt: $H \triangleleft G \Leftrightarrow H$ ist einzige p-Sylow-Untergruppe von G.
- 2. Gibt es Primzahlen p,q mit $pq^2=|G|$, so besitzt G eine p- oder eine q-Sylow-Untergruppe, die Normalteiler von G ist. \Diamond

6.4. Aufgabe

Seien G eine endliche Gruppe, H < G, p die kleinste Primzahl, die |G| teilt, und $X := \{gH \mid g \in G\}$ die Menge der Linksnebenklassen von H und es gelte |X| = p.

Man zeige: H ist ein Normalteiler von G.

6.5. Aufgabe

- 1. Man zeige, dass je zwei m-Zykel in S_n zueinander konjugiert sind.
- 2. Man bestimme die Anzahl der n-Zykel in S_n .

\Diamond

6.6. Aufgabe

Man zeige, dass (1 2) und (1 2 ··· n) die Gruppe S_n erzeugen.

6.7. Aufgabe

Seien p eine Primzahl und H eine Untergruppe von S_p . Für alle $i, j \in \{1, ..., p\}$ gebe es ein $\sigma \in H$ mit $\sigma(i) = j$. Weiter enthalte H eine Transposition.

Man zeige, dass $H = S_p$.

6.8. Aufgabe

Seien G eine Gruppe und $a \in G$.

- 1. Man zeige: Die Konjugation $\rho_a: G \to G, \ b \mapsto aba^{-1}$ ist ein Automorphismus.
- 2. Weiter gebe man sowohl für eine abelsche als auch für eine nicht-abelsche Gruppe einen Automorphismus an, der keine Konjugation ist.

6.9. Aufgabe

Seien G eine Gruppe, $N \triangleleft G$ und es gebe keine echte Zwischengruppe von N und G.

Man zeige, dass je zwei Untergruppen $H_1 \neq \{1\}$ und $H_2 \neq \{1\}$ von G mit $N \cap H_1 = N \cap H_2 = \{1\}$ isomorph zueinander sind.

6.10. AUFGABE

Die Diedergruppe D_n ist für jedes $n \geq 2$ auflösbar.

\Diamond

6.11. AUFGABE

Seien G eine endliche Gruppe, X eine endliche Menge und $\circ: G \times X \to X, \ (g,x) \mapsto g \circ x$ eine Gruppenoperation. Weiter bezeichnen $F(g) := |\{x \in X \mid gx = x\}|$ die Anzahl der Fixpunkte von g in X und s die Anzahl der Bahnen in X.

Man zeige: $s = \frac{1}{|G|} \sum_{g \in G} F(g)$.

6.12. Aufgabe

Seien G eine endliche Gruppe, H < G und es gelte $G = \bigcup_{g \in G} gHg^{-1}$. Man zeige, dass G = H.

6.13. Aufgabe

Jede Gruppe G der Ordnung 2^n3 hat einen Normalteiler vom Index 2 oder 3.

 \Diamond

6.14. AUFGABE

Man gebe eine Gruppe G und eine Gruppenoperation auf $\mathbb C$ an, deren Bahnen gerade die Mengen

$$B_r := \{ z \in \mathbb{C} \mid |z| = r \}$$

mit $r \in \mathbb{R}_0^+$ sind.

6.15. Aufgabe

Seien G eine Gruppe, X eine Menge und $G \times X \to X$, $(g, x) \mapsto gx$ eine Gruppenoperation.

- 1. Man zeige: Liegen $x_1, x_2 \in X$ in der selben Bahn (das heißt $Gx_1 = Gx_2$), so sind die zugehörigen Fixgruppen G_{x_1} und G_{x_2} zueinander konjugiert.
- 2. Weiter zeige man, dass die Umkehrung im Allgemeinen nicht gilt.

WS 2006/2007 63 Martin Gubisch

 \Diamond

 \Diamond

 \Diamond

 \Diamond

 \Diamond

6.2 Aufgaben zur Ringtheorie

6.16. Aufgabe

Sei R ein kommutativer Ring mit 1. Für Ideale I,J in R definiert man

$$I:J:=\{x\in R\mid \forall b\in J:bx\in I\}.$$

Man zeige:

- 1. I:J ist ein Ideal.
- 2. Für alle Ideale I, J, K in R gilt $(I:J): K = I: (J \cdot K)$.
- 3. Ist R ein Integritätsbereich und sind I, J und I + J Hauptideale in R, so ist auch I : J ein Hauptideal in R.

6.17. AUFGABE

Seien R ein kommutativer Ring mit 1 und $I_1, ..., I_n$ Ideale in R mit $I_i + I_j = R$ für alle $i, j \in \{1, ..., n\}$ mit $i \neq j$.

Dann gilt

$$I_1 \cap \cdots \cap I_n = I_1 \cdots I_n.$$

6.18. AUFGABE

Für jede Primzahl pbezeichne \mathbb{F}_p den Körper $\mathbb{Z}/(p).$ Man zeige:

- 1. $\mathbb{F}_2[X]/(X^3+X+1)$ ist ein Körper.
- 2. $\mathbb{F}_3[X]/(X^3+X+1)$ ist kein Körper.

6.19. Aufgabe

Gegeben sei $R := \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. Man zeige:

- 1. R ist ein Noetherscher Integritätsbereich.
- 2. 2 ist irreduzibel in R, aber nicht prim.
- 3. R ist nicht faktoriell.

6.20. Aufgabe

Seien R ein kommutativer Ring mit 1, $S \subseteq R$ eine multiplikative Menge, d.h. $1 \in S$ und $SS \subseteq S$, und I ein Ideal in R mit $I \cap S = \emptyset$. Man zeige:

- 1. Die Menge aller Ideale J in R mit $I \subseteq J$ und $J \cap S = \emptyset$ besitzt ein maximales Element.
- 2. Jedes solche maximale Element ist ein Primideal.

6.21. Aufgabe

Seien A ein kommutativer Ring mit 1, $\operatorname{Spec}(A) := \{I \subseteq A \mid I \text{ Primideal in } A\}$ und $K \subseteq \operatorname{Spec}(A)$ eine nicht-leere Kette in $\operatorname{Spec}(A)$.

Man zeige: $\bigcap K \in \text{Spec}(A)$, d.h. der Schnitt aller Primideale in K ist wieder ein Primideal.

6.22. Aufgabe

Seien A ein kommutativer Ring mit 1 und $p \in \text{Spec}(A)$.

Man zeige, dass $\operatorname{Spec}(A)$ dann ein minimales Element q besitzt mit $q \subseteq p$.

6.23. AUFGABE

Seien $B \subseteq A$ Ringe mit 1 und $q \in \operatorname{Spec}(A)$ minimal.

Man zeige, dass es ein $p \in \operatorname{Spec}(A)$ minimal gibt mit $p \cap B = q$.

Martin Gubisch 64 WS 2006/2007

 \Diamond

 \Diamond

 \Diamond

6.24. Aufgabe

Man untersuche die folgenden Polynome auf Irreduzibilität in $\mathbb{Q}[X]$:

1.
$$p_a := X^4 - 9X^3 - 6X + 3$$

2.
$$p_b := X^6 + X^3 + X + 1$$

3.
$$p_c := 2X^3 - 5X + 1$$

4.
$$p_d := X^4 + 1$$

5.
$$p_e := 2X^4 + 6X^3 - 54X^2 + 18X + 6$$
.

6.25. AUFGABE

Seien R ein kommutativer Ring mit 1, I, J Ideale in R und p ein Primideal in R.

Man zeige:
$$IJ \subseteq p \Rightarrow I \subseteq p$$
 oder $J \subseteq p$.

6.3 Aufgaben zur Körpertheorie

6.26. Aufgabe

Seien R ein faktorieller Integritätsbereich mit Quotientenkörper K, $f \in R[X]$ ein normiertes Polynom und $a \in K$ mit f(a) = 0.

Man zeige: $a \in R$. Weiter folgere man für $m, n \in \mathbb{N}$:

$$\sqrt[m]{n} \in \mathbb{N} \quad \iff \quad \sqrt[m]{n} \in \mathbb{Z}.$$

6.27. Aufgabe

Gesucht ist das Minimalpolynom von $\sqrt{2} + \sqrt{5}$ über \mathbb{Q} .

6.28. Aufgabe

Man zeige, dass es ein $a \in \mathbb{R}$ gibt mit $a^3 - a^2 + a + 2 = 0$, und bestimme das Minimalpolynom von a über \mathbb{Q} .

6.29. Aufgabe

Es sei $M \subseteq \mathbb{C}$ mit $0, 1 \in M$. Man zeige, dass Kon(M) ein Oberkörper von $\mathbb{Q}(M \cup \overline{M})$ ist.

6.30. Aufgabe

Sei $M \subseteq \mathbb{C}$ mit $0, 1 \in M$. Dann gilt: $a \in \text{Kon}(M) \Rightarrow \sqrt{a} \in \text{Kon}(M)$.

6.31. Aufgabe

Gesucht sind die Zerfällungskörper und deren Grade über $\mathbb Q$ von

1.
$$X - 18$$
,

2.
$$X^2 - 2$$
,

3.
$$X^4 + X^2 + 1$$
 und

4.
$$X^5 - 1$$
.

6.32. Aufgabe

Gegeben seien die Körper K und L sowie der Ring R. Es gelte $K \subseteq R \subseteq L$ und die Körpererweiterung L|K sei algebraisch.

Man zeige, dass dann auch R ein Körper ist.

 \Diamond

 \Diamond

 \Diamond

6.33. Aufgabe

Gegeben seien der Körper K und ein Polynom $f \in K[X]$ vom Grad $n \in \mathbb{N}_0$. L bezeichne den Zerfällungskörper von f über K. Man zeige: $[L:K] \mid n!$ (in \mathbb{Z}).

6.34. Aufgabe

Seien L|K eine Körpererweiterung, $a \in K$, $f := X^n - a \in K[X]$ irreduzibel in K[X] und $b \in L$ Nullstelle von f.

Man zeige, dass für alle $m \in \mathbb{Z}$ gilt:

$$[K(b^m):K] = \frac{n}{\operatorname{ggT}(m,n)}$$

6.35. AUFGABE

Seien L|K eine algebraische Körpererweiterung und jedes Polynom aus K[X] zerfalle über L.

Man zeige, dass L dann algebraisch abgeschlossen ist.

6.36. AUFGABE

Sei K ein endlicher Körper mit char(K) = p.

- 1. Man zeige: Es gibt ein $n \in \mathbb{N}$ mit $|K| = p^n$.
- 2. Weiter zeige man: Sind p prim, $n \in \mathbb{N}$ und $|K| = p^n$, dann ist K der Zerfällungskörper des Polynoms $X^{p^n} X \in \mathbb{F}_p[X]$ über \mathbb{F}_p .

6.37. Aufgabe

Gegeben seien nun ein primes p, ein $\in \mathbb{N}$, $q := X^{p^n} - X \in \mathbb{F}_p[X]$ und $L = \mathrm{Zfk}(q, \mathbb{F}_p)$.

Zu beweisen sind folgende Aussagen:

- 1. q hat nur einfache Nullstellen in L.
- 2. $K := \{a \in L \mid a^{p^n} = a\}$ ist ein Unterkörper von L.
- 3. L = K.

$$4. |K| = p^n.$$

6.38. Aufgabe

- 1. Man zeige: Zu jedem endlichen Körper K gibt es genau ein Paar $(p, n)\mathbb{N} \times \mathbb{N}$ mit p prim und $|K| = p^n$.
- 2. Weiter weise man nach, dass es zu jedem Paar $(p,n) \in \mathbb{N} \times \mathbb{N}$ mit p prim (bis auf Isomorphie) genau einen endlichen Körper K mit |K| = p gibt.

Dieser ist der Zerfällungskörper von $X^{p^n} - X \in \mathbb{F}_p[X]$ über \mathbb{F}_p .

6.39. Aufgabe

Seien L|K eine normale, algebraische Körpererweiterung, \overline{L} der algebraischer Abschluss von L. Seien $x,y\in L$.

Man zeige die äquivalenz folgender Aussagen:

- 1. x und y haben das selbe Minimalpolynom über K.
- 2. Es gibt einen Automorphismus der Körpererweiterung L|K, der x auf y abbildet.
- 3. Es gibt einen Automorphismus der Körpererweiterung $\overline{L}|K$, der x auf y abbildet.

6.40. Aufgabe

Seien K ein Körper und $f \in K[X]$ irreduzibel mit Zerfällungskörper L.

Man zeige, dass alle Nullstellen von f in L die selbe Vielfachheit haben.

 \Diamond

 \Diamond

 \Diamond

6.4 Aufgaben zur Galoistheorie

6.41. Aufgabe

Sei $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$.

- 1. Man bestimme $[K:\mathbb{Q}]$.
- 2. Warum ist $K|\mathbb{Q}$ eine Galoiserweiterung?
- 3. Man bestimme $|Gal(K|\mathbb{Q})|$.
- 4. Welche Gruppen der Ordnung 4 gibt es?
- 5. Wie viele Untergruppen hat \mathbb{Z}_4 ?
- 6. Man zeige: $Gal(K|\mathbb{Q}) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 7. Man gebe alle Zwischenkörper von $K|\mathbb{Q}$ an.
- 8. Man zeige: $\mathbb{Q}(\sqrt{2} + \sqrt{5}) = K$.

6.42. Aufgabe

Seien $f = X^3 + X^2 - 2X - 1 \in \mathbb{Q}[X]$ und K der Zerfällungskörper von f über \mathbb{Q} .

- 1. Man zeige: f ist irreduzibel in $\mathbb{Q}[X]$.
- 2. Man rechne nach, dass für alle $a \in K$ mit f(a) = 0 gilt: $f(a^2 2) = 0$ und $K = \mathbb{Q}(a)$.
- 3. Man bestimme $[K:\mathbb{Q}]$.
- 4. Man zeige: $Gal(K|\mathbb{Q}) \cong \mathbb{Z}_3$.

6.43. Aufgabe

Sei K = 0, 1, a, b ein Körper mit 4 Elementen. Man zeige:

- 1. char(K) = 2 (das heißt 1 + 1 = 0 in K).
- 2. Für alle $x \in K$ gilt $x^2 = 1 \Rightarrow x = 1$.
- 3. Weiter gebe man (ohne Begründung) eine Additions- und Multiplikationstabelle für K an.

6.44. Aufgabe

Seien K ein Körper mit $\operatorname{char}(K) \neq 2$ (d.h. $2 = 1 + 1 \neq 0$ in K) und die Körpererweiterung L|K vom Grad 2^n habe die Gestalt $L = K(\sqrt{a_1}, ..., \sqrt{a_n})$ mit $a_1, ..., a_n \in K$. Sei $x := \sqrt{a_1} + \cdots + \sqrt{a_n}$.

Man zeige:

- 1. L|K ist eine Galoiserweiterung.
- 2. Es gibt kein $\sigma \in \operatorname{Gal}(L|K(x))$ mit $\sigma \neq \operatorname{id}_L$.
- 3. L = K(x).

6.5 Aufgaben zur Theorie angeordneter Körper

6.45. Aufgabe

Seien (K, \leq) ein archimedisch angeordneter Körper, $U_a := \{r \in \mathbb{Q} \mid r < a\}, \ O_a := \{r \in \mathbb{Q} \mid a \leq r\}$ und $\rho : K \to \mathbb{R}$ eine Abbildung mit $U_a \leq \rho(a) \leq O_a$.

Man zeige:

- 1. ρ ist ein Ringhomomorphismus.
- 2. Für alle $a, b \in K$ gilt: $a \le b \Leftrightarrow \rho(a) \le \rho(b)$.
- 3. Ist (K, \leq) schnittvollständig, dann ist ρ ein Isomorphismus angeordneter Körper.

 \Diamond

6.46. Aufgabe

Seien K ein Körper und P ein Positivbereich von K. Man zeige:

- 1. $K^2 \subseteq P$ und $P \cap -P = \{0\}$.
- 2. Ist \subseteq eine Anordnung von K, dann ist $P_{\leq} := \{a \in K \mid a \geq 0\}$ ein Positivbereich von K.
- 3. Ist P ein Positivbereich von K, so wird durch $a \leq_P b :\Leftrightarrow b-a \in P \ (a,b \in K)$ eine Anordnung von K definiert.
- 4. Durch $\leq \mapsto P_{\leq}$ und $P \mapsto \leq_P$ werden zueinander inverse Bijektionen zwischen der Menge der Anordnungen von K und der Menge der Positivbereiche von K definiert. \Diamond

6.47. Aufgabe

Für ein Polynom $f \in \mathbb{R}[X]$ bezeichne $\mathrm{lc}(f)$ seinen Leitkoeffizienten.

1. Man zeige, dass

$$P := \left\{ \frac{f}{g} \;\middle|\; f,g \in \mathbb{R}[X], \; g \neq 0, \; f = 0 \text{ oder } \mathrm{lc}(fg) > 0 \right\} \subseteq \mathbb{R}(X)$$

ein Positivbereich von $\mathbb{R}(X)$ ist.

2. Weiter zeige man, dass seine zugehörige Anordnung \leq_P nicht archimedisch ist.

6.48. Aufgabe

Man zeige, dass der Körper

$$K:=\mathbb{Q}(X)(\sqrt{-(1+X^2)})$$

(X eine Unbestimmte) sich nicht anordnen lässt.

\mathbf{Index}

Abel, Satz von 4	Galois, Satz von	
abelsch4	Galoiserweiterung	47
abgeschlossen	Galoiskorrespondenz	46
algebraisch	Gauß, Lemma von	28
reell50, 61	Gauß, Satz von	29
Abschluss, algebraischer 40	Grad	
algebraisch32	einer Körpererweiterung	31
algebraische Zahl32	eines Polynoms	23, 24
Artin & Schreier, Satz von	totaler	24
Assoziation	Gradsatz	31
assoziativ4	Gruppe	4
Auflösbarkeit	<i>p</i>	8
von Gleichungen52	alternierende	15
von Gruppen	auslösbare	17
Auflösbarkeit in Radikale52	Automorphismen	13
Automorphismus	Dieder	14
Frobenius30	Einheiten	
	erzeugte	6
Bahn7	Fix	7
Bahnengleichung	Galois	44
Bild5	Isotropie	7
	Kleinsche Vierer	
Cardani, Formeln von	Kommutator	
Charakteristik30	kommutierende	12
Chinesischer Restsatz21	Permutations	14
Dodolind Cobnitt	Stabilitäts	
Dedekind-Schnitt	Sylow	
	zyklische	
Derivation, formale	Gruppenordnung	
Discretes, Konstruierbarkeitssatz voir50 Discretes, Konstruierbarkeitssatz voir57		
Differenziation, formale	Hauptsatz der Galoistheorie	47
Diskriminante	Hilbertscher Basissatz	23
distributiv	Homomorphiesatz	.5, 21
Division mit Rest	Homomorphismus	
Division fint rest	Einsetzungs	25, 32
Einbettung30	Gruppen	5
Einheitswurzel	Körper	30
Eisenstein-Kriterium	Restklassen	5
Element	Ring	21
Eins		
Prim	Ideal	
primitives32	erzeugtes	
separables	Haupt	
Epimorphismus5	maximales	26
Ergänzung, quadratische	Prim	26
	Index	4
Faktor	$\operatorname{Inhalt} \ldots \ldots \ldots \ldots \ldots$	27
Faktorisierungssatz25	Integritätsbereich	21
Fehlstand	Interpolationssatz	25
Feit-Thomson, Satz von	irreduzibel	26
Ferrari, Formel von4	Isomorphiesätze	5
Fortsetzungssatz39	Isomorphismus	5
Fundamentalsatz der Algebra50		
Funktion, symmetrische 54	Kern	,
• •	Klassengleichung	19
Galois, Nicht-Auflösbarkeitssatz 54	Koeffizient	23

Koeffizientenvergleich41	separables	42
kommutativ	Positivbereich	
Kommutator	Primzahl, Fermatsche	36
Kompositionsreihe52	Produkt	
Konjugation	direktes	11
konstruierbar35	semidirektes	13
Konstruktion regelmäßiger p -Ecke36, 52	Präordnung	58
Körper30	Präpositivbereich	58
angeordneter56		
archimedischer57	Quadratsumme	
erzeugter	Quadratur des Kreises	
Fix46	Quotientengruppe	5
Kreisteilungs50	D 10 1 1	
normaler47	Radikalerweiterung	
perfekter43	Ring	
Prim30	erzeugter	
Quotienten27	euklidischer	
reeller	faktorieller	
Schief21	Hauptideal	
schnittvollständig57	Polynom	
separabler	Quotienten	
vollkommener43	Restklassen	
Zerfällungs37	ZPE	$\dots 27$
Körper der algebraischen Zahlen34	Ringe	
Körpererweiterung	Noetherscher	$\dots 22$
algebraische	C-4	40
einfache	Satz vom primitiven Element	
transzendente	Signum	
	Sylowsatz	10
Lagrangesche Resolvente	Teilbarkeit	26
Lindemann, Satz von32	Teiler, größter gemeinsamer	
	Teilerkette	
Monom	transitiv	
Monomorphismus5	Transitivität	
multiplikative Menge	Transposition	
Möbiustransformation 45	transzendent	
	trivialer Kern	
Nebenklasse	VIIVI0101 110111 11111111111111111111111	
Normalisator	Unbestimmte	23
Normalreihe	Untergruppe	
Normalteiler4	unzerlegbar	
Nullstelle25	0	
Nullteiler21	Van-der-Monde-Determinante	
	Vertretersystem, vollständiges	7
Operation	Vielfaches, kleinstes gemeinsames	
Ordnung	Vielfachheit von Nullstellen	41
lineare56		
maximale	Wertefunktion, euklidische	
partielle	Winkeldreiteilung	$\dots 36$
Orndungstreue		
	Zentralisator	
Polynom	Zentrum	
homogenes24	Zerfallen von Polynomen	
Interpolations25	Zykel	15
irreduzibles		
Kreisteilungs29		
Minimal		
primitives		
reines50		