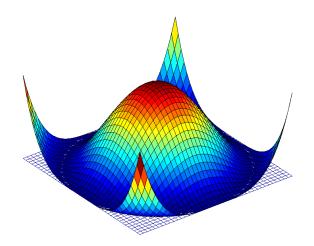
Skript zur Vorlesung

Differenzialgeometrie



gelesen von

Dr. M. Geißert

Martin Gubisch

Konstanz, Sommersemester 2009

Inhaltsverzeichnis

1	Kurventheorie		
	1.1	Regulär parametrisierte Kurven	3
	1.2	Ebene Kurven und deren Krümmung	6
	1.3	Der Umlaufsatz	9
	1.4	Konvexe Kurven	12
	1.5	Der Vierscheitelsatz	14
	1.6	Die isoperimetrische Ungleichung	15
	1.7		18
	1.8	Der Hauptsatz der Raumkurventheorie	22
	1.9		24
	1.10	Frenetkurven in höheren Dimensionen	26
2	Unt	ermannigfaltigkeiten des \mathbb{R}^n	28
	2.1		28
	2.2		32
	2.3		35
3	Erste und zweite Fundamentalform 36		
	3.1		36
	3.2		37
	3.3		38
	3.4		40
	3.5		42
	3.6	8	43
	3.7		45
	3.8		46
	3.9		18
4	Inne	ere Geometrie von Hyperflächen	52
	4.1	V I	52
	4.2	· ·	54
	4.3	•	55
	4.4		59
	4.5		31
	4.6		32
	4.7	<u> </u>	5 <u>2</u> 56
	4.8	* -	30 37
	4.9		38
	1.0	Transment Topologische maninghamighemen	,0

1 Kurventheorie

1.1 Regulär parametrisierte Kurven

DEFINITION 1.1

Sei $k \in \mathbb{N}$. Eine \mathcal{C}^k -Parametrisierung im \mathbb{R}^n ist eine Funktion $\gamma \in \mathcal{C}^k(I,\mathbb{R}^n)$, wobei $I = I(\gamma)$ ein Intervall. Das Bild $\gamma(I)$ heißt die Spur von γ ; $\dot{\gamma}(t)$ heißt der Tangential- oder Geschwindigkeitsvektor zur Stelle $t \in I$. Die Parametrisierung γ heißt $t \in I$.

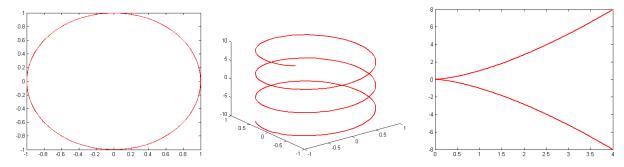
Beispiel 1.2

Folgende Abbildungen γ sind \mathcal{C}^{∞} -Parametrisierungen mit $I(\gamma) = \mathbb{R}$:

$$\gamma_1: t \mapsto x_0 + tv \ (x_0, v \in \mathbb{R}^n), \qquad \gamma_2: t \mapsto \begin{pmatrix} r\cos(t) \\ r\sin(t) \end{pmatrix} \ (r > 0); \qquad \gamma_3: t \mapsto \begin{pmatrix} r\cos(t) \\ r\sin(t) \\ ht \end{pmatrix}.$$

 $\operatorname{Spur}(\gamma_1)$ ist eine Gerade durch x_0 in Richtung v; $\operatorname{Spur}(\gamma_2)$ der Kreisrand mit Radius r um 0 und $\operatorname{Spur}(\gamma_3)$ eine "Schraubenlinie" ("Helix") mit Radius r und "Ganghöhe" h.

Die "Neilsche Parabel" $\gamma(t) := (t^2, t^3)$ ist dagegen keine reguläre Parametrisierung, da $\dot{\gamma}(0) = 0$.



Definition 1.3

Eine C^k -Parametertransformation ist eine Bijektin $\varphi: I \to J$ zwischen Intervallen $I, J \subseteq \mathbb{R}$ derart, dass φ, φ^{-1} beides C^k -Funktionen sind.

 φ heißt orientierungserhaltend, falls $\dot{\varphi} > 0$ auf I, und orientierungsumkehrend, falls $\dot{\varphi} < 0$ auf t.

KONVENTION 1.4

Ab jetzt seien alle Parametrisierungen regulär.

Definition 1.5

Seien γ_1, γ_2 zwei \mathcal{C}^k -Parametrisierungen, dann setzen wir

$$\gamma_1 \sim \gamma_2$$
 : \Leftrightarrow es gibt eine (orientierungserhaltende) \mathcal{C}^k -Parametertransformation $\varphi: I(\gamma_1) \to I(\gamma_2)$ mit $\gamma_1 = \gamma_2 \circ \varphi$.

Sowohl im allgemeinen als auch im orientierungserhaltenden Fall definiert \sim eine Äquivalenzrelation auf der Menge der \mathcal{C}^k -Parametrisierungen.

Die Äquivalenzklassen $\Gamma = [\gamma]$ heißen (orientierte) C^k -Kurven. γ heißt dann eine Parametrisierung von Γ. Wir sagen, Γ wird von γ erzeugt.

Wegen $\gamma_1 \sim \gamma_2 \Rightarrow \operatorname{Spur}(\gamma_1) = \operatorname{Spur}(\gamma_2)$ können wir $\operatorname{Spur}([\gamma]) := \operatorname{Spur}(\gamma)$ setzen.

Bemerkung 1.6

Seien $\Gamma_1 = [\gamma_1], \Gamma_2 = [\gamma_2]$ Kurven mit Spur $(\Gamma_1) = \text{Spur}(\Gamma_2)$. Dann muss nicht gelten $\Gamma_1 = \Gamma_2 \ (\Leftrightarrow \gamma_1 \sim \gamma_2)$: Beispielsweise erzeugen $\gamma_1 : [0, 2\pi] \to \mathbb{R}^2$ und $\gamma_2 : [0, 4\pi] \to \mathbb{R}^2$ mit $\gamma_1, \gamma_2 : t \mapsto (\cos(t), \sin(t))$ (einbzw. zweifacher Durchlauf des Kreisrandes) verschiedene Kurven Γ_1, Γ_2 .

Definition 1.7

Sei Γ eine \mathcal{C}^k -Kurve mit $\Gamma = [\gamma]$. Dann heißt γ eine Parametrisierung proportional zur Bogenlänge, falls $||\dot{\gamma}|| \equiv \text{konstant auf } I(\gamma)$, und Bogenlängenparametrisierung, falls $||\dot{\gamma}|| \equiv 1$ auf $I(\gamma)$.

SATZ 1.8

Sei $\Gamma = [\gamma]$ eine \mathcal{C}^k -Kurve, dann gibt es eine orientierungserhaltende \mathcal{C}^k -Parametertransformation φ derart, dass $\gamma \circ \varphi$ eine Parametrisierung nach der Bogenlänge ist.

BEWEIS

Wähle $t_0 \in I := I(\gamma)$ und setze $\psi(s) := \int_{t_0}^s ||\dot{\gamma}(\tau)|| d\tau$ $(s \in I)$. Dann ist $\psi \in \mathcal{C}^k(I, \mathbb{R})$ mit $\dot{\psi} = ||\dot{\gamma}|| > 0$, d.h. ψ ist streng monoton wachsend. Daher gibt es $\varphi := \psi^{-1} : J \to I$ $(J := \psi(I)), \ \varphi \in \mathcal{C}^k(J)$ und

$$\dot{\varphi}(t) = \frac{1}{\dot{\psi}(\varphi(t))} = \frac{1}{||\dot{\gamma}(\varphi(t))||} > 0, \qquad ||(\gamma \circ \varphi)\dot{}(t)|| = ||\dot{\gamma}(\varphi(t))\dot{\varphi}(t)|| = 1.$$

SATZ 1.9

Seien γ_1, γ_2 Parametrisierungen einer \mathcal{C}^k -Kurve Γ nach der Bogenlänge, dann gibt es ein $t_0 \in \mathbb{R}$ derart, dass für alle $t \in I(\gamma_1)$ entweder $\gamma_1(t) = \gamma_2(t+t_0)$ oder $\gamma_1(t) = \gamma_2(t_0-t)$ gilt.

Ist Γ orientiert, dann gilt $\gamma_1(t) = \gamma_2(t+t_0)$ für alle $t \in I(\gamma_1)$.

BEWEIS

Sei φ eine \mathcal{C}^k -Parametertransformation mit $\gamma_1 = \gamma_2 \circ \varphi$. Dann gilt

$$1 = ||\dot{\gamma}_1(t)|| = ||\dot{\gamma}_2(\varphi(t))\dot{\varphi}(t)|| = ||\dot{\gamma}_2(\varphi(t))|||\dot{\varphi}(t)| = |\dot{\varphi}(t)|,$$

d.h. $\varphi(t) = t_0 \pm t$ für ein $t_0 \in \mathbb{R}$ und $\varphi(t) = t_0 + t$, falls Γ orientiert ist.

Definition 1.10

Sei Γ eine \mathcal{C}^1 -Kurve mit Parametrisierung $\gamma:[a,b]\to\mathbb{R}^n$. Die Länge von Γ ist definiert als

$$L(\Gamma) := \int_a^b ||\dot{\gamma}(\tau)|| \, d\tau.$$

Bemerkung 1.11

 $L(\Gamma)$ ist wohldefiniert, d.h. invariant unter \sim : Sei $\varphi: [\alpha, \beta] \to [a, b]$ eine Parametertransformation, dann

$$\int_{\alpha}^{\beta} ||(\gamma \circ \varphi)\dot{}(\tau)|| \ d\tau = \int_{\alpha}^{\beta} ||\dot{\gamma}(\varphi(\tau))|||\dot{\varphi}(\tau)| \ d\tau \stackrel{\text{Subst.}}{=} \int_{a}^{b} ||\dot{\gamma}(\tau)|| \ d\tau.$$

Bemerkung 1.12

Sei $Z = \{t_0, ..., t_k\}$ eine Zerlegung von [a, b], d.h. $a = t_0 < t_1 < ... < t_{k-1} < t_k = b$. Setzen wir

$$L(\gamma, Z) := \sum_{i=1}^{k} ||\gamma(t_i) - \gamma(t_{i-1})||$$

(Länge des Polygonzuges zwischen den Punkten $\gamma(t_0), ..., \gamma(t_k)$), so gilt

$$L(\Gamma) = \sup\{L(\gamma, Z) \mid Z \text{ Zerlegung von } [a, b]\}.$$

Martin Gubisch 4 SS 2009

DEFINITION 1.13

Sei $\Gamma = [\gamma]$ eine \mathcal{C}^2 -Kurve. Definiere

$$ec{\varkappa}_{\gamma}(t) := rac{1}{||\dot{\gamma}(t)||^2} \ddot{\gamma}(t) - rac{\langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle}{||\dot{\gamma}(t)||^4} \dot{\gamma}(t),$$

dann heißt $\vec{\varkappa}_{\gamma}: I(\gamma) \to \mathbb{R}^n$ das Krümmungsvektorfeld von γ und $\vec{\varkappa}_{\Gamma}:= [\vec{\varkappa}_{\gamma}]$ das Krümmungsvektorfeld von Γ .

Bemerkung 1.14

 $\vec{\varkappa}_{\Gamma}$ ist wohldefiniert: Sei φ eine Parametertransformation, dann gilt

$$(\gamma \circ \varphi)\dot{}(t) = \dot{\gamma}(\varphi(t))\dot{\varphi}(t), \quad (\gamma \circ \varphi)\ddot{}(t) = \ddot{\gamma}(\varphi(t))\dot{\varphi}(t)^2 + \dot{\gamma}(\varphi(t))\ddot{\varphi}(t).$$

Einsetzen und Ausrechnen liefert $\vec{\varkappa}_{\gamma \circ \varphi} = \vec{\varkappa}_{\gamma} \circ \varphi$, d.h. $[\vec{\varkappa}_{\gamma \circ \varphi}] = [\vec{\varkappa}_{\gamma}]$.

SATZ 1.15

Sei $\Gamma = [\gamma]$ eine \mathcal{C}^2 -Kurve. Dann gelten:

- $(1) \ \forall t \in I(\gamma) : \vec{\varkappa}_{\gamma}(t) \bot \dot{\gamma}(t) \ (\Leftrightarrow \langle \vec{\varkappa}_{\gamma}(t), \dot{\gamma}(t) \rangle = 0).$
- (2) Ist γ eine Bogenlängenparametrisierung, dann $\vec{\varkappa}_{\gamma} = \ddot{\gamma}$.

BEWEIS

Sei zunächst γ eine beliebige Parametrisierung von Γ , dann gilt für alle $t \in I(\gamma)$:

$$\langle \vec{\varkappa}_{\gamma}(t), \dot{\gamma}(t) \rangle = \frac{1}{||\dot{\gamma}(t)||^2} \langle \ddot{\gamma}(t), \dot{\gamma}(t) \rangle - \frac{\langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle}{||\dot{\gamma}(t)||^4} \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle = 0.$$

Sei nun γ eine Bogenlängenparametrisierung von Γ , d.h. $||\dot{\gamma}|| = 1$, dann gilt für $t \in I(\gamma)$:

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} ||\dot{\gamma}(t)||^2 = \frac{\mathrm{d}}{\mathrm{d}t} \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle = 2 \langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle,$$

also
$$\vec{\varkappa}_{\gamma}(t) = \ddot{\gamma}(t) - \langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle \dot{\gamma}(t) = \ddot{\gamma}(t)$$
.

Bemerkung 1.16

Seien $f,g\in\mathcal{C}^1(I,\mathbb{R}^n)$ und $s:\mathbb{R}^n\times\mathbb{R}^n$ das Standardskalarprodukt, d.h. $s(x,y):=\langle x,y\rangle$ $(x,y\in\mathbb{R}^n)$. Dann gilt:

$$\forall t \in I : \frac{\mathrm{d}}{\mathrm{d}t} \langle f(t), g(t) \rangle = \langle g(t), \dot{f}(t) \rangle + \langle f(t), \dot{g}(t) \rangle.$$

Wegen $s(x,y) = \sum_{i=1}^{n} x_i y_i$ ist nämlich $(\nabla s)(x,y) = {y \choose x}$, d.h.

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle f(t),g(t)\rangle = \frac{\mathrm{d}}{\mathrm{d}t}[s\circ(f,g)](t) = \left([(\nabla s)(f,g)]\cdot\frac{\mathrm{d}}{\mathrm{d}t}(f,g)\right)(t) = \left(\frac{g(t)}{f(t)}\right)\left(\frac{\dot{f}(t)}{\dot{g}(t)}\right) = \langle g(t),\dot{f}(t)\rangle + \langle f(t),\dot{g}(t)\rangle.$$

Beispiel 1.17

Sei $\gamma: \mathbb{R} \to \mathbb{R}^2$, $\gamma(t) := r(\cos(t), \sin(t))$ (r > 0). Mit $\varphi(t) := \frac{t}{r}$ ist $\sigma := \gamma \circ \varphi$ eine Bogenlängenparametrisierung, d.h. für $t \in I(\gamma)$ gilt

$$\vec{\varkappa}_{\gamma}(t) = \vec{\varkappa}_{\sigma \circ \varphi^{-1}}(t) = (\vec{\varkappa}_{\sigma} \circ \varphi^{-1})(t) = \vec{\varkappa}_{\sigma}(rt) = \ddot{\sigma}(rt) = -\frac{1}{r} \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix} = -\frac{1}{r^2} \gamma(t).$$

Bemerkung 1.18

Seien $\gamma_1, \gamma_2 : I_{1,2} \to \mathbb{R}^n$ \mathcal{C}^1 -Parametrisierungen und $t_{1,2} \in I_{1,2}$ mit $\gamma_1(t_1) = \gamma_2(t_2)$. Dann gibt es genau ein $\alpha \in [-\pi, \pi)$ mit

$$\cos(\alpha) = \frac{\langle \dot{\gamma}_1(t_1), \dot{\gamma}_2(t_2) \rangle}{||\dot{\gamma}_1(t_1)|| \cdot ||\dot{\gamma}_2(t_2)||}.$$

 α heißt der *Schnittwinkel* von γ_1 und γ_2 in (t_1, t_2) .

Martin Gubisch 5 SS 2009

1.2 Ebene Kurven und deren Krümmung

Sprechweise 1.19

Ist γ eine Parametrisierung im \mathbb{R}^2 , so heißt γ ebene Parametrisierung und $\Gamma := [\gamma]$ eine ebene Kurve.

Definition 1.20

Sei $J: \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch $J(x_1, x_2) := (-x_2, x_1)$. Sei $\Gamma = [\gamma]$ eine orientierte, ebene \mathcal{C}^1 -Kurve. Definiere für $t \in I(\gamma)$

$$\vec{\nu}_{\gamma}(t) := \frac{1}{||\dot{\gamma}(t)||} J(\dot{\gamma}(t)),$$

dann heißt $\vec{\nu}_{\gamma}: I(\gamma) \to \mathbb{R}^2$ das positiv orientierte Einheitsnormalenfeld von γ und $\vec{\nu}_{\Gamma} := [\vec{\nu}_{\gamma}]$ das positiv orientierte Einheitsnormalenfeld von Γ .

Bemerkung 1.21

 $\vec{\nu}_{\Gamma}$ ist wohldefiniert: Sei φ eine Parametertransformation, dann gilt:

$$(\vec{\nu}_{\gamma \circ \varphi})(t) = \frac{J((\gamma \circ \varphi)\dot{}(t))}{||(\gamma \circ \varphi)\dot{}(t)||} = \frac{J(\dot{\gamma}(\varphi(t))\dot{\varphi}(t))}{||\dot{\gamma}(\varphi(t))\dot{\varphi}(t)||} = \frac{\dot{\varphi}(t)}{||\dot{\varphi}(t)||} \frac{J(\dot{\gamma}(\varphi(t)))}{||\dot{\gamma}(\varphi(t))||} = (\vec{\nu}_{\gamma} \circ \varphi)(t),$$

also $\vec{\nu}_{\gamma \circ \varphi} = \vec{\nu}_{\gamma} \circ \varphi$, d.h. $[\vec{\nu}_{\gamma \circ \varphi}] = [\vec{\nu}_{\gamma}]$.

Merke: Orientierung des Einheitsnormalenfeldes "in Fahrtrichtung links".

SATZ 1.22

Sei $\Gamma = [\gamma]$ eine positiv orientierte, ebene \mathcal{C}^1 -Kurve. Dann gilt für alle $t \in I(\gamma)$:

$$\langle \vec{\nu}_{\gamma}(t), \dot{\gamma}(t) \rangle = 0.$$

BEWEIS

Sei $t \in I(\gamma)$ beliebig, dann gilt

$$\langle \vec{\nu}_{\gamma}(t), \dot{\gamma}(t) \rangle = \frac{1}{||\dot{\gamma}(t)||} \langle J(\dot{\gamma}(t)), \dot{\gamma}(t) \rangle = \frac{1}{||\dot{\gamma}(t)||} \left\langle \begin{pmatrix} -\dot{\gamma}_{2}(t) \\ \dot{\gamma}_{1}(t) \end{pmatrix}, \begin{pmatrix} \dot{\gamma}_{1}(t) \\ \dot{\gamma}_{2}(t) \end{pmatrix} \right\rangle = 0.$$

Definition 1.23

Sei $\Gamma = [\gamma]$ eine orientierte, ebene \mathcal{C}^2 -Kurve. Für $t \in I(\gamma)$ definiere

$$\varkappa_{\gamma}(t) := \langle \vec{\varkappa}_{\gamma}(t), \vec{\nu}_{\gamma}(t) \rangle,$$

dann heißt \varkappa_{γ} die skalare Krümmung von γ und $\varkappa_{\Gamma}:=[\varkappa_{\gamma}]$ die skalare Krümmung von Γ .

Bemerkung 1.24

 \varkappa_{Γ} ist wohldefiniert: Sei φ eine Parametertransformation, dann gilt

$$\varkappa_{\gamma \circ \varphi}(t) = \langle \vec{\varkappa}_{\gamma \circ \varphi}(t), \vec{\nu}_{\gamma \circ \varphi}(t) \rangle = \langle (\vec{\varkappa}_{\gamma} \circ \varphi)(t), (\vec{\nu}_{\gamma} \circ \varphi)(t) \rangle = (\varkappa_{\gamma} \circ \varphi)(t),$$

d.h. $\varkappa_{\gamma \circ \varphi} = \varkappa_{\gamma} \circ \varphi$ und damit $[\varkappa_{\gamma \circ \varphi}] = [\varkappa_{\gamma}].$

 \varkappa_{γ} zeigt bei "Linkskurven" in, bei "Rechtskurven" entgegen des Einheitsnormalenfeldes.

Physikalisch: Nach dem Newtonschen Gesetz "Kraft = Masse × Beschleunigung" misst $\varkappa_{\gamma}(t)$ die (skalare Größe der) Kraft, die nötig ist, um einen mit Geschwindigkeit $||\dot{\gamma}(t)|| = 1$ bewegten Einheitsmassepunkt auf der nach der Bogenlänge parametrisierten Kurve $\Gamma = [\gamma]$ zu halten.

Korollar 1.25

Sei $\Gamma = [\gamma]$ eine orientierte, ebene \mathcal{C}^2 -Kurve. Dann gelten für alle $t \in I(\gamma)$:

(1)
$$\varkappa_{\gamma}(t) = \frac{1}{||\dot{\gamma}(t)||^2} \langle \ddot{\gamma}(t), \vec{\nu}_{\gamma}(t) \rangle;$$

(2)
$$\vec{\varkappa}_{\gamma}(t) = \varkappa_{\gamma}(t)\vec{\nu}_{\gamma}(t)$$
, insbesondere $|\varkappa_{\gamma}(t)| = ||\varkappa_{\gamma}(t)||$.

Beispiel 1.26

(1) Die Parametrisierungen $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{R}^2$ des Kreisrandes mit Radius r > 0,

$$\gamma_1(t) := r \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}, \qquad \gamma_2(t) = r \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$

sind unterschiedlich orientiert. Für die Einheitsnormalenfelder gelten

$$\vec{\nu}_{\gamma_1}(t) = J\begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} = -\frac{1}{r}\gamma_2(t), \qquad \vec{\nu}_{\gamma_2}(t) = J\begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix} = \frac{1}{r}\gamma_1(t).$$

(2) Betrachte für r>0 die Parametrisierung $\gamma:\mathbb{R}\to\mathbb{R}^2$ mit

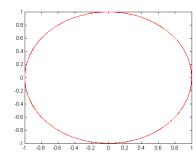
$$\gamma(t) := r \begin{pmatrix} \cos(t) \\ \cos(t) \sin(t) \end{pmatrix} \qquad \qquad \text{(Lemniskate)}.$$

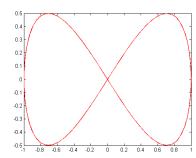
Dann ist $\dot{\gamma}(t) = \begin{pmatrix} -\sin(t) \\ \cos^2(t) - \sin^2(t) \end{pmatrix}$, d.h. $\vec{\nu}_{\gamma}(t) = \frac{1}{\sqrt{(\cos^2(t) - \sin^2(t))^2 + \sin^2(t)}} \begin{pmatrix} \sin^2(t) - \cos^2(t) \\ -\sin(t) \end{pmatrix}$. (3) Betrachte die Parametrisierung $\gamma : \mathbb{R} \to \mathbb{R}^2$ mit

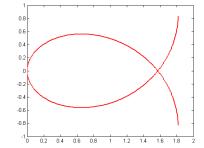
$$\gamma(t) := \begin{pmatrix} t \sin(t) \\ t \cos(t) \end{pmatrix}.$$

Dann ist $\dot{\gamma}(t) = \begin{pmatrix} \sin(t) + t \cos(t) \\ \cos(t) - t \sin(t) \end{pmatrix}$ für alle $t \in \mathbb{R}$, d.h.

$$\vec{\nu}_{\gamma}(t) = \frac{1}{\sqrt{1+t^2}} \begin{pmatrix} t \sin(t) - \cos(t) \\ \sin(t) + t \cos(t) \end{pmatrix}.$$







(4) Seien $u \in \mathcal{C}^2(I,\mathbb{R})$ und $\gamma_u(t) := (t, u(t))$ die *Graphenabbildung* von u, d.h. $\operatorname{Spur}(\gamma_u) = \operatorname{Graph}(u)$. Dann sind für $t \in I$

$$\dot{\gamma}(t) = \begin{pmatrix} 1 \\ \dot{u}(t) \end{pmatrix}, \qquad \vec{\nu}_{\gamma}(t) = \frac{1}{\sqrt{1 + \dot{u}(t)}} \begin{pmatrix} -\dot{u}(t) \\ 1 \end{pmatrix}, \qquad \ddot{\gamma}(t) = \begin{pmatrix} 0 \\ \ddot{u}(t) \end{pmatrix},$$

d.h.

$$\begin{split} \vec{\varkappa}_{\gamma}(t) &= \frac{1}{1 + \dot{u}(t)^2} \begin{pmatrix} 0 \\ \ddot{u}(t) \end{pmatrix} - \frac{\dot{u}(t) \ddot{u}(t)}{(1 + \dot{u}(t))^2} \begin{pmatrix} 1 \\ \dot{u}(t) \end{pmatrix}; \\ \varkappa_{\gamma}(t) &= \frac{\ddot{u}(t)}{(1 + \dot{u}(t)^2)^{3/2}} = \frac{1}{\sqrt{1 + \dot{u}(t)^2}} \frac{\mathrm{d}}{\mathrm{d}t} (\arctan(\dot{u}(t))). \end{split}$$

 $\arctan(\dot{u}(t))$ gibt dabei den Winkel zwischen der t-Achse und der Tangente an γ im Punkt $\gamma(t)$ an.

Martin Gubisch 7 SS 2009

LEMMA 1.27 (Frenet-Gleichungen)

Für eine ebene C^2 -Parametrisierung γ gelten

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} = ||\dot{\gamma}(t)||\varkappa_{\gamma}(t)\vec{\nu}_{\gamma}(t), \qquad \quad \frac{\mathrm{d}}{\mathrm{d}t}\vec{\nu}_{\gamma}(t) = -\varkappa_{\gamma}(t)\dot{\gamma}(t).$$

BEWEIS

Zur ersten Gleichung: Differenzieren nach Quotientenregel ergibt

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} = \frac{\ddot{\gamma}(t)||\dot{\gamma}(t)|| - \dot{\gamma}(t) \frac{2\langle\dot{\gamma}(t), \ddot{\gamma}(t)\rangle}{2||\dot{\gamma}(t)||}}{||\dot{\gamma}(t)||^2} = \frac{\ddot{\gamma}(t)}{||\dot{\gamma}(t)||} - \frac{\langle\dot{\gamma}(t), \ddot{\gamma}(t)\rangle\dot{\gamma}(t)}{||\dot{\gamma}(t)||^3} = ||\dot{\gamma}(t)||\vec{\varkappa}(t) = \varkappa||\dot{\gamma}(t)||\vec{\nu}(t).$$

Zur zweiten Gleichung: Es gilt $\langle \vec{\nu}, \vec{\nu} \rangle \equiv 1$, Differenzieren liefert also $\langle \vec{\nu}, \vec{\nu} \rangle = 0$. Also existiert $a \in \mathbb{R}$ mit $\vec{\nu} = a\dot{\gamma}$. Weiter ist $\langle \vec{\nu}, \dot{\gamma} \rangle \equiv 0$; Differenzieren ergibt $\langle \dot{\gamma}, \vec{\nu} \rangle + \langle \dot{\gamma}, \vec{\nu} \dot{\gamma} \rangle = 0$, also $a||\dot{\gamma}||^2 = -\langle \ddot{\gamma}, \vec{\nu} \rangle = -||\dot{\gamma}||^2 \varkappa$, d.h. $a = -\varkappa$ und damit $\vec{\nu} = -\varkappa \dot{\gamma}$.

Definition 1.28

Sei $\Gamma = [\gamma]$ eine ebene \mathcal{C}^2 -Kurve. Ist $t_0 \in I(\gamma)$ mit $\varkappa_{\gamma}(t_0) \neq 0$, dann heißt die Kurve $\Lambda = [\lambda]$ mit

$$\lambda(t) := \gamma(t_0) + \frac{\vec{\nu}_{\gamma}(t_0)}{\varkappa_{\gamma}(t_0)} + \frac{1}{|\varkappa_{\gamma}(t_0)|} \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

der Krümmungskreis von γ im Punkt t_0 .

Bemerkung 1.29

Sind γ eine Bogenlängenparametrisierung von Γ und σ eine Bogenlängenparametrisierung von Λ mit $\sigma(t_0) = \gamma(t_0)$ und $\dot{\sigma}(t_0) = \dot{\gamma}(t_0)$, so gilt auch $\ddot{\sigma}(t_0) = \ddot{\gamma}(t_0)$. In diesem Sinne ist der Krümmungskreis der einzige Kreis, der Γ im Punkt t_0 von mindestens zweiter Ordnung berührt.

Wir sprechen dann vom Krümmungskreis von Γ im Punkt t_0 .

Bemerkung 1.30

- (1) Die skalare Krümmung eines Kreises vom Radius r in Gegenuhrzeigerrichtung parametrisiert ist $\varkappa \equiv \frac{1}{r}$: Je kleiner der Radius, desto größer die Krümmung.
- (2) Seien γ eine Bogenlängenparametrisierung einer \mathcal{C}^2 -Kurve $\Gamma = [\gamma]$, $t_0 \in I(\gamma)$ mit $\varkappa_{\gamma}(t_0) \neq 0$ und λ eine Bogenlängenparametrisierung des Krümmungskreises $\Lambda = [\lambda]$ in t_0 mit Radius $r = r(t_0)$. Dann ist $|\kappa_{\gamma}(t_0)| = \frac{1}{r}$.
- (3) Die Kurve $E = [\vec{e}_{\gamma}]$ der Krümmungskreismittelpunkte wird parametrisiert durch

$$\vec{e}_{\gamma}(t) := \gamma(t) + \frac{\vec{\nu}_{\gamma}(t)}{\varkappa_{\gamma}(t)} \qquad \quad (t \in I(\gamma)).$$

Sie ist unabhängig von der gewählten Parametrierung γ und heißt *Evolute* von Γ . In unserem Fall ist γ Bogenlängenparametrisierung, d.h.

$$\vec{e}_{\gamma}(t_0) = \gamma(t_0) + \frac{\ddot{\gamma}(t_0)}{|\ddot{\gamma}(t_0)|^2} = \frac{\lambda(t_0)}{|\lambda(t_0)|^2}.$$

1 Kurventheorie 1.3 Der Umlaufsatz

1.3 Der Umlaufsatz

SATZ 1.31

Sei γ eine ebene \mathbb{C}^k -Parametrisierung $(k \geq 2)$. Dann gibt es ein $\alpha_{\gamma} \in \mathbb{C}^{k-1}(I, \mathbb{R})$ mit

$$\frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} = \begin{pmatrix} \cos(\alpha_{\gamma}(t)) \\ \sin(\alpha_{\gamma}(t)) \end{pmatrix} \qquad (t \in I(\gamma)).$$

Ist $\tilde{\alpha}_{\gamma}$ eine weitere solche Funktion, dann gibt es ein $l \in \mathbb{Z}$ mit $\alpha_{\gamma} - \tilde{\alpha}_{\gamma} \equiv 2\pi l$ auf $I(\gamma)$, d.h. α_{γ} ist bis auf ein Vielfaches von 2π eindeutig bestimmt.

Jedes solche α_{γ} heißt ein *Umlaufwinkel* von γ .

BEWEIS

Sei $t_0 \in I(\gamma)$ beliebig und dazu ein $\alpha(t_0)$ so gewählt, dass

$$\frac{\dot{\gamma}(t_0)}{||\dot{\gamma}(t_0)||} = \begin{pmatrix} \cos(\alpha(t_0)) \\ \sin(\alpha(t_0)) \end{pmatrix}.$$

Dann ist $\alpha(t_0)$ modulo $2\pi\mathbb{Z}$ eindeutig bestimmt. Definiere dazu

$$\alpha(t) := \alpha(t_0) + \int_{t_0}^t \varkappa(\tau) ||\dot{\gamma}(\tau)|| \, d\tau, \qquad v(t) := \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} - \begin{pmatrix} \cos(\alpha(t)) \\ \sin(\alpha(t)) \end{pmatrix}. \tag{*}$$

Dann sind v, α zwei C^{k-1} -Funktionen. Wir zeigen, dass $v \equiv 0$ ist. Differenzieren ergibt

$$\begin{split} \dot{v}(t) &= \frac{\ddot{\gamma}(t)}{||\dot{\gamma}(t)||} - \frac{\langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle \dot{\gamma}(t)}{||\dot{\gamma}(t)||^3} - \varkappa(t) ||\dot{\gamma}(t)|| \begin{pmatrix} -\sin(\alpha(t)) \\ \cos(\alpha(t)) \end{pmatrix} \\ &= ||\dot{\gamma}(t)|| \begin{pmatrix} \ddot{\varkappa}(t) - \varkappa(t) \begin{pmatrix} -\sin(\alpha(t)) \\ \cos(\alpha(t)) \end{pmatrix} \end{pmatrix} \\ &= \varkappa(t) ||\dot{\gamma}(t)|| \begin{pmatrix} \ddot{\nu}(t) - \begin{pmatrix} -\sin(\alpha(t)) \\ \cos(\alpha(t)) \end{pmatrix} \end{pmatrix} \\ &= \varkappa(t) ||\dot{\gamma}(t)|| \begin{pmatrix} \ddot{\nu}(t) - J \begin{pmatrix} \cos(\alpha(t)) \\ \sin(\alpha(t)) \end{pmatrix} \end{pmatrix}. \end{split}$$

Für $t \in I(\gamma)$ definiere $f(t) := \varkappa(t)||\dot{\gamma}(t)||$, dann $\dot{v}(t) = f(t)J(v(t))$.

Identifiziere $\mathbb{R}^2 \cong \mathbb{C}$, d.h. $(x_1, x_2) \leftrightarrow x_1 + ix_2$, insbesondere $J(x_1, x_2) = (-x_2, x_1) \leftrightarrow ix_1 - x_2 = i(x_1 + ix_2)$.

Wir erhalten $\dot{v}(t) = i f(t) v(t)$ und via Integration

$$v(t) = v(t_0) \exp\left(i \int_{t_0}^t f(\tau) d\tau\right) \stackrel{v(t_0) = 0}{\Longrightarrow} v(t) \equiv 0.$$

Definition 1.32

Eine Kurve Γ im \mathbb{R}^n heißt *geschlossen*, wenn sie eine periodische Parametrisierung $\gamma: \mathbb{R} \to \mathbb{R}^n$ besitzt.

 Γ heißt *einfach geschlossen*, falls γ zusätzlich injektiv ist auf einem (bzw. jedem) halboffenen Periodenintervall, d.h. ist L>0 die Periode von γ (insbesondere L minimal gewählt), dann ist γ injektiv auf jedem Intervall $[t_0,t_0+L)$ $(t_0\in\mathbb{R})$.

Seien $\Gamma = [\gamma]$ eine geschlossene, ebene, orientierte \mathcal{C}^2 -Kurve mit γ von der Periode $L(\gamma)$ und α_{γ} ein Umlaufwinkel von γ . Dann heißt

$$\chi(\Gamma) := \frac{1}{2\pi} \int_0^{L(\gamma)} \varkappa_{\gamma}(\tau) ||\dot{\gamma}(\tau)|| \, d\tau = \frac{1}{2\pi} (\alpha_{\gamma}(L(\gamma)) - \alpha_{\gamma}(0)) \in \mathbb{Z}$$
 (**)

die Umlaufzahl von Γ .

1 Kurventheorie 1.3 Der Umlaufsatz

Bemerkung 1.33

- (1) Nach Satz 1.31 ist der letzte Term von (**) unabhängig von der Wahl des Umlaufwinkels α .
- (2) Die Gleichheit in (**) ergibt sich aus der Wahl von α_{γ} in (*).
- (3) Da γ L-periodisch, ist $e^{i\alpha(0)} = \cos(\alpha(0)) + i\sin(\alpha(0)) = \cos(\alpha(L)) + i\sin(\alpha(L)) = e^{i\alpha(L)}$ und damit $\alpha(L) \alpha(0) \in 2\pi\mathbb{Z}$.
- (4) Bleibt die Unabhängigkeit von der Parametrisierung zu zeigen. Sei γ_0 eine Bogenlängenparametrisierung mit Periode L_0 . Nach Satz 1.9 ist jede andere periodische Bogenlängenparametrisierung γ_1 von der Form $\gamma_1(t) = \gamma_0(t+t_0)$ für ein $t_0 \in \mathbb{R}$, also $\varkappa_{\gamma_1}(t) = \varkappa_{\gamma_0}(t+t_0)$, d.h. $\chi([\gamma_0]) = \chi([\gamma_1])$.

Sei nun $L=L(\gamma)$ und dazu $\tilde{L}:=\int_a^{a+L}||\dot{\gamma}(\tau)||\ \mathrm{d}\tau\ (a\in\mathbb{R})$. Für $\psi(t):=\int_0^t||\dot{\gamma}(\tau)||\ \mathrm{d}\tau$ gilt dann

$$\forall t \in \mathbb{R} : \psi(t+L) = \int_0^t ||\dot{\gamma}(\tau)|| \, d\tau + \int_t^{t+L} ||\dot{\gamma}(\tau)|| \, d\tau = \psi(t) + \tilde{L}.$$

Für $\varphi := \psi^{-1}$ ist $\tilde{\gamma} := \gamma \circ \varphi$ eine Bogenlängenparametrisierung mit $\varphi(t + \tilde{L}) = \varphi(t) + L$ $(t \in \mathbb{R})$; insbesondere hat $\tilde{\gamma}$ die Periode \tilde{L} und dies ist dann auch die Periode für jede andere Parametrisierung nach der Bogenlänge. Weiter ist

$$\int_{0}^{L_{0}} \varkappa_{\gamma_{0}}(\tau) d\tau = \int_{0}^{\tilde{L}} \varkappa_{\tilde{\gamma}}(\tau) d\tau$$

$$= \int_{0}^{\tilde{L}} \varkappa_{\gamma}(\varphi(\tau)) ||(\gamma \circ \varphi) \dot{\tau}(\tau)|| d\tau$$

$$= \int_{0}^{\tilde{L}} \varkappa_{\gamma}(\varphi(\tau)) ||\dot{\gamma}(\varphi(\tau))|| \dot{\varphi}(\tau) d\tau$$

$$= \int_{\varphi(0)}^{\varphi(\tilde{L})} \varkappa_{\gamma}(\tau) ||\dot{\gamma}(\tau)|| d\tau$$

$$= \int_{0}^{L} \varkappa_{\gamma}(\tau) ||\dot{\gamma}(\tau)|| d\tau,$$

also ist die Umlaufzahl unabhängig vom Vertreter γ .

(5) Die Umlaufzahl misst die Anzahl der Drehungen des Tangentialvektors bei einem Durchlauf.

Beispiel 1.34

Die "Lemniskate" $\Gamma = [\gamma]$ mit

$$\gamma(t) := \begin{pmatrix} \sin(t) \\ \sin(2t) \end{pmatrix} \qquad (t \in \mathbb{R})$$

hat die Umlaufzahl $\chi(\Gamma) = 0$: Γ ist 2π -periodisch und es gilt $\gamma(t+\pi) = P(\gamma(t))$ mit $P(x_1, x_2) = (-x_1, x_2)$ (d.h. JP = -PJ) für alle $(x_1, x_2) \in \mathbb{R}^2$. Damit sind $\vec{\varkappa}(t+\pi) = P(\vec{\varkappa}(t))$ und $\vec{\nu}(t+\pi) = -P(\vec{\nu}(t))$, d.h. $\varkappa(t+\pi) = -\varkappa(t)$. Damit ist

$$\chi(\Gamma) = \int_0^{2\pi} \varkappa(\tau) ||\dot{\gamma}(\tau)|| \, d\tau = -\int_0^{2\pi} \varkappa(\tau + \pi) ||\dot{\gamma}(\tau + \pi)|| \, d\tau = -\int_{\pi}^{3\pi} \varkappa(\tau) ||\dot{\gamma}(\tau)|| \, d\tau = -\chi(\Gamma),$$

also $\chi(\Gamma) = 0$.

THEOREM 1.35 (Liftungslemma)

Seien $M \subseteq \mathbb{R}^n$ sternförmig bzgl. x_0 und $e: M \to \mathbb{S}^1 := \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ eine stetige Funktion.

Dann existiert ein stetiges $\alpha: M \to \mathbb{R}$ mit

$$\forall x \in M : e(x) = \begin{pmatrix} \cos(\alpha(x)) \\ \sin(\alpha(x)) \end{pmatrix} = e^{i\alpha(x)}.$$

 α ist durch die Vorgabe $\alpha(x_0) := \alpha_0$ eindeutig festgelegt.

1 Kurventheorie 1.3 Der Umlaufsatz

SATZ 1.36 (Umlaufsatz)

Sei Γ eine orientierte, ebene, einfach geschlossene \mathcal{C}^2 -Kurve. Dann ist $|\chi(\Gamma)| = 1$.

BEWEIS

(1) Wähle eine Bogenlängenparametrisierung γ von Γ derart, dass $\gamma_1(0) = \max\{\gamma_1(t) \mid t \in [0, L]\}$. Dann ist $\dot{\gamma}(0) = \pm(0, 1)$ und der Halbstrahl $\sigma: (0, \infty) \to \mathbb{R}^2, \ \sigma(s) := \gamma(0) + s(1, 0) \ (s > 0)$ enthält keinen weiteren Punkt von Spur(Γ).

(2) Sei $M = \{(t_1, t_2) \in \mathbb{R}^2 \mid 0 \le t_1 \le t_2 \le L\}$. Definiere $e: M \to \mathbb{S}^1$ durch

$$e(t_1, t_2) := \begin{cases} \dot{\gamma}(t) & t_1 = t = t_2 \\ -\dot{\gamma}(0) & (t_1, t_2) = (0, L) \\ \frac{\gamma(t_2) - \gamma(t_1)}{||\gamma(t_2) - \gamma(t_1)||} & \text{sonst} \end{cases}$$

Dann ist e wohldefiniert und stetig. Nach dem Liftungslemma gibt es dann ein stetiges $\alpha:M\to\mathbb{R}$ mit

$$e(t_1, t_2) = \begin{pmatrix} \cos(\alpha(t_1, t_2)) \\ \sin(\alpha(t_1, t_2)) \end{pmatrix}.$$

Wegen $e(t,t) = \dot{\gamma}(t)$ und $||\dot{\gamma}|| = 1$, folgt aus Satz 1.31, dass $2\pi \cdot \chi(\Gamma) = \alpha(L,L) - \alpha(0,0)$.

(3) Es gibt ein $l \in \mathbb{Z}$, so dass für alle $t \in [0, L]$ gilt $\alpha(0, t) \in (2\pi l, 2\pi (l + 1))$, denn andernfalls gäbe es nach dem Zwischenwertsatz wegen $e(0, 0) = -e(0, L) = \dot{\gamma}(0) = \pm (1, 0)$ ein $s \in (0, L]$ mit

$$\frac{\gamma(s)-\gamma(0)}{||\gamma(s)-\gamma(0)||}=e(0,s)=\begin{pmatrix}1\\0\end{pmatrix},$$

d.h. $\gamma(s) \in \text{Spur}(\sigma)$ im Widerspruch zu (1).

(4) Aus (3) und

$$\begin{array}{ccccc} e^{i\alpha(0,0)} & \mathbb{R}^2 \stackrel{\cong}{=} \mathbb{C} & e(0,0) & = & \dot{\gamma}(0) & \stackrel{\mathbb{C}}{=} \mathbb{R}^2 & e^{\pm i\frac{\pi}{2}} \\ \text{und analog} & e^{i\alpha(0,L)} & \mathbb{R}^2 \stackrel{\cong}{=} \mathbb{C} & e(0,L) & = & -\dot{\gamma}(0) & \stackrel{\mathbb{C}}{=} \mathbb{R}^2 & e^{\pm i\frac{3\pi}{2}} \end{array}$$

folgt, dass $\alpha(0,L)-\alpha(0,0)=\pm(\frac{3\pi}{2}-\frac{\pi}{2})=\pm\pi$ ist. Analog sieht man $\alpha(L,L)-\alpha(0,L)=\pm\pi$ (Wiederhole (3) mit $\alpha(t,L)$ statt $\alpha(0,t)$). Insgesamt erhalten wir also

$$2\pi \cdot \chi(\Gamma) \stackrel{(2)}{=} \alpha(L,L) - \alpha(0,0) = (\alpha(L,L) - \alpha(0,L)) + (\alpha(0,L) - \alpha(0,0)) = \pm 2\pi,$$
d.h. $\chi(\Gamma) = \pm 1$.

Bemerkung 1.37

Für eine einfach geschlossene, ebene Kurve Γ existiert eine natürliche bzw. "positive" Orientierung: Seien hierzu γ eine L-periodische Parametrisierung und $x_0 := \max\{\gamma_1(t) \mid t \in [0,L]\}$. Sei $t_0 \in [0,L)$ mit $\gamma_1(t_0) = x_0$. Dann ist $\dot{\gamma}(t_0) = (0,\lambda)$ für ein $\lambda \in \mathbb{R} \setminus \{0\}$. Ist dieses $\lambda > 0$, so wähle die Kurve $[\gamma]$, andernfalls $[\gamma(-(\cdot))]$

Für eine solche natürlich orientierte, einfach geschlossene Kurve Γ ist dann stets $\chi(\Gamma) = +1$.

Martin Gubisch 11 SS 2009

1 Kurventheorie 1.4 Konvexe Kurven

1.4 Konvexe Kurven

DEFINITION 1.38

Sei γ eine ebene \mathcal{C}^1 -Parametrisierung. Die Tangente von γ im Punkt t ist gegeben durch

$$G_{\gamma}(t) := \{ \gamma(t) + s\dot{\gamma}(t) \mid s \in \mathbb{R} \}.$$

Diese Gerade berandet zwei abgeschlossene Halbebenen

$$H_{\gamma}^{\pm}(t) := \{ x \in \mathbb{R}^2 \mid \pm \langle x - \gamma(t), \vec{\nu}_{\gamma}(t) \rangle \ge 0 \}.$$

 $\Gamma = [\gamma]$ heißt konvex, falls für alle $t \in I(\gamma)$ gilt: $\operatorname{Spur}(\Gamma) \subseteq H_{\gamma}^+(t)$ oder $\operatorname{Spur}(\Gamma) \subseteq H_{\gamma}^-(t)$.

Bemerkung 1.39

Die Eigenschaft "Konvexität" ist wieder unabhängig von der Wahl der Parametrisierung γ .

LEMMA 1.40

Sei Γ eine ebene \mathcal{C}^1 -Kurve. Genau dann ist Γ konvex, wenn für eine (und damit jede) Parametrisierung γ von Γ entweder gilt $\mathrm{Spur}(\Gamma) \subseteq H^+_{\gamma}(t)$ oder $\mathrm{Spur}(\Gamma) \subseteq H^-_{\gamma}(t)$ für alle $t \in I(\gamma)$.

BEWEIS

Sei $\Gamma = [\gamma]$ konvex. Setze $f: I \times I \to \mathbb{R}$, $f(s,t) := \langle \gamma(s) - \gamma(t), \vec{\nu}(t) \rangle$. Wegen der Konvexität von Γ gilt dann für jedes $t \in I$, dass $f(\cdot,t) \geq 0$ oder $f(\cdot,t) \leq 0$. Wir zeigen, dass sich die beiden Bedingungen ausschließen. Nehmen wir nämlich an, dass $t_1, t_2 \in I$ existieren mit $f(\cdot, t_1) \leq 0$ und $f(\cdot, t_2) \geq 0$, dann ist eine der folgenden Bedingungen erfüllt:

- (1) Es ist $t_1 = t_0 = t_2$, dann $f(\cdot, t_0) = 0$, d.h. Spur(Γ) ist eine Gerade und die Behauptung gilt.
- (2) $\times t_1 < t_2$, dann setze $M := \{t \in [t_1, t_2] \mid f(\cdot, t) \le 0\} \subseteq [t_1, t_2].$

M ist abgeschlossen, denn sei $(t_n)_{n\in\mathbb{N}}\in M^{\mathbb{N}}$ mit $t_n\to t\in I$, dann folgt aus der Stetigkeit von f, dass $0\geq f(s,t_n)\to f(s,t)$ $(s\in I)$, also $t\in M$. Damit folgt $t^*:=\sup M\in M$, d.h. $f(\cdot,t^*)\leq 0$.

- (a) Sei zunächst $t^* = t_2$, dann $f(\cdot, t^*) = 0$ und wir sind fertig, vgl. (1).
- (b) Ist dagegen $t^* < t_2$, dann wähle $(r_k)_{k \in \mathbb{N}} \in [t^*, t_2]^{\mathbb{N}}$ mit $r_k \to t^*$. Da Γ konvex und $r_k \notin M$, ist $f(\cdot, r_k) \ge 0$, also $0 \le f(s, r_k) \to f(s, t^*)$ $(s \in I)$, also $f(\cdot, t^*) = 0$.

Korollar 1.41

Sei Γ eine orientierte, konvexe C^2 -Kurve. Dann ist $\varkappa_{\Gamma} < 0$ oder $\varkappa_{\Gamma} > 0$.

BEWEIS

Sei γ eine Bogenlängenparametrisierung von Γ . Nach Lemma 1.40 ist $\times \langle \gamma(s) - \gamma(t), \vec{\nu}(t) \rangle \geq 0$ $(s, t \in \mathbb{R})$. Der Satz von Taylor liefert ein $\eta \in [s, t]$ mit

$$\gamma(s) = \gamma(t) + \dot{\gamma}(t)(s-t) + \frac{1}{2}\ddot{\gamma}(\eta)(s-t)^{2},$$

d.h. $0 \le \langle \gamma(s) - \gamma(t), \vec{\nu}(t) \rangle = \langle \frac{1}{2} \ddot{\gamma}(\eta)(s-t)^2, \vec{\nu}(t) \rangle$ (da $\dot{\gamma}(t) \perp \vec{\nu}(t)$ für alle t).

Damit $0 \leq \langle \ddot{\gamma}(\eta), \vec{\nu}(t) \rangle \xrightarrow{s \to t} \langle \ddot{\gamma}(t), \vec{\nu}(t) \rangle = \varkappa(t)$, d.h. die skalare Krümmung wird nie positiv.

SATZ 1.42

Sei Γ eine geschlossene, ebene, orientierte \mathcal{C}^2 -Kurve mit $|\chi(\Gamma)| = 1$ und $\varkappa_{\Gamma} \geq 0$ oder $\varkappa_{\Gamma} \leq 0$.

Dann ist Γ konvex.

1 Kurventheorie 1.4 Konvexe Kurven

BEWEIS

Sei Œ $\varkappa_{\Gamma} \ge 0$ und $\chi(\Gamma) = 1$. Sei γ eine L-periodische Bogenlängenparametrisierung von Γ .

Angenommen, Γ wäre nicht konvex, d.h. es gäbe $t_0 \in [0, L)$, so dass $f: t \mapsto \langle \gamma(t) - \gamma(t_0), \vec{\nu}(t_0) \rangle$ sein Vorzeichen auf [0, L) wechselt. Dann gibt es $t_*, t^* \in [0, L) \setminus \{t_0\}$ mit

$$f(t_*) = \min_{0 \le t \le L} f(t) < 0 = f(t_0) < f(t^*) = \max_{0 \le t \le L} f(t).$$

Damit $0 = \dot{f}(t^*) = \langle \dot{\gamma}(t^*), \vec{\nu}(t_0) \rangle$ und $0 = \dot{f}(t_*) = \langle \dot{\gamma}(t_*), \vec{\nu}(t_0) \rangle$; wegen $\dot{\gamma}(t_0) \perp \vec{\nu}(t_0)$ und $||\dot{\gamma}|| = 1$ folgt also $\dot{\gamma}(t_0) = \pm \dot{\gamma}(t_*) = \pm \dot{\gamma}(t^*)$ (mit unabhängigen Vorzeichen).

Also gibt es $s_1, s_2 \in \{t_0, t_*, t^*\}$ mit $s_1 < s_2$ und $\dot{\gamma}(s_1) = \dot{\gamma}(s_2)$; wegen $\dot{\gamma}(t) = e^{i\alpha(t)}$ (α Umlaufwinkel von γ) existiert $k \in \mathbb{Z}$ mit $\alpha(s_2) - \alpha(s_1) = 2\pi k$. Andererseits ist $\dot{\alpha} = \varkappa(\gamma) \ge 0$, d.h. $k \in \mathbb{N}_0$. Analog zeigt man $\alpha(s_1 + L)\alpha(s_2) = 2\pi l$ für ein $l \in \mathbb{N}_0$.

Nach Voraussetzung ist

$$1 = \chi(\Gamma) = \frac{1}{2\pi} (\alpha(s_1 + L) - \alpha(s_1)) = \frac{1}{2\pi} ((\alpha(s_1 + L) - \alpha(s_2)) + (\alpha(s_2) - \alpha(s_1))).$$

Es gilt also entweder (k, l) = (1, 0) oder (k, l) = (0, 1).

Ist \times (k,l) = (0,1), dann $\alpha(s_1) = \alpha(s_2)$ und $\dot{\alpha} \geq 0$, d.h. $\varkappa(s) = \alpha(s) = 0$ für alle $s \in [s_1, s_2]$. Wegen $\dot{\gamma}(s) = \varkappa(s) = 0$ folgt: $\gamma|_{[s_1, s_2]}$ ist ein Geradenstück, d.h.

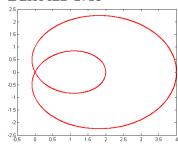
$$\gamma(s) = \gamma(s_1) + (s - s_1)\dot{\gamma}(s_1) = \gamma(s_1) \pm (s - s_1)\dot{\gamma}(t_0).$$

Damit gilt für alle $s \in [s_1, s_2]$

$$f(s) = \langle \gamma(s_1) \pm (s - s_1)\dot{\gamma}(t_0) - \gamma(t_0), \vec{\nu}(t_0) \rangle \stackrel{\dot{\gamma}(t_0) \perp \vec{\nu}(t_0)}{=} \langle \gamma(s_1) - \gamma(t_0), \vec{\nu}(t_0) \rangle = f(s_1)$$

Also ist $f(s_2) = f(s_1)$ im Widerspruch zu $f(t_*) < f(t_0) < f(t^*)$.

Beispiel 1.43



Für die "Pascalsche Schnecke" $\Gamma = [\gamma]$ mit

$$\gamma(t) := \begin{pmatrix} a\cos(t)^2 + b\cos(t) \\ a\cos(t)\sin(t) + b\sin(t) \end{pmatrix} \qquad (t \in \mathbb{R})$$

ist $\varkappa > 0$, falls a > b.

Sie ist aber weder konvex noch einfach geschlossen.

Ihre Umlaufzahl ist 2.

LEMMA 1.44

Sei Γ eine einfach geschlossene, konvexe \mathcal{C}^2 -Kurve. Dann sind äquivalent:

- (1) Spur(Γ) enthält ein Geradenstück;
- (2) Für eine (und damit jede) Parametrisierung γ der Periode $L(\gamma)$ gibt es $0 \le t_1 < t_2 < L(\gamma)$ und $\lambda > 0$ mit $\dot{\gamma}(t_1) = \lambda \dot{\gamma}(t_2)$.

Korollar 1.45

Seien Γ eine einfach geschlossene, konvexe \mathcal{C}^2 -Kurve und G eine Gerade. Dann gelten:

- (1) Schneidet G die Spur von Γ in drei verschiedenen Punkten, so enthält $G \cap \text{Spur}(\Gamma)$ ein Geradenstück.
- (2) Schneidet G die Spur von Γ in zwei verschiedenen Punkten tangential, so enthält Spur(Γ) ein Geradenstück.

Martin Gubisch 13 SS 2009

1 Kurventheorie 1.5 Der Vierscheitelsatz

1.5 Der Vierscheitelsatz

DEFINITION 1.46

Sei γ eine ebene \mathcal{C}^2 -Parametrisierung. Wir sagen, dass γ in $t \in I(\gamma)$ einen *Scheitelpunkt* besitzt, falls die Krümmung \varkappa_{γ} in t ein relatives Extremum hat.

Beispiel 1.47

Sei γ eine L-periodische, punktsymmetrische \mathcal{C}^2 -Parametrisierung, d.h. $x \in \operatorname{Spur}(\gamma) \Leftrightarrow -x \in \operatorname{Spur}(\gamma)$. Dann hat γ mindestens vier Scheitel in [0,L): Es gibt $t_*,t^*\in [0,L)$ mit $\varkappa(t_*)=\min \varkappa$ und $\varkappa(t^*)=\max \varkappa$ und wegen der Punktsymmetrie werden diese Extrema in den "diagonal gegenüber liegenden Punkten" noch einmal angenommen.

SATZ 1.48 (Vierscheitelsatz)

Sei Γ eine konvexe, einfach geschlossene, ebene \mathcal{C}^3 -Kurve. Dann besitzt jede periodische Parametrisierung von Γ mindestens vier Scheitel in jedem halboffenen Periodenintervall.

BEWEIS

Es sei γ Œ eine L-periodische Bogenlängenparametrisierung mit $\varkappa(t_0) = \min \varkappa$, $\varkappa(t_1) = \max \varkappa$ für $t_0 = 0, \ t_1 \in (0, L)$. Œ seien diese strikte Extrema und Œ stimme die Gerade G durch $\gamma(0), \gamma(t_1)$ mit der x_1 -Achse überein (Translationen und Drehungen erhalten die Krümmung). Nach Korollar 1.45 können wir $G \cap \text{Spur}(\gamma) = \{\gamma(0), \gamma(t_1)\}$ annehmen, sonst wäre ein Geradenstück in der Spur enthalten.

Angenommen, γ hätte keine weiteren Scheitel. Dann wäre $\dot{\varkappa} \geq 0$, $\dot{\varkappa} \not\equiv 0$ auf $(0,t_1)$ sowie $\dot{\varkappa} \leq 0$ und $\dot{\varkappa} \not\equiv 0$ auf (t_1,L) . Nach Korollar 1.43 kann dann Spur (γ) nicht auf einer Seite von G liegen, also (t_1,t_2) oberhalb von (t_1,t_2) unterhalb von (t_1,t_2) unterhalb von (t_2,t_2) unterhalb von (t_2,t_2) und (t_2,t_2) und (t_2,t_2) und somit

$$0 < \int_{0}^{L} \dot{\varkappa}(t)\gamma_{2}(t) dt$$

$$= \int_{0}^{L} (\varkappa(t)\gamma_{2}(t)) - \varkappa(t)\dot{\gamma}_{2}(t) dt$$

$$= \varkappa(t)\gamma_{2}(t) \Big|_{0}^{L} - \int_{0}^{L} \varkappa(t)\dot{\gamma}_{2}(t) dt$$

$$= -\int_{0}^{L} \varkappa(t)\dot{\gamma}_{2}(t) dt$$

$$\stackrel{2. \text{ Frenet}}{=} \int_{0}^{L} \vec{\nu} \cdot 2(t) dt$$

$$= \vec{\nu}_{2}(L) - \vec{\nu}_{2}(0)$$

$$= 0,$$

ein Widerspruch. Also hat γ mindestens drei Scheitelpunkte in [0, L); da zwischen zwei Maxima (Minima) mindestens noch ein Minimum (Maximum) liegen muss, folgt die Behauptung.

Martin Gubisch 14 SS 2009

1.6 Die isoperimetrische Ungleichung

Definition 1.49

Sei Γ eine einfach geschlossene, ebene, orientierte \mathcal{C}^1 -Kurve. Dann heißt

$$A(\Gamma) := \frac{1}{2} \int_0^{L(\gamma)} \det(\gamma(\tau)\dot{\gamma}(\tau)) d\tau = \frac{1}{2} \int_0^{L(\gamma)} (\gamma_1(\tau)\dot{\gamma}_2(\tau) - \gamma_2(\tau)\dot{\gamma}_1(\tau)) d\tau$$

der orientierte Flächeninhalt von Γ .

Bemerkung 1.50

 $A(\Gamma)$ ist unabhängig von von der Wahl der Parametrisierung γ .

Beispiel 1.51

Sei $\Gamma = [\gamma]$ der positiv orientierte Rand des Kreises mit Radius r > 0 und Zentrum $x = (x_1, x_2)$, d.h.

$$\gamma(t) := \begin{pmatrix} x_1 + r\cos(t) \\ x_2 + r\sin(t) \end{pmatrix} \qquad (t \in \mathbb{R}).$$

Dann gilt für den orientierten Flächeninhalt $A(\Gamma)$:

$$A(\Gamma) = \frac{1}{2} \int_0^{2\pi} ((x_1 + r\cos(\tau))r\cos(\tau) + (x_2 + r\sin(\tau))r\sin(\tau)) d\tau$$
$$= \frac{r}{2} \int_0^{2\pi} (x_1\cos(\tau) + x_2\sin(\tau)) + \frac{r^2}{2} \int_0^{2\pi} (\cos(\tau)^2 + \sin(\tau)^2) d\tau$$
$$= \pi r^2.$$

Umläuft man den Kreis in entgegengesetzter Richtung (d.h. betrachtet man $\Gamma' := [\gamma(-(\cdot))]$), so erhält man $A(\Gamma') = -\pi r^2$.

SATZ 1.52

Sei $\Gamma = [\gamma]$ eine einfach geschlossene, ebene, orientierte \mathcal{C}^1 -Kurve. Zu einer Zerlegung $Z = \{t_0, ..., t_k\}$ von $[0, L(\gamma)]$ definiere $|Z| := \max_{1 \le i \le k} t_{i-1} - t_i$ (Feinheit von Z) und

$$A(\gamma, Z) := \frac{1}{2} \sum_{i=1}^{k} (\gamma_1(t_{i-1})(\gamma_2(t_i) - \gamma_2(t_{i-1})) - \gamma_2(t_{i-1})(\gamma_1(t_i) - \gamma_1(t_{i-1}))).$$

Dann gilt $A(\Gamma) = \lim_{|Z| \to 0} A(\gamma, Z)$.

BEWEIS

Sei $\epsilon > 0$. Wähle $\delta := \frac{\epsilon}{M^2 L(\gamma)}$ mit $M := ||\dot{\gamma}||_{\infty}$. Bezeichne mit F_i die einzelnen Summanden

$$F_i := (\gamma_1(t_{i-1})(\gamma_2(t_i) - \gamma_2(t_{i-1})) - \gamma_2(t_{i-1})(\gamma_1(t_i) - \gamma_1(t_{i-1}))), \qquad (i = 1, ..., k).$$

Beachte dazu: Der orientierte Flächeninhalt des von den Punkten $0, (x_1, y_1), (x_2, y_2)$ aufgespannten Dreiecks ist

$$\frac{1}{2}\det\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \frac{1}{2}\det\begin{pmatrix} x_1 & x_2 - x_1 \\ y_1 & y_2 - y_1 \end{pmatrix} = \frac{1}{2}(x_1(y_2 - y_1) - y_1(x_2 - x_1)).$$

Wende dies hier an auf die Punkte $0, \gamma(t_{i-1}), \gamma(t_i)$. Die F_i haben die Darstellung

$$\frac{1}{2}F_i = \int_{t_{i-1}}^{t_i} (\gamma_1(t_{i-1})\dot{\gamma}_2(\tau) - \gamma_2(t_{i-1})\dot{\gamma}_1(\tau)) d\tau.$$

Martin Gubisch 15 SS 2009

Wegen $|\gamma_j(t_{i-1}) - \gamma_j(\tau)| \le M|\tau - t_{i-1}| \le M(t_i - t_{i-1})$ folgt für $|Z| < \delta$, dass

$$\begin{vmatrix}
2F_i - \int_{t_{i-1}}^{t_i} \gamma_1(\tau)\dot{\gamma}_2(\tau) - \gamma_2(\tau)\dot{\gamma}_1(\tau) \, d\tau \\
\leq \int_{t_{i-1}}^{t_i} (|\gamma_1(t_{i-1}) - \gamma_i(\tau)| \underbrace{|\dot{\gamma}_2(\tau)|}_{\leq M} + |\gamma_2(t_{i-1}) - \gamma_2(\tau)| \underbrace{|\dot{\gamma}_1(\tau)|}_{\leq M}) \\
\leq M^2(t_i - t_{i-1})^2 \\
\leq M^2\delta(t_i - t_{i-1}).$$

Aufsummieren ergibt $|2A(\gamma, Z) - 2A(\Gamma)| \le \epsilon$:

$$|2A(\gamma, Z) - 2A(\Gamma)| \le \sum_{i=1}^k M^2 \delta(t_i - t_{i-1}) = M^2 \delta L(\gamma) \le \epsilon.$$

WIEDERHOLUNG 1.53

Seien $f,g:\mathbb{R}\to\mathbb{C}$ stetig und 2π -periodisch. Definiere

$$\widehat{f}(k) := \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} f(t) dt \qquad (k \in \mathbb{Z}) \qquad (\text{der } k\text{-te "Fourier-Koeffizient"}).$$

Dann gilt die "Parsevalsche Gleichung"

$$\int_0^{2\pi} f(t)\overline{g(t)} \, dt = \sum_{k=-\infty}^{\infty} \widehat{f}(k)\overline{\widehat{g}(k)}.$$

Ist $f \in \mathcal{C}^1$, dann $\widehat{f}'(k) = ik\widehat{f}(k)$ und damit

$$\sum_{k=-n}^{n} \widehat{f}(k)e^{ikt} \stackrel{n \to \infty}{\longrightarrow} f(t) \qquad \text{glm. auf } [0, 2\pi].$$

SATZ 1.54 (Isoperimetrische Ungleichung)

Sei $\Gamma = [\gamma]$ eine einfach geschlossene, ebene, orientierte \mathcal{C}^1 -Kurve der Periode $L(\gamma)$. Dann gilt

$$|A(\Gamma)| \le \frac{1}{4\pi} \text{Länge}(\Gamma)^2$$
 (Länge $(\Gamma) := L(\gamma|_{[0,L(\gamma)]})$).

Genau dann gilt Gleichheit, wenn Γ ein Kreisrand ist.

BEWEIS

Identifiziere wieder $\mathbb{R}^2 \cong \mathbb{C}$.

Schritt 1: Sei zunächst Länge $(\Gamma) = 2\pi$ und γ eine Bogenlängenparametrisierung (insbesondere γ 2π -periodisch). Dann gilt

$$\pi = \frac{1}{2} \int_0^{2\pi} |\dot{\gamma}(t)|^2 dt$$

$$\stackrel{\text{Parseval}}{=} \pi \sum_{k=-\infty}^{\infty} |\hat{\gamma}(k)|^2 \qquad (*)$$

$$= \pi \sum_{k=-\infty}^{\infty} k^2 |\hat{\gamma}(k)|^2.$$

Außerdem gilt wegen

$$\dot{\gamma}(\tau)\overline{\gamma(\tau)} = (\dot{\gamma}_1 + i\dot{\gamma}_2)(\gamma_1 - i\gamma_2)
= (\dot{\gamma}_1\gamma_1 + \dot{\gamma}_2\gamma_2 + i(\dot{\gamma}_2\gamma_1 - \dot{\gamma}_1\gamma_2)),$$

dass

$$A(\Gamma) = \frac{1}{2} \int_{0}^{2\pi} \gamma_{1}(\tau) \dot{\gamma}_{2}(\tau) - \gamma_{2}(\tau) \dot{\gamma}_{1}(\tau) d\tau$$

$$= \frac{1}{2} \Im \left(\int_{0}^{2\pi} \dot{\gamma}(\tau) \overline{\gamma(\tau)} d\tau \right)$$

$$\stackrel{\text{Parseval}}{=} \pi \Im \left(\sum_{k=-\infty}^{\infty} \frac{\widehat{\gamma}(k)}{=ik\widehat{\gamma}(k)} \overline{\widehat{\gamma}(k)} \right)$$

$$= \pi \Im \left(\sum_{k=-\infty}^{\infty} ik |\widehat{\gamma}(k)|^{2} \right)$$

$$= \pi \sum_{k=-\infty}^{\infty} k |\widehat{\gamma}(k)|^{2} \qquad (**),$$

also
$$\pi - A(\Gamma) = \pi \sum_{k=-\infty}^{\infty} (k^2 - k) |\widehat{\gamma}(k)|^2 \ge 0.$$

Analog sieht man $\pi + A(\Gamma) = \pi \sum_{k=-\infty}^{\infty} (k^2 + k) |\widehat{\gamma}(k)|^2 \ge 0$, d.h.

$$|A(\Gamma)| \le \pi = \frac{(2\pi)^2}{4\pi} = \frac{\text{Länge}(\Gamma)^2}{4\pi}.$$

Schritt 2: Es gilt $|A(\Gamma)| = \pi \Leftrightarrow \widehat{\gamma}(k) = 0$ für alle $k \notin \{-1, 0, 1\}$. Also ist in dem Fall

$$\gamma(t) = \widehat{\gamma}(0) + \widehat{\gamma}(-1)e^{-it} + \widehat{\gamma}(1)e^{it},$$

d.h. $||\widehat{\gamma}(-1)|^2 - |\widehat{\gamma}(1)|^2| = 1$ nach (**) und $||\widehat{\gamma}(-1)|^2 + |\widehat{\gamma}(1)|^2| = 1$ nach (*). Also ist $(|\widetilde{\gamma}(-1)|, |\widetilde{\gamma}(1)|) = (0, 1)$ oder $(|\widetilde{\gamma}(-1)|, |\widetilde{\gamma}(1)|) = (1, 0)$, d.h. Γ ein Kreis um $\widehat{\gamma}(0)$.

Schritt 3: Im Allgemeinen betrachte die Kurve $\tilde{\Gamma} := [\tilde{\gamma}]$ mit

$$\tilde{\gamma} := \frac{2\pi}{\text{Länge}(\Gamma)} \gamma,$$

dann Länge $(\tilde{\Gamma}) = 2\pi$ und

$$A(\tilde{\Gamma}) = \left(\frac{2\pi}{\text{Länge}(\Gamma)}\right)^2 A(\Gamma).$$

1.7 Raumkurven

Sprechweise 1.55

Ist γ eine Parametrisierung im \mathbb{R}^3 , so heißt $\Gamma := [\gamma]$ eine Raumkurve.

LEMMA 1.56

Sei γ eine reguläre \mathcal{C}^2 -Parametrisierung im \mathbb{R}^n . Dann gilt für alle t:

$$\vec{\varkappa}_{\gamma}(t) \neq 0 \Leftrightarrow \dot{\gamma}(t)$$
 und $\ddot{\gamma}(t)$ sind linear unabhängig.

Diese Eigenschaft bleibt bei Umparametrisierung erhalten.

Beweis

(1) Sei zunächst $\{\dot{\gamma}(t), \ddot{\gamma}(t)\}$ linear abhängig, d.h. es gibt ein $\lambda \in \mathbb{R}$ mit $\lambda \dot{\gamma}(t) = \ddot{\gamma}(t)$. Dann ist

$$\vec{\varkappa}(t) = \frac{1}{||\dot{\gamma}(t)||^2} \ddot{\gamma}(t) - \frac{\langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle}{||\dot{\gamma}(t)||^4} \dot{\gamma}(t) = \mu \dot{\gamma}(t) \text{ für ein } \mu \in \mathbb{R}.$$
 (*)

Wegen $\vec{\varkappa}(t) \perp \dot{\gamma}(t)$ folgt $\vec{\varkappa}(t) = 0$.

- (2) Ist $\vec{\varkappa}(t) = 0$, dann sind wegen (*) $\dot{\gamma}(t)$ und $\ddot{\gamma}(t)$ linear abhängig.
- (3) Dies ist invariant unter einer Umparametrisierung φ , da $\vec{\varkappa}_{\gamma \circ \varphi} = \vec{\varkappa}_{\gamma} \circ \varphi$.

Definition 1.57

Eine \mathcal{C}^2 -Raumkurve Γ heißt *Frenet-Raumkurve*, falls für eine (und damit jede) Parametrisierung γ von Γ gilt: $\forall t \in I(\gamma) : \dot{\gamma}(t), \ddot{\gamma}(t)$ sind linear unabhängig.

Sei $\Gamma = [\gamma]$ eine Frenet-Raumkurve. Definiere

$$\kappa_{\gamma}(t) := ||\vec{\varkappa}_{\gamma}(t)|| \qquad \vec{\eta}_{\gamma}(t) := \frac{\vec{\varkappa}_{\gamma}(t)}{||\vec{\varkappa}_{\gamma}(t)||} = \frac{\vec{\varkappa}_{\gamma}(t)}{\kappa_{\gamma}(t)} \qquad (t \in I(\gamma))$$

Dann heißt κ_{γ} die skalare Krümmung von γ und $\kappa_{\Gamma} := [\kappa_{\gamma}]$ die skalare Krümmung von Γ . $\vec{\eta}_{\gamma}$ heißt das Hauptnormalenfeld von γ und $\vec{\eta}_{\Gamma} := [\vec{\eta}_{\gamma}]$ das Hauptnormalenfeld von Γ .

Bemerkung 1.58

- (1) κ_{Γ} und $\vec{\eta}_{\Gamma}$ sind wohldefiniert, d.h. unabhängig von der Parametrisierung γ .
- (2) κ_{γ} berechnet sich durch die Formel

$$\kappa_{\gamma}(t) = \frac{1}{||\dot{\gamma}(t)||^3} \sqrt{||\dot{\gamma}(t)||^2 ||\ddot{\gamma}(t)||^2 - \langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle^2}.$$

(3) Sei γ eine ebene Parametrisierung. Wir identifizieren \mathbb{R}^2 mit $\mathbb{R}^2 \times \{0\} \subseteq \mathbb{R}^3$. Dann gelten $\kappa_{\gamma} = |\varkappa_{\gamma}|$ und $\vec{\varkappa}_{\gamma} = \varkappa_{\gamma} \vec{\nu}_{\gamma} = \kappa_{\gamma} \vec{\eta}_{\gamma}$, d.h. $\vec{\eta}_{\gamma} = \frac{\varkappa_{\gamma}}{||\vec{\varkappa}_{\gamma}||} \vec{\nu}_{\gamma}$.

Die skalare Krümmung \varkappa einer ebenen Kurve muss also nicht mit der skalaren Krümmung κ der zugehörigen Raumkurve übereinstimmen!

Wiederholung 1.59

Das *Kreuzprodukt* zweier Vektoren $\vec{a}, \vec{b} \in \mathbb{R}^3$ ist definiert als

$$\vec{a} \times \vec{b} := \begin{pmatrix} a_2b_2 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

Es gelten folgende Rechenregeln:

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}; \qquad \langle \vec{a}, \vec{a} \times \vec{b} \rangle = 0 = \langle \vec{b}, \vec{a} \times \vec{b} \rangle.$$

Sind \vec{a}, \vec{b} orthonormal, dann ist $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ eine *Orthonormalbasis*.

Diese ist *positiv orientiert*, d.h. $det(\vec{a}, \vec{b}, \vec{a} \times \vec{b}) = +1$.

DEFINITION 1.60

Sei $\Gamma = [\gamma]$ eine orientierte Frenet-Raumkurve. Definiere für $t \in I(\gamma)$

$$ec{t}_{\gamma}(t) := rac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}, \qquad ec{b}_{\gamma}(t) := ec{t}_{\gamma}(t) imes ec{\eta}_{\gamma}(t).$$

 \vec{t}_{γ} heißt das Tangenteneinheitsvektorfeld von γ und $\vec{t}_{\Gamma} := [\vec{t}_{\gamma}]$ das Tangenteneinheitsvektorfeld von Γ .

 \vec{b}_{γ} heißt das $\underline{Binormalenvektorfeld}$ von γ und $\vec{b}_{\Gamma}:=[\vec{b}_{\gamma}]$ das $\underline{Binormalenvektorfeld}$ von Γ .

Bemerkung 1.61

- (1) \vec{t}_{Γ} und \vec{b}_{Γ} sind wohldefiniert, d.h. unabhängig von der Parametrisierung γ .
- (2) $\{\vec{t}_{\gamma}, \vec{\eta}_{\gamma}, \vec{b}_{\gamma}\}$ bildet eine Orthonormalbasis des \mathbb{R}^3 , das begleitende Dreibein von γ .

LEMMA 1.62

Der Binormalenvektor \vec{b}_{γ} einer orientierten Frenet-Raumkurve $\Gamma = [\gamma]$ lässt sich berechnen durch

$$\vec{b}_{\gamma}(t) = \frac{1}{\kappa_{\gamma}(t)} \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{||\dot{\gamma}(t)||^{3}}.$$

BEWEIS

Sei $t \in I(\gamma)$, dann gilt

$$\begin{split} \vec{b}(t) &= \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} \times \frac{\vec{\varkappa}(t)}{\kappa(t)} \\ &= \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} \times \frac{1}{\kappa(t)} \left(\frac{\ddot{\gamma}(t)}{||\dot{\gamma}(t)||^2} - \frac{\langle \dot{\gamma}(t), \ddot{\gamma}(t) \rangle \dot{\gamma}(t)}{||\dot{\gamma}(t)||^2} \right) \\ &= \frac{1}{||\dot{\gamma}(t)||^3} \frac{1}{\kappa(t)} (\dot{\gamma}(t) \times \ddot{\gamma}(t)). \end{split}$$

Definition 1.63

Sei $\Gamma = [\gamma]$ eine $\mathcal{C}^3\text{-Frenet-Raumkurve.}$ Definiere für $t \in I(\gamma)$

$$\tau_{\gamma}(t) := \frac{\det(\dot{\gamma}(t), \ddot{\gamma}(t), \dddot{\gamma}(t))}{\kappa_{\gamma}(t)^{2} ||\dot{\gamma}(t)||^{6}}.$$

 τ_{γ} heißt die Torsion (Windung) von γ und $\tau_{\Gamma} := [\tau_{\gamma}]$ die Torsion (Windung) von Γ .

Bemerkung 1.64

 τ_{Γ} ist wohldefiniert: Seien φ eine Parametertransformation, $s \in I(\gamma), t = \varphi(s)$. Dann gilt:

$$\dot{\sigma}(t) = \dot{\varphi}(s)\dot{\gamma}(t);
\ddot{\sigma}(t) = (\dot{\varphi}(s))^2 \ddot{\gamma}(t) + \ddot{\varphi}(s)\dot{\gamma}(t);
\ddot{\sigma}(t) = (\dot{\varphi}(s))^3 \ddot{\gamma}(t) + 3\dot{\varphi}(s)\ddot{\varphi}(s)\ddot{\gamma}(t) + \dddot{\varphi}(s)\dot{\gamma}(t).$$

Durch geschickte Zeilenadditionen erhalten wir

$$\det(\dot{\sigma}(t), \ddot{\sigma}(t), \ddot{\sigma}(t)) \stackrel{\dot{\varphi}(s) \neq 0}{=} \det(\dot{\varphi}(s)\dot{\gamma}(t), \dot{\varphi}(s)^2 \ddot{\gamma}(t), \dot{\varphi}(s)^3 \dddot{\gamma}(t)) = \dot{\varphi}(s)^6 \det(\dot{\gamma}(t), \ddot{\gamma}(t), \dddot{\gamma}(t)).$$

Weiter ist $||\dot{\sigma}(t)||^6 = \dot{\varphi}(s)^6 ||\dot{\gamma}(t)||^6$, wegen $\kappa_{\sigma}(s) = \kappa_{\gamma}(t)$ also $\tau_{\gamma \circ \varphi}(s) = \tau_{\gamma}(t)$, d.h. $\tau_{\gamma \circ \varphi} = \tau_{\gamma} \circ \varphi$.

Martin Gubisch 19 SS 2009

LEMMA 1.65

Ist γ eine Bogenlängenparametrisierung der \mathcal{C}^3 -Frenet-Raumkurve Γ , so gilt für alle $t \in I(\gamma)$:

$$\tau_{\gamma}(t) = \langle \vec{\eta}_{\gamma}(t), \vec{b}_{\gamma}(t) \rangle.$$

BEWEIS

Wegen $\vec{\varkappa}(t) = \ddot{\gamma}(t)$ und $\kappa(t) = ||\ddot{\gamma}(t)|| \ (t \in I(\gamma))$ ist

$$\vec{\eta}'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\ddot{\gamma}(t)}{||\ddot{\gamma}(t)||} = \frac{||\ddot{\gamma}(t)|| \ddot{\gamma}'(t) - \frac{\ddot{\gamma}(t)\langle \ddot{\gamma}(t), \ddot{\gamma}'(t) \rangle}{||\ddot{\gamma}(t)||}}{||\ddot{\gamma}(t)||},$$

d.h. es gilt

$$\begin{split} \langle \vec{\eta} \, \dot{}^{"}(t), \vec{b}(t) \rangle &= \left\langle \frac{||\ddot{\gamma}(t)|| \dddot{\gamma}(t) - \frac{\ddot{\gamma}(t) \langle \ddot{\gamma}(t), \dddot{\gamma}(t) \rangle}{||\ddot{\gamma}(t)||}}{||\ddot{\gamma}(t)||}, \frac{1}{\kappa(t)} \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{||\dot{\gamma}(t)||^3} \right\rangle \\ &= \left\langle \frac{\dddot{\gamma}(t)}{||\ddot{\gamma}(t)||} - \frac{\langle \ddot{\gamma}(t), \dddot{\gamma}(t) \rangle \ddot{\gamma}(t)}{||\ddot{\gamma}(t)||^3}, \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{\kappa(t)} \right\rangle \\ &= \frac{1}{\kappa(t)} \langle \dddot{\gamma}(t), \dot{\gamma}(t) - \ddot{\gamma}(t) \rangle \\ &= \frac{1}{\kappa(t)^2} \det(\dddot{\gamma}(t), \dot{\gamma}(t), \ddot{\gamma}(t)) \\ &= \frac{1}{\kappa(t)^2} \det(\dot{\gamma}(t), \ddot{\gamma}(t), \dddot{\gamma}(t)). \end{split}$$

Beispiel 1.66

Eine Bogenlängenparametrisierung der Helix mit Radius r > 0 und Ganghöhe $2\pi\alpha$ ($\alpha > 0$) ist

$$\gamma(t) = \begin{pmatrix} r\cos(\beta t) \\ r\sin(\beta t) \\ \alpha\beta t \end{pmatrix} \qquad \beta := \frac{1}{\sqrt{r^2 + \alpha^2}}.$$

Wir zeigen, dass die Helix konstante Krümmung und konstante Tosion hat:

$$\dot{\gamma}(t) = (-r\beta\sin(\beta t), r\beta\cos(\beta t), \alpha\beta);$$

$$\ddot{\gamma}(t) = (-r\beta^2\sin(\beta t), -r\beta^2\cos(\beta t), 0);$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = r\beta^2;$$

$$\vec{\eta}(t) = \frac{\ddot{\gamma}(t)}{\kappa(t)} = (-\cos(\beta t), -\sin(\beta t), 0);$$

$$\vec{b}(t) = \dot{\gamma}(t) \times \vec{\eta}(t) = (\alpha\beta\sin(\beta t), -\alpha\beta\cos(\beta t), \beta r);$$

$$\vec{\eta}''(t) = (\beta\sin(\beta t), -\beta\cos(\beta t), 0);$$

$$\tau(t) = \langle \vec{\eta}''(t), \vec{b}(t) \rangle = \alpha\beta^2.$$

SATZ 1.67 (Frenet-Gleichungen)

Seien Γ eine \mathcal{C}^3 -Frenet-Raumkurve, γ eine Bogenlängenparametrisierung von Γ . Dann gelten:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{t}_{\gamma} = \kappa_{\gamma}\vec{\eta}_{\gamma}, \qquad \quad \frac{\mathrm{d}}{\mathrm{d}t}\vec{\eta}_{\gamma} = -\kappa_{\gamma}\vec{t}_{\gamma} + \tau_{\gamma}\vec{b}_{\gamma}, \qquad \quad \frac{\mathrm{d}}{\mathrm{d}t}\vec{b}_{\gamma} = -\tau_{\gamma}\vec{\eta}_{\gamma}.$$

BEWEIS

Da γ Bogenlängenparametrisierung, ist $\vec{t} = \dot{\gamma}$, d.h. $\vec{t} = \ddot{\gamma} = \vec{\varkappa} = \kappa \vec{\eta}$.

Weiter gelten die Gleichungen

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{||\vec{\eta}(t)||^2}_{\equiv 1} = 2\langle \vec{\eta} \cdot (t), \vec{\eta}(t) \rangle \qquad (\mathrm{d.h.} \ \vec{\eta} \cdot \perp \vec{\eta});$$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\langle \vec{\eta}(t), \dot{\gamma}(t) \rangle}_{=0} = \langle \vec{\eta} \cdot (t), \dot{\gamma}(t) \rangle + \underbrace{\langle \vec{\eta}(t), \ddot{\gamma}(t) \rangle}_{=\kappa(t)}.$$

Da $\{\vec{t}_{\gamma}, \vec{\eta}_{\gamma}, \vec{b}_{\gamma}\}$ Orthonormalbasis des \mathbb{R}^3 , gilt nach Fourier

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{\eta}(t) = \langle \vec{\eta}\cdot(t), \dot{\gamma}(t)\rangle\dot{\gamma}(t) + \underbrace{\langle \vec{\eta}\cdot(t), \vec{\eta}(t)\rangle}_{=0}\vec{\eta}(t) + \underbrace{\langle \vec{\eta}\cdot(t), \vec{b}(t)\rangle\dot{b}(t)}_{=\tau(t)}$$

$$= -\kappa(t)\dot{\gamma}(t) + \tau(t)\vec{b}(t).$$

Schließlich erhalten wir für die Ableitung des Binormalenvektors

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \vec{b}(t) &= \frac{\mathrm{d}}{\mathrm{d}t} (\dot{\gamma}(t) \times \vec{\eta}(t)) \\ &= \ddot{\gamma}(t) \times \vec{\eta}(t) + \dot{\gamma}(t) \times \vec{\eta}^{\, \cdot}(t) \\ &= \kappa(t) \vec{\eta}(t) \times \vec{\eta}(t) + \dot{\gamma}(t) \times (-\kappa(t) \vec{t}(t) + \tau(t) \vec{b}(t)) \\ &= \dot{\gamma}(t) \times \tau(t) \vec{b}(t) \\ &= \tau(t) (\dot{\gamma}(t) \times \vec{b}(t)) \\ &= \tau(t) \vec{\eta}(t). \end{split}$$

SATZ 1.68

Sei Γ eine \mathcal{C}^3 -Frenet-Raumkurve. Dann gilt: Γ ist eben $\Leftrightarrow \Gamma$ ist torsionsfrei.

BEWEIS

Seien γ eine Bogenlängenparametrisierung von Γ und $t_0 \in I(\gamma)$.

 \Rightarrow : Sei Γ eben. Dann gibt es einen Einheitsvektor $v \in \mathbb{R}^3$, so dass für alle $t \in I(\gamma)$ gilt:

$$\langle \gamma(t) - \gamma(t_0), v \rangle = 0 \Rightarrow \langle \dot{\gamma}(t), v \rangle = \langle \ddot{\gamma}(t), v \rangle = 0 \Rightarrow \langle \vec{\varkappa}(t), v \rangle = 0.$$

Wegen $\vec{\varkappa}(t) = \varkappa(t)\vec{\eta}(t)$ und $\varkappa > 0$ folgt

$$\vec{b}(t) = \frac{\dot{\gamma}(t) \times \ddot{\gamma}(t)}{\varkappa(t)} = \pm v \equiv \text{konstant},$$

d.h. $|\tau(t)| = ||\tau(t)\vec{\eta}(t)|| = ||\vec{b}(t)|| = 0$, d.h. Γ torsionsfrei.

 \Leftarrow : Sei Γ torsionsfrei, d.h. $\tau \equiv 0$. Dann $\vec{b} : \equiv 0$, d.h. $\vec{b} \equiv v \in \mathbb{R}^3$, d.h.

$$\forall t \in I(\gamma) : \frac{\mathrm{d}}{\mathrm{d}t} \langle \gamma(t) - \gamma(t_0), v \rangle = \langle \dot{\gamma}(t) \vec{b}(t) \rangle = 0 \Rightarrow \langle \gamma(t) - \gamma(t_0), v \rangle = \langle \gamma(t_0) - \gamma(t_0), v \rangle = 0,$$

d.h.
$$\operatorname{Spur}(\Gamma) \subseteq \gamma(t_0) + \operatorname{span}\{v\}^{\perp}$$
.

Martin Gubisch 21 SS 2009

1.8 Der Hauptsatz der Raumkurventheorie

WIEDERHOLUNG 1.69 (Satz von Picard-Lindelöf)

Sei $f = f(t,x): [a,b] \times \mathbb{R} \to \mathbb{R}$ stetig und Lipschitz-stetig in x gleichmäßig in t, d.h. es gibt L > 0 mit

$$\forall t \in [a, b], \ x, y \in \mathbb{R} : |f(t, x) - f(t, y)| \le L|x - y|.$$

Dann existiert zu jedem $(t_0, x_0) \in [a, b] \times \mathbb{R}$ genau eine Lösung von

$$\left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t,x(t)) & t \in [a,b] \\ x(t_0) & = & x_0 \end{array} \right. .$$

Satz 1.70 (Hauptsatz der Raumkurventheorie)

Seien I ein Intervall und $l \in \mathbb{N}_0, \ \tau \in \mathcal{C}^l(I), \ 0 < \kappa < \mathcal{C}^{l+1}(I).$

- (1) Dann existiert eine \mathcal{C}^{l+3} -Parametrisierung $\gamma:I\to\mathbb{R}^3$ nach der Bogenlänge mit $\kappa_\gamma=\kappa$ und $\tau_\gamma=\tau.$
- (2) Haben $\gamma_1, \gamma_2 : I \to \mathbb{R}^3$ die Eigenschaften $\kappa_{\gamma} = \kappa$ und $\tau_{\gamma} = \tau$, so gibt es $A \in SO(3)$ und $x_0 \in \mathbb{R}^3$ mit $\forall t \in I : \gamma_1(t) = A\gamma_2(t) + x_0$, d.h. bis auf Rotation und Translation ist die Kurve eindeutig bestimmt.

Beweis

(1) Für γ gilt nach den Frenet-Gleichungen

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \gamma \\ \vec{t} \\ \vec{\eta} \\ \vec{b} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \kappa & 0 \\ 0 & -\kappa & 0 & \tau \\ 0 & 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \gamma \\ \vec{t} \\ \vec{\eta} \\ \vec{b} \end{pmatrix} \qquad \begin{cases} \gamma(t_0) & = & 0 \\ \vec{t}(t_0) & = & \vec{e}_1 \\ \vec{\eta}(t_0) & = & \vec{e}_2 \\ \vec{b}(t_0) & = & \vec{e}_3 \end{cases}.$$

Nach Picard-Lindelöf existiert genau eine Lösung $(\gamma, \vec{t}, \vec{\eta}, \vec{b}) \in \mathcal{C}^1$. Es gelten sogar $\gamma \in \mathcal{C}^{l+3}$ und $\vec{t} \in \mathcal{C}^{l+2}, \vec{\eta} \in \mathcal{C}^{l+1}, \vec{b} \in \mathcal{C}^{l+1}$. Wir zeigen, dass γ die gewünschten Eigenschaften hat.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}||\vec{t}(t)||^2 &= 2\langle \vec{t}(t), \vec{t}\dot{\cdot}(t)\rangle \overset{\mathrm{Dgl}}{=} 2\langle \vec{t}(t), \kappa \vec{\eta}(t)\rangle = 2\kappa \langle \vec{t}(t), \vec{\eta}(t)\rangle; \\ \frac{\mathrm{d}}{\mathrm{d}t}||\vec{\eta}(t)||^2 &= 2\langle \vec{\eta}(t), \vec{\eta}\dot{\cdot}(t)\rangle \overset{\mathrm{Dgl}}{=} 2\langle \vec{\eta}(t), -\kappa \vec{t}(t) + \tau \vec{b}(t)\rangle = -2\kappa \langle \vec{\eta}(t), \vec{t}(t)\rangle + 2\tau \langle \vec{\eta}(t), \vec{b}(t)\rangle \\ \frac{\mathrm{d}}{\mathrm{d}t}||\vec{b}(t)||^2 &= 2\langle \vec{b}(t), \vec{b}\dot{\cdot}(t)\rangle \overset{\mathrm{Dgl}}{=} 2\langle \vec{b}(t), -\tau \vec{\eta}(t)\rangle = -2\tau \langle \vec{b}(t), \vec{\eta}(t)\rangle; \\ \frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{t}(t), \vec{\eta}(t)\rangle &= \langle \kappa \vec{\eta}(t), \vec{\eta}(t)\rangle + \langle \vec{t}(t), -\kappa \vec{t}(t) + \tau \vec{b}(t)\rangle = \kappa ||\vec{\eta}(t)||^2 - \kappa ||\vec{t}(t)||^2 + \tau \langle \vec{t}(t), \vec{b}(t)\rangle \\ \frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{t}(t), \vec{b}(t)\rangle &= \langle \kappa \vec{\eta}(t), \vec{b}(t)\rangle + \langle \vec{t}(t), -\tau \vec{\eta}(t)\rangle = \kappa \langle \vec{\eta}(t), \vec{b}(t)\rangle - \tau \langle \vec{t}(t), \vec{\eta}(t)\rangle \\ \frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{\eta}(t), \vec{b}(t)\rangle &= \langle -\kappa \vec{t}(t) + \tau \vec{b}(t), \vec{b}(t)\rangle + \langle \vec{\eta}(t), -\tau \vec{\eta}(t)\rangle = -\kappa \langle \vec{t}(t), \vec{b}(t)\rangle + \tau ||\vec{b}(t)||^2 - \tau ||\vec{\eta}(t)||^2. \end{split}$$

In Matrix-Vektor-Form:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} ||\vec{t}(t)||^2 \\ ||\vec{\eta}(t)||^2 \\ ||\vec{b}(t)||^2 \\ \langle \vec{t}(t), \vec{\eta}(t) \rangle \\ \langle \vec{\eta}(t), \vec{b}(t) \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2\kappa & 0 & 0 \\ 0 & 0 & 0 & -2\kappa & 0 & 2\tau \\ 0 & 0 & 0 & 0 & 0 & -2\tau \\ -\kappa & \kappa & 0 & 0 & \tau & 0 \\ 0 & 0 & 0 & -\tau & 0 & \kappa \\ 0 & -\tau & \tau & 0 & -\kappa & 0 \end{pmatrix} \begin{pmatrix} ||\vec{t}(t)||^2 \\ ||\vec{\eta}(t)||^2 \\ ||\vec{b}(t)||^2 \\ \langle \vec{t}(t), \vec{\eta}(t) \rangle \\ \langle \vec{t}(t), \vec{b}(t) \rangle \end{pmatrix} \qquad \begin{pmatrix} ||\vec{t}(t_0)||^2 \\ ||\vec{\eta}(t_0)||^2 \\ ||\vec{b}(t_0)||^2 \\ \langle \vec{t}(t_0), \vec{\eta}(t_0) \rangle \\ \langle \vec{t}(t_0), \vec{b}(t_0) \rangle \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

Man sieht leicht, dass $(1,1,1,0,0,0)^T$ eine Lösung dieses Anfangswertproblems ist, d.h. nach dem Eindeutigkeitssatz:

$$\forall t \in I(\gamma) : \begin{pmatrix} ||\vec{t}(t)||^2 \\ ||\vec{\eta}(t)||^2 \\ ||\vec{b}(t)||^2 \\ \langle \vec{t}(t), \vec{\eta}(t) \rangle \\ \langle \vec{\eta}(t), \vec{b}(t) \rangle \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Damit ist $\{\vec{t}(t), \vec{\eta}(t), \vec{b}(t)\}$ für alle Zeiten $t \in I(\gamma)$ eine Orthonormalbasis. Weiter gelten:

- (a) $\vec{b}(t_0) = \vec{t}(t_0) \times \vec{\eta}(t_0)$, also $\vec{b} = \vec{t} \times \vec{\eta}$ (andernfalls müsste $\vec{b}(t) = -\vec{t}(t) \times \vec{\eta}(t)$ sein für ein $t \ge 0$; ein stetiger Vorzeichenwechsel ist aber nicht möglich, da die Vektoren normiert sind.).
- (b) γ ist eine Bogenlängenparametrisierung: Nach der Dgl. ist $\dot{\gamma}(t) = \vec{t}(t)$, d.h. $||\dot{\gamma}(t)|| = ||\vec{t}(t)|| = 1$ für alle t.
- (c) $\vec{\eta} = \vec{\eta}_{\gamma}$ und $\kappa = \kappa_{\gamma}$, denn $\ddot{\gamma}(t) = \vec{t}(t) = \kappa \vec{\eta}(t)$ ($\kappa > 0$). Damit auch $\vec{b} = \vec{b}_{\gamma}$ wegen $\vec{b} = \vec{t} \times \vec{\eta}$.
- (d) $\tau = \tau_{\gamma}$, denn nach der Dgl gilt

$$\tau_{\gamma} = \langle \vec{\eta_{\gamma}}, \vec{b}_{\gamma} \rangle = \langle -\kappa \vec{t_{\gamma}} + \tau \vec{b_{\gamma}}, \vec{b_{\gamma}} \rangle = \tau \langle \vec{b_{\gamma}}, \vec{b_{\gamma}} \rangle = \tau.$$

(2) Seien $\gamma_1 = \gamma$ aus (1) und $A \in SO(3)$ mit

$$A\vec{t}_{\gamma_2}(t_0) = \vec{e}_1$$
 $A\vec{\eta}_{\gamma_2}(t_0) = \vec{e}_2$ $A\vec{b}_{\gamma_2}(t_0) = \vec{e}_3.$

Setze $\sigma(t) := A(\gamma_2(t) - \gamma_2(t_0))$, dann

$$\begin{cases} \dot{\sigma}(t) &=& A(\dot{\gamma}_2(t)) & & \vec{t}_{\sigma}(t_0) &=& \dot{\sigma}(t_0) = \vec{e}_1 \\ \ddot{\sigma}(t) &=& A(\ddot{\gamma}_2(t)) & & \vec{\eta}_{\sigma}(t_0) &=& \vec{e}_2 \\ \sigma(t_0) &=& 0 & & \vec{b}_{\sigma}(t_0) &=& \vec{e}_1 \times \vec{e}_2 = \vec{e}_3 \end{cases} .$$

Damit ist σ eine Lösung der Dgl.; nach dem Eindeutigkeitssatz also $\sigma \equiv \gamma$, d.h.

$$\forall t \in I : \gamma(t) = A^{-1}\gamma(t) + \gamma_2(t_0).$$

Bemerkung 1.71

SO(3), die "spezielle Gruppe der orthogonalen Matrizen", ist die Menge aller $A \in \mathbb{R}^{3\times 3}$ mit det(A) = 1 und $A^T = A^{-1}$. Die Elemente von SO(3) beschreiben die Drehungen im \mathbb{R}^3 .

Beispiel 1.72

Seien $\gamma_1(t) := (\cos(t), \sin(t))$ und $\gamma_2(t) := (\cos(t), -\sin(t))$. Dann $\varkappa_{\gamma_1} \equiv +1$, $\varkappa_{\gamma_2} \equiv -1$ und $\gamma_2 \equiv A\gamma_1$ mit $A := \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}$. Wegen $\det(A) = -1$ ist $A \notin SO(2)$.

Aufgefasst als Raumkurve sind dagegen $\kappa_{\gamma_1} \equiv 1 \equiv \kappa_{\gamma_2}$ und $\tau_{\gamma_1} \equiv 0 \equiv \tau_{\gamma_2}$ sowie

$$\begin{pmatrix} \gamma_2^{(1)} \\ \gamma_2^{(2)} \\ 0 \end{pmatrix} = \underbrace{\begin{pmatrix} +1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}}_{-:A} \begin{pmatrix} \gamma_1^{(1)} \\ \gamma_1^{(2)} \\ 0 \end{pmatrix}$$

mit $\det(A) = +1$ und $A^T = A^{-1}$, d.h. $A \in SO(3)$.

Korollar 1.73

Eine C^3 -Frenet-Raumkurve mit konstanter Krümmung $\kappa > 0$ und konstanter Torsion τ geht durch Verschiebung und Anwendung einer Abbildung aus SO(3) hervor aus einem Teil der Schraubenlinie

$$\gamma(t) := \left(\frac{\kappa}{\kappa^2 + \tau^2} \cos(t), \frac{\kappa}{\kappa^2 + \tau^2} \sin(t), \frac{\tau}{\kappa^2 + \tau^2} t\right).$$

Martin Gubisch 23 SS 2009

1.9 Der Satz von Fenchel

DEFINITION 1.74

Sei Γ eine \mathcal{C}^2 -Kurve im \mathbb{R}^n mit Parametrisierung $\gamma:[a,b]\to\mathbb{R}^n$.

$$\kappa_{\text{tot}}(\Gamma) := \int_{a}^{b} \kappa_{\gamma}(t) ||\dot{\gamma}(t)|| \, \mathrm{d}t$$

heißt die Raumkrümmung von Γ .

Die *Indikatrix* einer \mathcal{C}^1 -Parametrisierung γ im \mathbb{R}^n ist die Abbildung

$$\gamma_{\mathrm{ind}}: I(\gamma) \to \mathbb{S}^{n-1}, \ t \mapsto \gamma_{\mathrm{ind}}(t) := \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} = \vec{t}_{\gamma}(t).$$

Bemerkung 1.75

 $\kappa_{\rm tot}(\Gamma)$ ist wohldefiniert, d.h. unabhängig von der gewählten Parametrisierung.

LEMMA 1.76

Seien Γ eine geschlossene Kurve im \mathbb{R}^n und γ eine L-periodische Parametrisierung. Dann gelten:

- (1) Spur (γ_{ind}) ist in keiner offenen Hemisphäre (d.h. Halbkugelschale ohne "Äquator") von \mathbb{S}^{n-1} enthalten.
- (2) $\operatorname{Spur}(\gamma_{\operatorname{ind}})$ ist genau dann in einer abgeschlossenen Hemisphäre von \mathbb{S}^{n-1} enthalten, wenn $\operatorname{Spur}(\gamma) \subseteq \{x_0\} + V$ für ein $x_0 \in \mathbb{R}^n$ und einen (n-1)-dimensionalen Unterraum $V \subseteq \mathbb{R}^n$.

BEWEIS

Œ sei γ Parametrisierung nach der Bogenlänge mit Periode L. Nehmen wir an, dass Spur $(\gamma_{\text{ind}}) \subseteq \mathbb{S}^{n-1}$, Œ in der oberen Hemisphäre, d.h. Spur $(\gamma_{\text{ind}}) \subseteq \mathbb{S}^{n-1} \cap \{x \in \mathbb{R}^n \mid x_n \geq 0\}$. Dann ist $\dot{\gamma}_n \geq 0$ auf ganz $I(\gamma)$. Wegen $\int_0^L \dot{\gamma}_n(t) \, dt = \gamma_n(L) - \gamma_n(0) = 0$ folgt dann, dass sogar $\dot{\gamma}_n \equiv 0$. Damit sind (1) und \Rightarrow in (2) gezeigt.

Sei nun Spur $(\gamma) \subseteq \{x_0\} + V$, dann gilt für $\nu \in \mathbb{S}^{n-1} \cap V^{\perp}$, dass $\langle \gamma(t), \nu \rangle = \text{const.}$, d.h. $\langle \dot{\gamma}(t), \nu \rangle = 0$ für alle t. Also ist Spur $(\gamma_{\text{ind}}) \subseteq \mathbb{S}^{n-1} \cap \{\nu\}^{\perp} = \mathbb{S}^{n-1} \cap V$, insbesondere also in einer abgeschlossenen Hemisphäre enthalten.

LEMMA 1.77

Sei γ eine L-periodische \mathcal{C}^1 -Parametrisierung nach der Bogenlänge im \mathbb{R}^3 mit $\mathrm{Spur}(\gamma)\subseteq\mathbb{S}^2$.

Ist $L < 2\pi$ (bzw. $L = 2\pi$), so ist Spur(γ) in einer offenen (abgeschlossenen) Hemisphäre enthalten.

BEWEIS

Seien $\vec{p}:=\gamma(0)$ und $\vec{q}:=\gamma(\frac{L}{2})$. Œ (nach eventueller Drehung) seien $\vec{p},\vec{q},\vec{N}\in\{x\in\mathbb{S}^2\mid x_2=0\}$, wobei $\vec{N}:=(0,0,1)$ (der "Nordpol"). Weiter gelte $||\vec{p}-\vec{N}||=||\vec{q}-\vec{N}||$, d.h. $\vec{p}=(a,0,b)$ und $\vec{q}=(-a,0,b)$ für gew. $a,b\in\mathbb{R}$. Œ sei $\gamma([0,\frac{L}{2}])\cap\{x\in\mathbb{S}^2\mid x_3=0\}\neq\emptyset$ (sonst ist nichts zu zeigen). Definiere $A:\mathbb{R}^3\to\mathbb{R}^3,\ (x_1,x_2,x_3)\mapsto(-x_1,-x_2,x_3)$. Dann sind $A\vec{p}=\vec{q}$ und $A\vec{q}=\vec{p}$, d.h.

$$\tilde{\gamma}(t) := \left\{ \begin{array}{ll} \gamma(t) & 0 \leq t \leq \frac{L}{2} \\ A\gamma(t-\frac{L}{2}) & \frac{L}{2} \leq t \leq L \end{array} \right.$$

definiert eine L-periodische, stückweise \mathcal{C}^1 -Kurve mit $L(\tilde{\gamma}|_{[0,L]}) = L$, $[\tilde{\gamma}]$ geschlossen und Spur $(\tilde{\gamma})$ invariant unter A, es gibt daher zwei Punkte $\vec{p_1}, \vec{p_2} \in \operatorname{Spur}(\tilde{\gamma}) \cap \{x \in \mathbb{S}^2 \mid x_3 = 0\}$ mit $A\vec{p_1} = \vec{p_2}$.

Wir verwenden jetzt, dass die kürzeste Verbindung zweier diagonal gegenüber liegender Punkte die Länge π hat. Da $\tilde{\gamma}|_{[0,L]}$ sich zusammensetzt aus der Verbindung von $\vec{p_1}$ und $\vec{p_2}$ und der von $\vec{p_1}$ nach $\vec{p_2}$, folgt $L = L(\tilde{\gamma}|_{[0,L]}) \geq \pi + \pi = 2\pi$, wobei "=" nur gilt, wenn Spur($\tilde{\gamma}$) auf einem Großkreis liegt. Dann liegt Spur(γ) aber auf dem selben Großkreis, d.h. Rand einer Hemisphäre.

SATZ 1.78 (Fenchel)

Seien Γ eine geschlossene \mathcal{C}^2 -Frenet-Raumkurve und γ eine L-periodische Parametrisierung von Γ . Dann ist $\kappa_{\mathrm{tot}} \geq 2\pi$ und es gilt "=" genau dann, wenn Γ eben, einfach geschlossen (und konvex) ist.

BEWEIS

Œ sei γ eine Bogenlängenparametrisierung. Nach Lemma 1.76 (1) ist Spur (γ_{ind}) nicht Teilmenge einer offenen Hemisphäre. Mit Lemma 1.77 folgt: $L(\gamma_{\text{ind}}|_{[0,L]}) \geq 2\pi$, d.h.

$$2\pi \leq \int_0^L ||\dot{\gamma}_{\mathrm{ind}}(t)|| \, \mathrm{d}t = \int_0^L ||\ddot{\gamma}(t)|| \, \, \mathrm{d}t = \int_0^L \kappa_{\gamma}(t) \, \, \mathrm{d}t = \kappa_{\mathrm{tot}}(\Gamma).$$

Dabei gilt "=" genau dann, wenn γ_{ind} ein einfach durchlaufener Großkreis ist.

Also ist $\operatorname{Spur}(\gamma_{\operatorname{ind}})$ in einer abgeschlossenen Hemisphäre von \mathbb{S}^{n-1} enthalten; mit Lemma 1.76 (2) folgt, dass $\operatorname{Spur}(\gamma) \subseteq \{x_0\} + V$ für ein $x_0 \in \mathbb{R}^n$ und einen 2-dimensionalen Unterraum V des \mathbb{R}^3 .

Damit ist γ eben und einfach geschlossen.

Für Frenet-Raumkurven gilt außerdem $\kappa_{\gamma} > 0$, d.h. $|\varkappa_{\gamma}| \equiv \kappa_{\gamma} > 0$; nach Satz 1.42 ist Γ also konvex.

Martin Gubisch 25 SS 2009

1.10 Frenetkurven in höheren Dimensionen

Definition 1.79

Eine C^{n-1} -Kurve Γ im \mathbb{R}^n heißt *Frenetkurve*, falls für eine Parametrisierung γ von Γ und alle $t \in I(\gamma)$ gilt: $\{\dot{\gamma}(t), \ddot{\gamma}(t), ..., \gamma^{(n-1)}(t)\}$ ist linear unabhängig.

Bemerkung 1.80

Nach Satz 1.54 ist diese Eigenschaft unabhängig von der Parametrisierung γ .

SATZ 1.81

Sei $\Gamma = [\gamma]$ eine Frenetkurve. Dann gibt es Funktionen $\vec{e}^1_{\gamma},...,\vec{e}^n_{\gamma}: I(\gamma) \to \mathbb{R}^n$ mit:

- (1) $\vec{e}_{\gamma}^{j} \in \mathcal{C}^{1}(I(\gamma), \mathbb{R}^{n}), \ j = 1, ..., n;$
- (2) $\langle \vec{e}_{\gamma}^{i}, \vec{e}_{\gamma}^{j} \rangle = \delta_{ij}, i, j = 1, ..., n;$
- (3) $\gamma^{(j)}(t) \in \text{span}(\vec{e}_{\gamma}^{1}(t), ..., \vec{e}_{\gamma}^{j}(t)), \ j = 1, ..., n-1, \ t \in I(\gamma);$
- (4) die Basen $(\dot{\gamma}(t),...,\gamma^{(j)}(t))$ und $(\vec{e}_{\gamma}^{1}(t),...,\vec{e}_{\gamma}^{j}(t))$ sind gleich orientiert, j=1,...,n-1;
- (5) die Basis $(\vec{e}_{\gamma}^{1}(t),...,\vec{e}_{\gamma}^{n}(t))$ ist positiv orientiert.

Die $\vec{e}_{\gamma}^1, ..., \vec{e}_{\gamma}^n$ sind durch (1)-(5) eindeutig bestimmt. $(\vec{e}_{\gamma}^1, ..., \vec{e}_{\gamma}^n)$ heißt begleitendes Dreibein.

Ist φ eine orientierungserhaltende Parametertransformation, so ist $\vec{e}_{\gamma \circ \varphi}^j = \vec{e}_{\gamma}^j \circ \varphi, \ j = 1, ..., n.$

Beweis (Orthonormalisierungsverfahren von Gram und Schmidt)

Definiere $\vec{e}_{\gamma}^1(t) := \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}$ und $\vec{e}_{\gamma}^j(t) := \frac{e^j(t)}{||e^j(t)||}$ mit

$$e^{j}(t) := \gamma^{(j)}(t) - \sum_{i=1}^{j-1} \langle \gamma^{(j)}(t), \vec{e}_{\gamma}^{i}(t) \rangle \vec{e}_{\gamma}^{i}(t)$$

die Orthogonalprojektion auf den von $\{\vec{e}_{\gamma}^1(t),...,\vec{e}_{\gamma}^{j-1}(t)\}$ aufgespannten Unterraum. Dies liefert $\vec{e}_{\gamma}^1,....\vec{e}_{\gamma}^{n-1}$. Die letzte Funktion erhält man als Lösung von

$$\left\{ \begin{array}{rcl} \langle \vec{e}_{\gamma}^{j}(t),x\rangle & = & 0 & j=1,...,n-1 \\ \det(\vec{e}_{\gamma}^{1}(t),...,\vec{e}_{\gamma}^{n-1}(t),x) & = & 1 \end{array} \right. . . . \blacksquare$$

SATZ 1.82 (Frenet-Gleichungen)

Sei $\Gamma = [\gamma]$ eine Frenetkurve im \mathbb{R}^n . Dann gelten:

$$\begin{split} (\bar{e}_{\gamma}^{j})\dot{\cdot}(t) &=& \sum_{i=1}^{n}\langle(\bar{e}_{\gamma}^{j})\dot{\cdot}(t),\bar{e}_{\gamma}^{i}(t)\rangle\bar{e}_{\gamma}^{i}(t),\ j=1,...,n\\ \langle(\bar{e}_{\gamma}^{j})\dot{\cdot}(t),\bar{e}_{\gamma}^{i}(t)\rangle &=& -\langle\bar{e}_{\gamma}^{j}(t),(\bar{e}_{\gamma}^{i})\dot{\cdot}(t)\rangle,\ i,j=1,...,n;\\ \langle(\bar{e}_{\gamma}^{j})\dot{\cdot}(t),\bar{e}_{\gamma}^{i}(t)\rangle &=& 0\ \text{für}\ |i-j|\geq 2. \end{split}$$

BEWEIS

Zur ersten Gleichung: Dies folgt direkt aus der Basisdarstellung.

Zur zweiten Gleichung: Leite $\langle \vec{e}_{\gamma}^{i}(t), \vec{e}_{\gamma}^{j}(t) \rangle = \delta_{ij}$ ab:

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \langle \vec{e}_{\gamma}^{i}(t), \vec{e}_{\gamma}^{j}(t) \rangle = \langle (\vec{e}_{\gamma}^{i})^{\cdot}(t), \vec{e}_{\gamma}^{j}(t) \rangle + \langle \vec{e}_{\gamma}^{i}(t), (\vec{e}_{\gamma}^{j})^{\cdot}(t) \rangle.$$

Zur dritten Gleichung: Wegen $\vec{e}_{\gamma}^{j}(t) \in \text{span}\{\dot{\gamma}(t),...,\gamma^{(j)}(t)\}$ gilt:

$$(\vec{e}_{\gamma}^{j})\dot{\cdot}(t) \in \operatorname{span}\{\dot{\gamma}(t),...,\gamma^{j+1}(t)\} = \operatorname{span}\{\vec{e}_{\gamma}^{1}(t),...,\vec{e}_{\gamma}^{j+1}(t)\}.$$

Mit (2) folgt "=".

DEFINITION 1.83

Sei $\Gamma=[\gamma]$ eine Frenetkurve im \mathbb{R}^n . Für j=1,...,n-1 heißt $\kappa_\gamma^j:I(\gamma)\to\mathbb{R}$ mit

$$\kappa_{\gamma}^{j}(t) := \frac{\langle (\vec{e}_{\gamma}^{j})^{\cdot}(t), \vec{e}_{\gamma}^{j+1}(t) \rangle}{||\dot{\gamma}(t)||}$$

die j-te Krümmungsfunktion von γ und $\kappa_{\Gamma}^j := [\kappa_{\gamma}^j]$ die j-te Krümmungsfunktion von Γ .

Bemerkung 1.84

 κ_{Γ}^{j} ist wohldefiniert, d.h. unabhängig von der Parametrisierung $\gamma~(j=1,...,n-1).$

LEMMA 1.85

Seien $\Gamma = [\gamma]$ eine Frenetkurve im \mathbb{R}^n und $j \in \{1,...,n-2\}$. Dann ist $\kappa_{\gamma}^j > 0$.

Beweis

Nach Konstruktion der \vec{e}_{γ}^{i} existieren a_{ij}, b_{ij} mit $a_{ij} = \frac{1}{b_{ij}} > 0$ und

$$\gamma^{(i)}(t) = \sum_{k=1}^{i} a_{ki}(t) \vec{e}_{\gamma}^{k}(t),$$
$$\vec{e}_{\gamma}^{j}(t) = \sum_{i=1}^{j} b_{ij}(t) \gamma^{(i)}(t)$$

für alle $t \in I(\gamma)$. Damit ist

$$\kappa_{\gamma}^{j}(t)||\dot{\gamma}(t)|| = \langle (\vec{e}_{\gamma}^{j})\dot{\gamma}(t), \vec{e}_{\gamma}^{j+1}(t) \rangle$$

$$= \left\langle \sum_{i=1}^{j} \dot{b}_{ij}(t)\gamma^{(i)}(t) + b_{ij}(t)\gamma^{(i+1)}(t), \vec{e}_{\gamma}^{j+1}(t) \right\rangle$$

$$= \left\langle \sum_{i=1}^{j} \left(\dot{b}_{ij}(t) \sum_{k=1}^{i} a_{ki}(t) \vec{e}_{\gamma}^{k}(t) + b_{ij}(t) \sum_{k=1}^{i+1} a_{k,i+1}(t) \vec{e}_{\gamma}^{k}(t) \right), \vec{e}_{\gamma}^{j+1}(t) \right\rangle$$

$$\stackrel{\text{ONB}}{=} b_{jj}(t) a_{j+1,j+1}(t) \underbrace{\langle \vec{e}_{\gamma}^{j+1}(t), \vec{e}_{\gamma}^{j+1}(t) \rangle}_{=1}$$

$$> 0$$

Bemerkung 1.86

Für Frenet-Raumkurven sind $\kappa_{\gamma}^1 \equiv \kappa_{\gamma}$ und $\kappa_{\gamma}^2 \equiv \tau_{\gamma}$.

2 Untermannigfaltigkeiten des \mathbb{R}^n

2.1 Charakterisierungen von Untermannigfaltigkeiten

Wiederholung 2.1

Seien X, Y Banachräume, $U \subseteq X$ offen und $f: X \to Y$ eine Abbildung. f heißt differenzierbar im Punkt $x_0 \in U$, falls ein $A \in \mathcal{L}(X,Y)$ und ein $\epsilon > 0$ existieren mit

$$\forall ||x|| < \epsilon : f(x_0 + x) - f(x_0) = Ax + \mathcal{O}(||x||),$$

d,h,

$$\frac{||f(x_0+x) - f(x_0) - Ax||}{||x||} \stackrel{||x|| \to 0}{\to} 0.$$

Wir schreiben $f'(x_0) := \mathrm{d}f(x_0) := A$ und nennen $f'(x_0)$ die *Ableitung* bzw. das *Differenzial* von f in x_0 . f heißt stetig differenzierbar auf $U \subseteq X$ (" $f \in \mathcal{C}^1(U,Y)$ "), wenn f für alle $x_0 \in U$ differenzierbar ist und $f': U \to \mathcal{L}(X,Y)$ stetig ist. Iterativ erhält man die Räume $\mathcal{C}^k(U,Y)$, $k \in \mathbb{N} \subseteq \{\infty\}$. Die $f \in \mathcal{C}^\infty(U,Y)$ heißen glatte Funktionen.

Für $X = \mathbb{R}^m$ und $Y = \mathbb{R}^n$ ist $f \in \mathcal{C}^k(U, Y)$ genau dann, wenn f k-mal stetig partiell differenzierbar ist. Das Differenzial d $f(x_0)$ ($x_0 \in U$) hat bzgl. der kanonischen Basen die Matrixdarstellung

$$\mathcal{J}_{f}(x_{0}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(x_{0}) & \cdots & \frac{\partial f_{1}}{\partial x_{m}}(x_{0}) \\ \vdots & & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(x_{0}) & \cdots & \frac{\partial f_{n}}{\partial x_{m}}(x_{0}) \end{pmatrix} = \left(\frac{\partial f}{\partial x_{1}}(x_{0}), \dots, \frac{\partial f}{\partial x_{m}}(x_{0})\right) \in \mathbb{R}^{n \times m}$$

mit $f = (f_1, ..., f_n), \ f_1, ..., f_n : U \subseteq \mathbb{R}^m \to \mathbb{R}.$ $\mathcal{J}_f(x_0)$ heißt die Jacobimatrix von f in x_0 .

Definition 2.2

Seien $m, n \in \mathbb{N}$, $m \le n$ und $M \subseteq \mathbb{R}^n$. Dann heißt M eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n , falls zu jedem $p \in M$ offene $V, W \subseteq \mathbb{R}^n$ und ein C^{∞} -Diffeomorphismus $\chi : V \to W$ existieren mit $p \in V$ und $\chi(V \cap M) = (\mathbb{R}^m \times \{0\}^{n-m}) \cap W = \{(x,0) \in W \mid x \in \mathbb{R}^m\}.$

Jedes solche χ (bzw. Tripel (χ, V, W)) heißt eine Karte von M und $V \cap M$ ihr Kartengebiet.

Für m = n - 1 spricht man von *Hyperflächen* des \mathbb{R}^n .

Beispiel 2.3

Offene Teilmengen des \mathbb{R}^n sind n-dimensionale Untermannigfaltigkeiten.

(2) Seien Ω offen, $u: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$ glatt \Rightarrow Graph $(u) := \{(x, u(x)) \mid x \in \Omega\}$ ist eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^{m+n} .

Setze dazu $V=W=\Omega\times\mathbb{R}^n$ und $\chi:V\to W,\ (x,y)\mapsto (x,u(x)-y).$ In dem Fall ist das Kartengebiet $\chi(V\cap M)$ die Projektion des Graphen auf das Definitionsgebiet.

Definition 2.4

Seien $f: U \subseteq X \to Y$ differenzierbar und $x \in X, y \in Y$.

x heißt ein regulärer Punkt von f, falls df(x) surjektiv ist.

y heißt ein regulärer Wert von f, falls alle $x \in f^{-1}(\{y\})$ reguläre Punkte von f sind.

SATZ 2.5

Seien $M \subseteq \mathbb{R}^n$ und $d \leq n$. Dann sind äquivalent:

- (1) M ist eine (n-d)-dimensionale Untermannigfaltigkeit des \mathbb{R}^n .
- (2) Für jedes $p \in M$ gibt es eine offene Umgebung $U \subseteq \mathbb{R}^n$ von p und ein $f \in \mathcal{C}^{\infty}(U, \mathbb{R}^d)$ mit $M \cap U = f^{-1}(\{y\})$ für einen reg. Wert y.

BEWEIS

- \Rightarrow : Sei χ wie in Definition 2.2. Setze $f := (\chi_{n-d+1}, ..., \chi_n) : V \to \mathbb{R}^d$, dann sind die Zeilen von f' in jedem Punkt $x_0 \in V$ linear unabhängig, d.h. $\forall x_0 \in V : f'(x_0)$ surjektiv. Weiter ist $M \cap V = f^{-1}(\{0\})$.
- \Leftarrow : Seien $f = (f_1, ..., f_d)$ und Œ y = 0 vorgegeben. Wähle $v_1, ..., v_{n-d} \in \mathbb{R}^n$ derart, dass für ein $a \in V$ $(v_1, ..., v_{n-d}, \nabla f_1(a), ..., \nabla f_d(a))$ eine Basis des \mathbb{R}^n bildet. Setze

$$\chi(x) := (\langle v_1, x \rangle, ..., \langle v_{n-d}, x \rangle, f_1(x), ..., f_d(x)) \quad \Rightarrow \quad \chi'(x) = \begin{pmatrix} v_1^T \\ ... \\ v_{n-d}^T \\ \nabla f_1(x) \\ ... \\ \nabla f_d(x) \end{pmatrix},$$

d.h. $\chi'(a)$ ist invertierbar. Nach dem Satz über inverse Funktionen gibt es ein offenes $V \subseteq U$, so dass $\chi: V \to W := \chi(V)$ ein \mathcal{C}^{∞} -Diffeomorphismus ist.

Beispiel 2.6

- (1) $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n \mid ||x|| = 1\}$ ist eine Hyperfläche in \mathbb{R}^n , denn $\mathbb{S}^{n-1} = f^{-1}(\{1\})$ mit $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) := ||x||^2$; $(\nabla f)(x) = 2x^T \neq 0$ für alle $x \neq 0$.
- (2) Sei $g:(0,\infty)^2\to\mathbb{R}$ glatt mit regulärem Wert 0. Dann ist

$$M := \{x = (x_1, x') \in \mathbb{R}^n \mid a < x_1 < b, \ x' \neq 0, \ g(x_1, ||x'||) = 0\}$$

eine Untermannigfaltigkeit des \mathbb{R}^n (eine *Rotationsfläche*). Konkretes Beispiel: Der Torus.

(3) Die orthogonale Gruppe $\mathcal{O}(n) := \{A \in \mathbb{R}^{n \times n} \mid A^T A = I\}$ ist eine Untermannigfaltigkeit des $\mathbb{R}^{n \times n}$ der Dimension $\frac{1}{2}n(n-1)$.

Setze dazu $X := \mathbb{R}^{n \times n}$, $Y := \{A \in \mathbb{R}^{n \times n} \mid A^T = A\}$, d.h. Y hat die Dimension $1 + \ldots + n = \frac{1}{2}n(n+1)$. Definiere $f : X \to Y$ durch $f(A) := A^T A$, dann ist f stetig differenzierbar mit Ableitung $\mathrm{d}f(A) : X \to Y$, $H \mapsto A^T H + H^T A$. I ist ein regulärer Wert von f, denn für $A \in f^{-1}(\{I\}) = \mathcal{O}(n)$ gilt

$$\forall S \in Y: \mathrm{d}f(A)\left(\frac{1}{2}AS\right) = A^T\left(\frac{1}{2}AS\right) + \frac{1}{2}\left(AS\right)^TA = \frac{1}{2}S + \frac{1}{2}S^T \stackrel{S = S^T}{=} S.$$

Also hat M die Dimension $n^2 - (\frac{1}{2}(n^2 + n)) = \frac{1}{2}n(n-1)$.

SATZ 2.7

Seien $M \subseteq \mathbb{R}^n$ und $m \le n$. Dann sind äquivalent:

- (1) M ist eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n .
- (2) Für alle $p \in M$ existiert ein offenes $U \subseteq \mathbb{R}^m$ und ein $\varphi \in \mathcal{C}^{\infty}(U, M)$ mit $p \in \varphi(U)$ und
 - (i) $\varphi: U \to \varphi(U)$ ist ein Homöomorphismus (in der Spurtopologie);
 - (ii) $d\varphi(x)$ ist injektiv für alle $x \in U$.
- (i) ist äquivalent zu (i') Für alle $U' \subseteq U$ existiert ein offenes $O \subseteq \mathbb{R}^n$ mit $\varphi(U') = M \cap O$.

Jedes solche φ (bzw. Paar (U,φ)) heißt eine lokale Parametrisierung oder auch ein lokales Koordinatensystem von M bei p. $\varphi(U)$ heißt eine Koordinatenumgebung von p und $x=(x_1,...,x_n)$ heißt der Koordinatenvektor des Punktes $\varphi(x)$ bzgl. φ .

BEWEIS

- \Rightarrow : Sei (χ, V, W) wie in Definition 2.2. Setze $U := \{x \in \mathbb{R}^m \mid (x, 0) \in W\}, \ \varphi(x) := \chi^{-1}(\{(x, 0)\}).$
- \Leftarrow : Seien $x^* \in U$ mit $p = \varphi(x^*)$ und Œ (gegebenenfalls nach Umnummerierung der Variablen) $(\nabla \varphi_1(x^*), ..., \nabla \varphi_m(x^*))$ linear unabhängig.

Definiere $\psi: U \times \mathbb{R}^{n-m} \subset \mathbb{R}^n \to \mathbb{R}^n$ durch

$$\psi(x_1,...,x_n) := \varphi(x_1,...,x_m) + (0,...,0,x_{m+1},...,x_n).$$

Martin Gubisch 29 SS 2009

Dann

$$\psi'(x^*,0) = \begin{pmatrix} \nabla \varphi_1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ \nabla \varphi_m & 0 & \cdots & 0 \\ \hline & 1 & & \\ * & & \ddots & \\ & & & 1 \end{pmatrix},$$

d.h. es gibt $V, W \subseteq \mathbb{R}^n$ mit $x^* \in W$ und $\psi : V \to U$ \mathcal{C}^{∞} -Diffeomorphismus. Setze $\chi := \psi^{-1}$.

Bemerkung 2.8

Zu jeder lokalen Parametrisierung (U, φ) und jedem $p \in \varphi(U)$ existiert also eine Karte (χ, V, W) mit $p \in V$ und $\varphi(x) = \chi^{-1}(x, 0)$ auf $\{x \in U \mid (x, 0) \in W\}$.

Beispiel 2.9

Für alle $p \in \mathbb{S}^{n-1}$ gilt $p \in \mathbb{S}^{n-1} \cap H_i^+$ oder $p \in \mathbb{S}^{n-1} \cap H_i^-$, wobei $H_i^{\pm} := \{y \in \mathbb{R}^n \mid \pm y_i > 0\}$. Setze $U := \{x \in \mathbb{R}^{n-1} \mid ||x|| < 1\}$ und definiere $\varphi_i^{\pm} : U \to \mathbb{S}^{n-1} \cap H_i^{\pm}$ durch

$$\varphi_i^{\pm}(x) := (x_1, ..., x_{i-1}, \pm \sqrt{1 - ||x||^2}, x_i, ..., x_{n-1}).$$

Dann sind die φ_i^{\pm} , i=1,...,n-1, lokale Parametrisierungen.

Beispiel 2.10

Weder der Kegel K noch der Doppelkegel K', gegeben durch

$$K := \{x = (x', x_n) \in \mathbb{R}^n \mid ||x'|| = x_n\}$$

$$K' := \{x = (x', x_n) \in \mathbb{R}^n \mid ||x'|| = |x_n|\}$$

sind Untermannigfaltigkeiten des \mathbb{R}^n .

LEMMA 2.11

Seien M eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n und (U, φ) eine lokale Parametrisierung. Weiter seien $O \subseteq \mathbb{R}^n$ offen, $F: O \to \mathbb{R}^n$ mit $F(O) \subseteq \varphi(U)$ und $l \in \mathbb{N} \cup \{\infty\}$. Dann gilt

$$F \in \mathcal{C}^l(O, \mathbb{R}^n) \Leftrightarrow \varphi^{-1} \circ F \in \mathcal{C}^l(O, \mathbb{R}^m).$$

BEWEIS

 \Leftarrow : Klar: $F = \varphi \circ (\varphi^{-1} \circ F) \in \mathcal{C}^l(O, \mathbb{R}^n)$.

 \Rightarrow : Seien $z^* \in O$ und $x^* \in U$ mit $F(z^*) = p = \varphi(x^*)$. Nach Bemerkung 2.8 gibt es dann eine Karte (χ, V, W) mit $p \in V$ und $\varphi(x) = \chi^{-1}((x, 0))$ für alle $x \in U$ mit $||x - x^*|| < \epsilon$ (ϵ passend), d.h.

$$\exists \delta > 0 : \forall w \in O, ||w - z^*|| < \delta : ((\varphi^{-1} \circ F)(w), 0) = (\chi \circ F)(w);$$

da $z^* \in O$ beliebig und $\chi \circ F \in \mathcal{C}^l$, also auch $\varphi^{-1} \circ F \in \mathcal{C}^l$.

Korollar 2.12

Seien M eine Untermannigfaltigkeit des \mathbb{R}^n und (U,φ) , $(\tilde{U},\tilde{\varphi})$ lokale Parametrisierungen.

Dann ist $\varphi^{-1} \circ \tilde{\varphi} : \tilde{\varphi}^{-1}(\varphi(U) \cap \tilde{\varphi}(\tilde{U})) \to \varphi^{-1}(\varphi(U) \cap \tilde{\varphi}(\tilde{U}))$ ein \mathcal{C}^{∞} -Diffeomorphismus.

BEWEIS

Setze in Lemma 2.11 $F := \varphi^{-1}$.

KOROLLAR 2.13

Für i=1,2 seien M_i Untermannigfaltigkeiten des \mathbb{R}^{n_i} , $f:M_1\to M_2$ stetig und $p_i\in M_i$ mit $p_2=f(p_1)$. Dann sind äquivalent:

(1) Es existieren lokale Parametrisierungen (U_i, φ_i) nahe p_i , so dass

$$\varphi_2^{-1} \circ f \circ \varphi_1 : \varphi_1^{-1}(f^{-1}(\varphi_2(U_2)) \cap \varphi_1(U_1)) \to U_2$$

in einer offenen Umgebung von $\varphi_1^{-1}(p_1)$ eine \mathcal{C}^k -Abbildung ist.

(2) Für alle lokalen Parametrisierungen $(\tilde{U}_i, \tilde{\varphi}_i)$ nahe p_i ist

$$\tilde{\varphi}_2^{-1} \circ f \circ \tilde{\varphi}_1 : \tilde{\varphi}_1^{-1}(f^{-1}(\tilde{\varphi}_2(\tilde{U}_2)) \cap \tilde{\varphi}_1(\tilde{U}_1)) \to \tilde{U}_2$$

in einer offenen Umgebung von $\tilde{\varphi}_1^{-1}(p_1)$ eine \mathcal{C}^k -Abbildung.

In diesem Fall nennen wir $f \, \mathcal{C}^k \, bei \, p_1$. Ist $f \, \mathcal{C}^k \, bei \, \text{jedem} \, p \in M$, dann heißt $f \, \mathcal{C}^k \, auf \, M_1$. Ist $k = \infty$, dann heißt $f \, glatt$.

BEWEIS

Nur $(1) \Rightarrow (2)$ ist zu zeigen. Schreibe dazu mit passendem Definitionsbereich

$$\tilde{\varphi}_2^{-1} \circ f \circ \tilde{\varphi}_1 = \underbrace{(\tilde{\varphi}_2^{-1} \circ \varphi_2)}_{\in \mathcal{C}^{\infty}} \circ \underbrace{(\varphi_2^{-1} \circ f \circ \varphi_1)}_{\in \mathcal{C}^k} \circ \underbrace{(\varphi_1^{-1} \circ \tilde{\varphi}_1)}_{\in \mathcal{C}^{\infty}}.$$

Korollar 2.14

Seien $f: M_1 \to M_2$ eine Abbildung zwischen Untermannigfaltigkeiten und $p_1 \in M_1$.

Dann sind äquivalent:

- (1) f ist \mathcal{C}^k bei p_1 .
- (2) Es gibt offenes $O \subseteq \mathbb{R}^{n_1}$ und $F \in \mathcal{C}^k(O, M_2)$ mit $p_1 \in O$ und $F|_{M_1 \cap O} = f|_{M_1 \cap O}$.

BEWEIS

Seien (χ, V, W) eine Karte von M_1 und $p \in V$. Dann ist nach Satz 2.7

$$\varphi(x_1,...,x_{m_1}) := \chi^{-1}(x_1,...,x_{m_1},0,...,0)$$

eine lokale Parametrisierung auf $U := \{x \in \mathbb{R}^{m_1} \mid (x, 0, ..., 0)\} \in W$.

 \Rightarrow : Für $x \in V$ definiere

$$F(x) := (f \circ \varphi_1)(\chi_1(x), ..., \chi_m(x)).$$

Da f C^k bei p, ist $\varphi_2^{-1} \circ f \circ \varphi_1 \in C^k$ bei $\varphi_1^{-1}(p)$. Nach Lemma 2.11 gibt es damit offenes $O \subseteq V$ mit $p \in O$, so dass $F: O \to M_2$ C^k ist.

⇐: Nach Lemma 2.11 gilt

$$(\varphi_2^{-1} \circ f \circ \varphi_1)(x_1, ..., x_m) = (\underbrace{(\varphi_2^{-1} \circ F)}_{\in \mathcal{C}^k} \circ \underbrace{\chi^{-1}}_{\in \mathcal{C}^\infty})(x_1, ..., x_m, 0, ..., 0).$$

Folgerung 2.15

Die Dimension einer Untermannigfaltigkeit M des \mathbb{R}^n ist eindeutig bestimmt.

BEWEIS

Sei M eine m- und eine \tilde{m} -dimensionale Untermannigfaltigkeit des \mathbb{R}^n . Seien (U, φ) und $(\tilde{U}, \tilde{\varphi})$ zugehörige Parametrisierungen und $O := \varphi(U) \cap \tilde{\varphi}(\tilde{U}) \neq \emptyset$. Wir setzen $W := \varphi^{-1}(O) \subseteq \mathbb{R}^m$ und $\tilde{W} := \tilde{\varphi}^{-1}(O) \subseteq \mathbb{R}^{\tilde{m}}$, dann sind $g := \varphi^{-1} \circ \tilde{\varphi} : \tilde{W} \to W$ und $g^{-1} := \tilde{\varphi}^{-1} \circ \varphi : W \to \tilde{W}$ glatt. Außerdem ist $\mathrm{d}g(\tilde{x}) : \mathbb{R}^{\tilde{m}} \to \mathbb{R}^m$ für $\tilde{x} \in \tilde{W}$ ein Isomorphismus, d.h. $m = \tilde{m}$.

2.2 Tangentialebenen und Differenzial

KONVENTION 2.16

Im Folgenden seien M eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n und $p \in M$.

Mit der durch

$$(p, v_1) + (p, v_2) := (p, v_1 + v_2),$$
 $\lambda(p, v) := (p, \lambda v)$

erklärten Addition und Skalarmultiplikation und dem Skalarprodukt

$$\langle (p, v_1), (p, v_2) \rangle := \langle v_1, v_2 \rangle$$

versehen wird der Vektorraum $\{p\} \times \mathbb{R}^n$ zu einem Hilbertraum.

Definition 2.17

Die Menge

$$T_pM:=\{(p,v)\mid v=\dot{\alpha}(0) \text{ für eine Kurve } \alpha\in\mathcal{C}^k(I,\mathbb{R}^n),\ \alpha(I)\subseteq M,\ \alpha(0)=p\}$$

heißt der Tangentialraum an M in p.

Die Elemente von T_pM heißen Tangentialvektoren an M in p.

Bemerkung 2.18

Die Definition ist unabhängig von $k \in \mathbb{N} \cup \{\infty\}$. Insbesondere kann man sich auf glatte Kurven beschränken.

SATZ 2.19

Sei (U, φ) eine lokale Parametrisierung bei $p = \varphi(x_0)$. Dann ist

$$T_p M = \{p\} \times \operatorname{Bild}(\operatorname{d}\varphi(x_0)) = \{p\} \times \operatorname{d}\varphi(x_0)(\mathbb{R}^m).$$

Insbesondere ist T_pM ein m-dimensionaler Untervektorraum. Eine kanonische Basis des T_pM ist

$$((p, d\varphi(x_0)e_1), ..., (p, d\varphi(x_0)e_m)) = ((p, \partial_1\varphi(x_0)), ..., (p, \partial_m\varphi(x_0))).$$

BEWEIS

Für $\alpha_i(t) := \varphi(x_0 + te_i)$ ist $\alpha_i \in \mathcal{C}^{\infty}$ mit $\dot{\alpha}_i(0) = \partial_i \varphi(x_0)$ (i = 1, ..., m), d.h. $(p, \partial_i \varphi(x_0)) \in T_p M$.

Sei nun α \mathcal{C}^k mit $\alpha(I) \subseteq M$ und $\alpha(0) = p$, dann ist nach Lemma 2.11 $\beta := \varphi^{-1} \circ \alpha$ in einer offenen Umgebung von 0 definiert und ebenfalls \mathcal{C}^k . Damit

$$\dot{\alpha}(0) = (\varphi \circ \beta)\dot{}(0) = d\varphi(x_0)\dot{\beta}(0) = \sum_{i=1}^{m} \dot{\beta}_i(0)\partial_i\varphi(x_0),$$

d.h. $T_pM \subseteq \text{span}\{(p, \partial_i \varphi(x_0) \mid i=1,...,m)\}$. Die $\partial_i \varphi(x_0)$ sind nach Satz 2.7 2 (ii) linear unabhängig. Also ist $\dim(T_pM) = m$.

Beispiel 2.20

Sei $M = \operatorname{graph}(u)$ mit $u : \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^{n-m}$ glatt. Dann definiert $\varphi(x) := (x, u(x))$ eine lokale Parametrisierung um beliebiges p := (x, u(x)). Also ist eine Basis des T_pM gegeben durch

$$(((x, u(x)), (e_1, \partial_1 u(x))), ..., ((x, u(x)), (e_m, \partial_m u(x)))).$$

SATZ 2.21

Sei $p \in U \cap M = f^{-1}(\{y\})$ mit y regulärer Wert von $f \in \mathcal{C}^{\infty}(U, \mathbb{R}^{n-m})$.

Dann ist $T_pM=\{p\}\times \mathrm{Kern}(\mathrm{d}f(p))$; insbesondere bildet $((p,\nabla f_1(p)),...,(p,\nabla f_{n-m}(p)))$ eine Basis des orthogonalen Komplements T_pM^\perp von T_pM in $\{p\}\times \mathbb{R}^n$.

BEWEIS

Sei $(p, \dot{\alpha}(0)) \in T_pM$, dann ist $f \circ \alpha \equiv y$ nahe t = 0, d.h.

$$0 = (f \circ \alpha)\dot{}(0) = \mathrm{d}f(p)\dot{\alpha}(0) \Leftrightarrow \dot{\alpha}(0) \perp \nabla f_i(p), \ i = 1, ..., m - n.$$

Da dim $(T_n M^{\perp}) = n - m$ und die $\nabla f_i(p)$ linear unabhängig, folgt die Behauptung.

Beispiel 2.22

Sei $M=\mathrm{graph}(u)$ mit $u:\Omega\subseteq\mathbb{R}^m\to\mathbb{R}^{n-m}$ glatt. Es ist $M=f^{-1}(0)$ für

$$f(x) := (x_{m+1}, ..., x_n) - u(x_1, ..., x_m).$$

Also ist mit p := (x, u(x)) eine Basis von $T_p M^{\perp}$ gegegen durch

$$(((x, u(x)), (e_{m+1} - \nabla u_1(x_1, ..., x_m))), ..., ((x, u(x)), (e_n - \nabla u_{n-m}(x_1, ..., x_m)))).$$

Beispiel 2.23

(1) Für die orthogonale Gruppe $\mathcal{O}(n):=\{A\in\mathbb{R}^{n\times n}\mid f(A):=AA^T=I\}$ gilt $\mathcal{O}(n)=f^{-1}(I)$ und $df(I): A \mapsto A + A^*$, vgl. Beispiel 2.6. Damit ist

$$T_I \mathcal{O}(n) = \{I\} \times \underbrace{\{A \in \mathbb{R}^{n \times n} \mid A + A^* = 0\}}_{\text{Menge der schiefsymm. Matrizen}}.$$

(2) exp: $T_I \mathcal{O}(n) \to \mathcal{O}(n)$, $A \mapsto e^A$ ist wohldefiniert, da $e^A(e^A)^* = e^A e^{A^*} = e^{A+A^*} = e^0 = I$. Also hat jedes $A \in \mathbb{R}^{n \times n}$ mit $A + A^* = 0$ die Gestalt $A = \dot{\alpha}(0)$ mit $\alpha : \mathbb{R} \to \mathcal{O}(n), \ \alpha(t) := \exp(tA)$.

SATZ 2.24

Das Tangentialbündel $T(M):=\bigcup_{p\in M}T_pM$ ist eine 2m-dimensionale Untermannigfaltigkeit des \mathbb{R}^{2n} . Das Normalenbündel $T(M)^{\perp}:=\bigcup_{p\in M}T_pM^{\perp}$ ist eine n-dimensionale Untermannigfaltigkeit des \mathbb{R}^{2n} .

BEWEIS

Sei (χ, V, W) eine Karte. Dann ist (U, φ) mit $\varphi(x) := \chi^{-1}(x, 0), \ x \in U := W \cap \mathbb{R}^m \times \{0\}$ eine lokale Parametrisierung von M. Setze

$$\psi: U \times \mathbb{R}^m \subseteq \mathbb{R}^{2m} \to \mathbb{R}^n \times \mathbb{R}^n, \ \psi(x,y) := (\varphi(x), d\varphi(x)y).$$

Wir zeigen, dass $(U \times \mathbb{R}^m, \psi)$ eine lokale Paramerisierung von T(M) ist.

 ψ ist glatt mit Jacobimatrix

$$\mathrm{d}\psi(x,y) = \begin{pmatrix} \mathrm{d}\varphi(x) & 0 \\ * & \mathrm{d}\varphi(x) \end{pmatrix},$$

ergo ist $d\psi(x,y)$ für alle (x,y) injektiv. Nach Satz 2.19 ist $\psi: U \times \mathbb{R}^m \to T(M \cap V) = \bigcup_{p \in V} T_p M$ bijektiv und außerdem stetig.

Auch ψ^{-1} ist stetig: Definiere $\theta: (V \cap M) \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ durch

$$\theta(y, v) := (\chi(y), d\chi(y)v),$$

dann ist θ stetig, also auch $\theta|_{T(V\cap M)}$ in der Spurtopologie. Außerdem ist

$$(\theta \circ \psi)(x,y) = (\chi(\varphi(x)), \mathrm{d}\chi(\varphi(x))\mathrm{d}\varphi(x)) = ((x,0), \mathrm{d}(\chi \circ \varphi)(x)y) = ((x,0), (y,0)).$$

Mit der Projektion $\pi: \mathbb{R}^m \times \mathbb{R}^{n-m} \times \mathbb{R}^m \times \mathbb{R}^{n-m} \to \mathbb{R}^{2m}, (x, u, y, v) \mapsto (x, y)$ sieht man schließtlich ein, dass $\psi^{-1} = \pi \circ \theta : T(V \cap M) \to \mathbb{R}^{2m}$ stetig ist. Somit wird T(M) parametrisiert durch $(U \times \mathbb{R}^m, \psi)$.

Beim Normalenbündel geht man analog vor.

Martin Gubisch 33 SS 2009

Definition 2.25

Seien M_1, M_2 Untermannigfaltigkeiten des $\mathbb{R}^{n_1}, \mathbb{R}^{n_2}$ und $f: M_1 \to M_2$ \mathcal{C}^1 bei $p \in M_1$.

Dann ist das $Differenzial\ von\ f\ in\ p$ gegeben durch

$$d_p f: T_p M_1 \to T_{f(p)} M_2, \ (p, \dot{\alpha}(0)) \mapsto (f(p), (f \circ \alpha)\dot{}(0)).$$

Bemerkung 2.26

(1) $d_p f(p, \dot{\alpha}(0))$ hängt nur von $\dot{\alpha}(0)$ ab: Nach Korollar 2.14 gibt es ein offenes $O \subseteq \mathbb{R}^{n_1}$ mit $p \in O$ und ein $F \in \mathcal{C}^1(O, \mathbb{R}^{n_2})$ mit F = f auf $O \cap M_1$, also

$$(f \circ \alpha)'(0) = (F \circ \alpha)'(0) = dF(p)\dot{\alpha}(0).$$

(2) Ist zusätzlich $g: M_2 \to M_3$ \mathcal{C}^1 bei f(p), so gilt

$$d_p(g \circ f) = d_{f(p)}g \circ d_p f$$

Denn:

$$\begin{aligned} \mathrm{d}_p(g \circ f)(\dot{\alpha}(0)) &=& (g(f(p)), ((g \circ f) \circ \alpha)\dot{}(0)) \\ &=& \mathrm{d}_{f(p)}g(f(p), (f \circ \alpha)\dot{}(0)) \\ &=& (\mathrm{d}_{f(p)}g \circ \mathrm{d}_p f)(p, \dot{\alpha}(0)). \end{aligned}$$

(3) Sind $M_1, M_2 \subseteq \mathbb{R}^{n_1}, \mathbb{R}^{n_2}$ offen, so sind $TM_1 = M_1 \times \mathbb{R}^{n_1}, TM_2 = M_2 \times \mathbb{R}^{n_2}$. Ist dann $f: M_1 \to M_2$ glatt bei p, so folgt

$$d_p f: \{p\} \times \mathbb{R}^{n_1} \to \{f(p)\} \times \mathbb{R}^{n_2}, \ (p, v) \mapsto (f(p), df(p)v)$$

mit dem üblichen Differenzial df von f.

LEMMA 2.27

Seien M_1, M_2 Untermannigfaltigkeiten des $\mathbb{R}^n_1, \mathbb{R}^{n_2}$ und $f: M_1 \to M_2$ \mathcal{C}^1 bei $p \in M_1$.

Seien $(U_1, \varphi_1), (U_2, \varphi_2)$ lokale Parametrisierungen von M_1, M_2 bei p, f(p). Dann hat $d_p f$ bzgl. der natürlichen Basen von $T_p M_1, T_{f(p)} M_2$ die Matrixdarstellung

$$\operatorname{Mat}(\mathrm{d}_p f) = \mathrm{d}(\varphi_2^{-1} \circ f \circ \varphi_1)(\varphi_1^{-1}(p)).$$

BEWEIS

Seien $p = \varphi_1(x)$, $f(p) = \varphi_2(y)$ und $g := \varphi_2^{-1} \circ f \circ \varphi_1$ mit $dg(x) = (g_{ij})_{1 \le i \le m_2}^{1 \le j \le m_1} \in \mathbb{R}^{m_2 \times m_1}$.

Für die kanonischen Basisvektoren $(\partial_i \varphi_1(x))$ von $T_p M$ gilt dann

$$d_{p}f(p,\partial_{i}\varphi_{1}(x)) = d_{p}f(p,\frac{d}{dt}\varphi_{1}(x+te_{i})|_{t=0})$$

$$= (f(p),\frac{d}{dt}(f\circ\varphi_{1})(x+te_{i})|_{t=0})$$

$$= (f(p),\partial_{i}(\varphi_{2}\circ g)(x))$$

$$= (f(p),d\varphi_{2}(g(x))\partial_{i}g(x))$$

$$= (f(p),\sum_{j=1}^{m_{2}}g_{ij}\partial_{j}\varphi_{2}(y))$$

DEFINITION 2.28

Ein Vektorfeld auf M ist eine Abbildung $X: M \to \mathbb{R}^n \times \mathbb{R}^n$ der Form $X: p \mapsto (p, \tilde{X}(p))$.

Falls $X(p) \in T_pM$ für alle $p \in M$, heißt X tangential; falls $X(p) \in T_pM^{\perp}$ für alle p, heißt X normal.

Wegen $\{p\} \times \mathbb{R}^n \cong \mathbb{R}^n$ identifiziert man X häufig mit $\tilde{X}: M \to \mathbb{R}^n$.

2.3 Immersionen und Einbettungen

Definition 2.29

Sei $\Omega \subseteq \mathbb{R}^m$ offen und $f: \Omega \to \mathbb{R}^n$ eine \mathcal{C}^k -Funktion.

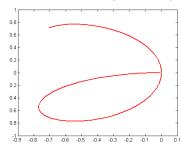
f heißt eine *Immersion*, falls df(x) injektiv ist für jedes $x \in \Omega$ (insbesondere $m \le n$).

f heißt eine *Einbettung*, falls $f:\Omega\to f(\Omega)$ zusätzlich ein Homöomorphismus ist.

Beispiel 2.30

Ist $I \subseteq \mathbb{R}$ ein offenes Intervall, so ist $\gamma : I \to \mathbb{R}^n$ genau dann eine Immersion, wenn $\dot{\gamma}(t) \neq 0$ für alle $t \in I$ gilt, d.h. γ eine reguläre Parametrisierung ist.

Beispiel 2.31 (Kleeblatt)



Durch

$$\gamma(t) := \sin(2t) \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} \qquad (t \in (-\frac{\pi}{4}, \frac{\pi}{2}))$$

wird eine injektive Immersion definiert.

Allerdings ist γ keine Einbettung.

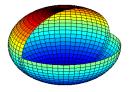
Insbesondere ist $Spur(\gamma)$ keine Untermannigfaltigkeit des \mathbb{R}^2 .

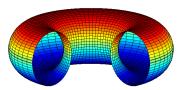
Beispiel 2.32 (Kugel, Torus)

Die Abbildungen $f: \mathbb{R}^2 \to \mathbb{R}$ und $g: \mathbb{R}^2 \to \mathbb{R}^3$, gegeben durch

$$f(s,t) := \begin{pmatrix} \cos(s)\cos(t) \\ \sin(s)\cos(t) \\ \sin(t) \end{pmatrix}, \qquad g(s,t) := \begin{pmatrix} (2+\cos(s))\cos(t) \\ (2+\cos(s))\sin(t) \\ \sin(s) \end{pmatrix}$$

sind in s, t 2π -periodische Immersionen. Ihre Bilder sind die Einheitssphäre und der Torus. Dies sind Hyperflächen im \mathbb{R}^3 .





Bemerkung 2.33

- (1) Sei $f: \Omega \subseteq \mathbb{R}^m \to \mathbb{R}^n$ eine Immersion. Analog zum Beweis von Satz 2.7 zeigt man, dass zu jedem $x \in \Omega$ ein offenes $U \subseteq \Omega$ mit $x \in U$ existiert, so dass $f|_U: U \to \mathbb{R}^n$ eine Einbettung ist.
- (2) Sei $f:\Omega\subseteq\mathbb{R}^m\to\mathbb{R}^n$ eine Immersion. Wir setzen

$$T_x f := \mathrm{d}_x f(T_x \Omega) := (f(x), \mathrm{d}f(x)(\mathbb{R}^m)) \subseteq T_{f(x)}(\mathbb{R}^n) = \{f(x)\} \times \mathbb{R}^n.$$

Ein Vektorfeld längs f ist eine Abbildung $X: \Omega \to \mathbb{R}^{2n}$ mit $X(x) \in T_x f$ für alle $x \in \Omega$.

(3) Für Immersionen $f_1, f_2: \Omega_1, \Omega_2 \subseteq \mathbb{R}^m \to \mathbb{R}^n$ definiert

$$f_1 \sim f_2 : \Leftrightarrow \exists \varphi \in \mathrm{Diff}^{\infty}(\Omega_1, \Omega_2) : f_1 = f_2 \circ \varphi$$

eine Äquivalenzrelation. Jede Äquivalenzklasse heißt eine reguläre Fläche.

Verlangt man zusätzlich det $d\varphi(x) > 0$ für alle $x \in \Omega_1$, so erhält man durch \sim wieder eine Äquivalenzrelation. Die zugehörigen Äquivalenzklassen heißen dann *orientierte reguläre Flächen*.

3 Erste und zweite Fundamentalform

3.1 Allgemeines zu Bilinearformen

KONVENTION 3.1

In diesem Kapitel sei M stets eine Hyperfläche des \mathbb{R}^{n+1} , d.h. eine Untermannigfaltigkeit des \mathbb{R}^{n+1} der Dimension n.

WIEDERHOLUNG 3.2

Sei V ein n-dimensionaler \mathbb{R} -Vektorraum. Eine *symmetrische Bilinearform* auf V ist eine Abbildung $B: V \times V \to \mathbb{R}$, so dass für alle $\alpha, \beta \in \mathbb{R}$, $u, v, w \in V$ gelten

$$B(u,v) = B(v,u)$$

$$B(\alpha u + \beta v, w) = \alpha B(u,w) + \beta B(v,w).$$

B heißt positiv definit oder ein Skalarprodukt, falls zusätzlich B(v,v) > 0 für alle $v \in V \setminus \{0\}$.

Ist $E = (e_1, ..., e_n)$ eine Basis von V, so ist B eindeutig bestimmt durch die Gramsche Matrix

$$G := (g_{ij})_{1 \le i \le n}^{1 \le j \le n} := (B(e_i, e_j))_{1 \le i \le n}^{1 \le j \le n}.$$

Da B symmetrisch, ist auch G symmetrisch.

Seien
$$u = \sum_{i=1}^{n} a_i e_i$$
, $v = \sum_{j=1}^{n} b_j e_j$, dann

$$B(u, v) = \sum_{i,j=1}^{n} a_i b_j g_{ij} = b^T G a.$$

Seien $F = (f_1, ..., f_n)$ eine weitere Basis von V mit $f_i = \sum_{k=1}^n a_{ki} e_k$ (i = 1, ..., n) und $A := (a_{ij})_{1 \le i \le n}^{1 \le j \le n}$, dann

$$G^F = A^T G^E A$$
 bzw. $g_{ij}^F = \sum_{k,l=1}^n a_{ki} g_{kl}^E a_{lj}$. (Transformationsformel)

Insbesondere ist $\det(G) > 0 \ (\Rightarrow G \text{ invertierbar})$, falls B positiv definit, denn nach dem Gram-Schmidt-Orthonormalisierungsverfahren findet man stets eine Orthonormalbasis von V, bzgl. der $G = I_n$ ist. Wir setzen $G^{-1} := (g^{ij})_{1 \le i \le n}^{1 \le j \le n}$.

Jeder Vektor $v \in V$ erfüllt die Entwicklungsformel

$$v = \sum_{i,j=1}^{n} g^{ij} B(v, e_i) e_j.$$

Ist $T:W\to V$ ein Vektorraumhomomorphismus, dann definiert

$$T^*B(x,y) := B(Tx,Ty) \qquad (x,y \in W)$$

eine symmetrische Bilinearform auf W. Diese ist genau dann positiv definit, wenn B positiv definit und T injektiv.

3.2 Die erste Fundamentalform

DEFINITION 3.3

Die erste Fundamentalform von M ist die Zuordnung

$$p \mapsto g_p := \langle \cdot, \cdot \rangle|_{T_pM \times T_pM},$$

d.h. g_p ist die Einschränkung des Skalarprodukts von $\{p\} \times \mathbb{R}^{n+1}$ auf T_pM .

Bemerkung 3.4 (lokale Darstellung der ersten Fundamentalform)

Ist (U,φ) eine lokale Parametrisierung von M, so ist g auf U eindeutig bestimmt durch

$$g_{ij}^{\varphi} = g_{\varphi(x)}(\mathbf{d}_x \varphi(e_i), \mathbf{d}_x \varphi(e_j)) = \langle \partial_i \varphi(x), \partial_j \varphi(x) \rangle$$
 $(x \in U)$

Die Funktion $g^{\varphi} := (g_{ij}^{\varphi})_{1 \leq i \leq n}^{1 \leq j \leq n} : U \to \mathbb{R}^{n \times n}$ heißt die *lokale Darstellung* der ersten Fundamentalform bzgl. (U, φ) .

SATZ 3.5

Ist $(\tilde{U}, \tilde{\varphi})$ ein weiteres Koordinatensystem mit $\varphi(x) = \tilde{\varphi}(\tilde{x})$, so gilt

$$g_{ij}^{\tilde{\varphi}}(\tilde{x}) = \sum_{k,l=1}^{n} g_{kl}^{\varphi} \partial_{i} (\varphi^{-1} \circ \tilde{\varphi})_{k}(\tilde{x}) \partial_{j} (\varphi^{-1} \circ \tilde{\varphi})_{l}(\tilde{x})$$

bzw.

$$g^{\tilde{\varphi}}(\tilde{x}) = d(\varphi^{-1} \circ \tilde{\varphi})(\tilde{x})^T g^{\varphi}(x) d(\varphi^{-1} \circ \tilde{\varphi})(\tilde{x}).$$

Insbesondere gilt

$$\sqrt{\det(g^{\tilde{\varphi}}(\tilde{x}))} = |\det(\operatorname{d}(\varphi^{-1} \circ \tilde{\varphi})(\tilde{x}))| \sqrt{\det(g^{\varphi}(x))}.$$

BEWEIS

Setze $\phi := \varphi^{-1} \circ \tilde{\varphi}$ (nahe \tilde{x}) bzw. $\tilde{\varphi} = \varphi \circ \phi$, dann liefert die Kettenregel

$$\underbrace{\partial_{i}\tilde{\varphi}(\tilde{x})}_{f_{i}} = \sum_{k=1}^{n} \underbrace{\partial_{i}\phi_{k}(\tilde{x})}_{g_{k,i}} \underbrace{\partial_{k}\varphi(x)}_{e_{k}} \qquad ,(Ax = \Sigma x_{k}A^{(k)})"$$

und die Transformationsformel für die Gramsche Matrix liefert die Behauptung.

Bemerkung 3.6

Bezeichne $e_1, ..., e_n$ die kanonische Basis des \mathbb{R}^n , dann ist

$$g_{ij}^{\varphi}(x) = ((\mathbf{d}_x \varphi)^* g_{\varphi(x)})(e_i, e_j).$$

Häufig schreiben wir g_{ij} statt g_{ij}^{φ} .

Beispiel 3.7

Sind M der Graph von $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ und $\varphi(x):=(x,u(x))$ die kanonische Parametrisierung, dann ist

$$g_{ij}^{\varphi}(x) = \delta_{ij} + \partial_i u(x) \partial_j u(x)$$
 bzw. $g^{\varphi}(x) = I_n + \nabla u(x)^T \nabla u(x)$.

3.3 Orientierbarkeit und Normalenfelder

Definition 3.8

Ein normales Vektorfeld N auf M heißt Einheitsnormalenfeld, falls ||N(p)|| = 1 für alle $p \in M$.

Beachte: $||\cdot||$ ist die Norm auf $\{p\} \times \mathbb{R}^{n+1}$, d.h. $||N(p)|| = ||\tilde{N}(p)||_{\mathbb{R}^{n+1}}$.

M heißt orientierbar, falls es ein glattes Einheitsnormalenfeld auf M gibt. Die Wahl eines solchen heißt eine orientierung von original M.

Bemerkung 3.9

Seien $U \subseteq \mathbb{R}^{n+1}$ offen, $f \in \mathcal{C}^{\infty}(U,\mathbb{R})$ und $M \cap U = f^{-1}(\{y\})$ für einen regulären Wert y von f. Dann wird ein glattes Einheitsnormalenfeld N auf $M \cap U$ definiert durch

$$N(p) := \left(p, \frac{\nabla f(p)}{||\nabla f(p)||}\right) \qquad \quad (p \in M).$$

Beispiel 3.10

(1) Sei $f(x) := ||x||^2$ $(x \in \mathbb{R}^3)$, dann ist $M(r) := f^{-1}(r^2)$ die Oberfläche der Kugel mit Radius r > 0, also

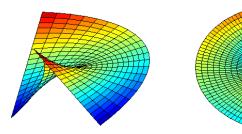
$$N(p) := \left(p, \frac{p}{||p||}\right) = \left(p, \frac{p}{r}\right) \qquad (p \in M(r))$$

eine Orientierung von M(r).

(2) Das Möbiusband ist eine Hyperfläche im \mathbb{R}^3 , gegeben als Bild der Immersion $f:(-1,1)\times\mathbb{R}\to\mathbb{R}^3$,

$$f(s,t) := \begin{pmatrix} 2\cos(t) + s\cos(\frac{t}{2})\cos(t) \\ 2\sin(t) + s\cos(\frac{t}{2})\sin(t) \\ s\sin(\frac{t}{2}) \end{pmatrix}$$

besitzt kein stetiges Einheitsnormalenfeld, ist also insbesondere nicht orientierbar.



SATZ 3.11

Folgende Aussagen sind äquivalent:

- (1) M ist orientierbar.
- (2) Es gibt ein stetiges Einheitsnormalenfeld auf M.
- (3) Es gibt eine Familie $(U_{\alpha}, \varphi_{\alpha})_{\alpha \in I}$ lokaler Koordinatensysteme von M, so dass M von $(\varphi_{\alpha}(U_{\alpha}))_{\alpha \in I}$ überdeckt wird und $\det(d(\varphi_{\alpha}^{-1} \circ \varphi_{\beta})) > 0$ für alle $\alpha, \beta \in I$ ist (auf den Definitionsbereichen der Koordinatenwechsel).

BEWEIS

 $(1) \Rightarrow (2)$:

Klar.

 $(2) \Rightarrow (3)$:

Sei $N(\cdot) = (\cdot, \tilde{N}(\cdot))$ ein stetiges Einheitsnormalenfeld auf M. Zu jedem $p \in M$ wählen wir ein lokales

Koordinatensystem (U_p, φ_p) derart, dass $\varphi_p(0) = p$ und dass für alle $x \in U_p$ gilt

$$\det\left(\partial_1\varphi_p(x),...,\partial_n\varphi_p(x),\tilde{N}(\varphi_p(x))\right) > 0. \tag{*}$$

Dies ist immer möglich: Gilt (*) in x=0, so auch in einer Umgebung von 0; ist $\det(...) < 0$, so ersetze φ_p durch $\tilde{\varphi}_p$, gegeben durch $\tilde{\varphi}_p(x_1, x_2, ..., x_n) := \varphi_p(x_2, x_1, ..., x_n)$.

Offenbar gilt dann $M = \bigcup \{\varphi_p(U_p) \mid p \in M\}$. Seien nun (U_q, φ_q) und (U_p, φ_p) zwei Koordinatensysteme und $m \in M$ mit $\varphi_q(x_q) = m = \varphi_p(x_p)$. Dann ist $A := \mathrm{d}(\varphi_q^{-1} \circ \varphi_p)(m)$ die Matrixdarstellung von id $= \mathrm{d}_m \mathrm{id} : T_m M \to T_m M$ bzgl. der Basen $(\partial_1 \varphi_q(x_q), ..., \partial_n \varphi_q(x_q))$ und $(\partial_1 \varphi_p(x_p), ..., \partial_n \varphi_p(x_p))$. Es gilt

$$0 < \det(\mathrm{d}\varphi_p(x_p), \tilde{N}(\varphi_p(x_p)))$$

$$= \det(\mathrm{d}(\varphi_q \circ (\varphi_q^{-1} \circ \varphi_p))(x_p), \tilde{N}(m))$$

$$= \det(\mathrm{d}\varphi_q(\varphi_q^{-1} \circ \varphi_p(x_p))\mathrm{d}(\varphi_q^{-1} \circ \varphi_p)(x_p), \tilde{N}(m))$$

$$= \det(\mathrm{d}\varphi_q(x_q) \cdot A, \tilde{N}(m))$$

$$= \underbrace{\det(\mathrm{d}\varphi_q(x_q))}_{>0} \underbrace{\det(\frac{A \ 0}{0 \ 1})}_{=\det(A)},$$

also auch det(A) > 0 und das war zu zeigen.

 $(3) \Rightarrow (1)$:

Seien $p \in M$ und $M = f^{-1}\{(0)\}$ nahe p. Sei $(\varphi_{\alpha}, U_{\alpha})$ eine lokale Parametrisierung. Wir definieren $\tilde{N}(p)$ über

$$\tilde{N}(p) := \pm \frac{\nabla f(p)}{||\nabla f(p)||}, \qquad \det(\partial_1 \varphi_\alpha(x), ..., \partial_n \varphi_\alpha(x), \tilde{N}(\varphi_\alpha(x))) > 0 \qquad (x = \varphi_\alpha^{-1}(p))$$

und erhalten ein glattes $\tilde{N}: M \to \mathbb{R}^{n+1}$. Nach Bemerkung 3.9 definiert \tilde{N} eine Orientierung von M.

Beispiel 3.12

Den Graph einer glatten Funktion $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ orientiert man kanonisch durch

$$\tilde{N}(x, u(x)) := \frac{(-\nabla u(x), 1)}{\sqrt{1 + ||\nabla u(x)||^2}}.$$

DEFINITION 3.13

Sei M orientiert durch $N(\cdot)=(\cdot,\tilde{N}(\cdot)).$ Dann heißt die Abbildung $\tilde{N}:M\to\mathbb{S}^n$ die Gaußabbildung von M

3.4 Die Weingartenabbildung

DEFINITION 3.14

Seien $v:=(p,\tilde{v})\in T_pM$ für ein $p\in M,$ und $f:M\to\mathbb{R}$ eine bei p glatte Funktion auf M. Dann heißt

$$\nabla_v f := (f \circ \alpha) \dot{}(0)$$

die Ableitung von f in Richtung v, wobei $\alpha \in \mathcal{C}^{\infty}(I, M)$ mit $\alpha(0) = p$ und $\dot{\alpha}(0) = \tilde{v}$.

Sei $X(\cdot) := (\cdot, \tilde{X}(\cdot))$ ein bei p glattes Vektorfeld auf M, dann heißt

$$\nabla_v X := (p, (\tilde{X} \circ \alpha)\dot{}(0))$$

die Ableitung von X in Richtung v.

Bemerkung 3.15

- (1) Für ein glattes Vektorfeld $X: M \to \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ auf M definieren wir $d_p X: T_p M \to T_p M$, $(p, \dot{\alpha}(0)) \mapsto (p, (X \circ \alpha)\dot{\alpha}(0))$.
- (2) Wegen $d_p f(v) = (f(p), \nabla_v f)$ und $\nabla_v X = d_p \tilde{X}(v) = (p, \nabla_v \tilde{X}_1, ..., \nabla_v \tilde{X}_n)$ sind die Definitionen unabhängig von der Wahl von α .

Bemerkung 3.16

Seien $v = (p, \tilde{v}) \in T_pM$, $X, Y : M \to \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ bei p glatte Vektorfelder auf M und $f : M \to \mathbb{R}$ glatt bei p. Dann gelten die folgenden Rechenregeln:

$$\nabla_{v}(X+Y) = \nabla_{v}X + \nabla_{v}Y;
\nabla_{v}(f \cdot X) = (\nabla_{v}f)X(p) + f(p)\nabla_{v}X;
\nabla_{v}\langle X, Y \rangle = \langle \nabla_{v}X, Y(p) \rangle + \langle X(p), \nabla_{v}Y \rangle.$$

LEMMA 3.17

Seien M durch N bei p orientiert und $v \in T_pM$. Dann ist $\nabla_v N \in T_pM$.

BEWEIS

Wegen
$$0 = \nabla_v 1 = \nabla_v \langle N, N \rangle = 2 \langle \nabla_v N, N(p) \rangle$$
 ist $N(p) \perp \nabla_v N$, also $\nabla_v N \in T_p M$.

DEFINITION 3.18

Sei N eine Orientierung von M. Die Weingartenabbildung \mathcal{L}_p von M in p ist definiert durch

$$\mathscr{L}_p: T_pM \to T_pM, \qquad v \mapsto -\nabla_v N = -\mathrm{d}_p \tilde{N}(v).$$

Beispiel 3.19

Wir orientieren den Zylinder $Z := \mathbb{S}^1 \times \mathbb{R}\{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1\}$ im \mathbb{R}^3 durch die äußere Normale N, d.h.

$$N(x) := (x, \tilde{N}(x)) := ((x_1, x_2, x_3), (x_1, x_2, 0)).$$

Für den Tangentialraum T_xZ in $x \in Z$ gilt dann

$$T_xZ = \text{span}\{v_1(x), v_2(x)\}, \ v_1(x) := ((x_1, x_2, x_3), (-x_2, x_1, 0)), \ v_2(x) := ((x_1, x_2, x_3), (0, 0, 1)).$$

 \tilde{N} lässt sich auf ganz \mathbb{R}^3 fortsetzen und wir erhalten für die Fortsetzung

$$\begin{array}{rcl}
-\nabla_{v_1(x)}N & = & ((x_1, x_2, x_3), -d\tilde{N}(x_1, x_2, x_3)(-x_2, x_1, 0)) & = & -v_1(x) \in \mathbb{R}^6, \\
-\nabla_{v_2(x)}N & = & ((x_1, x_2, x_3), -d\tilde{N}(x_1, x_2, x_3), (0, 0, 1)) & = & (x, 0) \in \mathbb{R}^6.
\end{array}$$

Martin Gubisch 40 SS 2009

Bezüglich der Basis $(v_1(x), v_2(x))$ von T_xZ hat \mathcal{L}_x also die Matrixdarstellung

$$\operatorname{Mat}(\mathscr{L}_x) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Beispiel 3.20

Seien $M \subseteq \mathbb{R}^2$ eindimensional mit Orientierung $N, p \in M$ und $v \in T_pM$. Dann ist

$$\mathscr{L}_p(v) \stackrel{\text{Frenet}}{=} \varkappa_{\gamma}(t_0)v = \varkappa_{\gamma}(t_0)(\gamma(t_0),\dot{\gamma}(t_0))$$

für jede reguläre Parametrisierung $\gamma: I \to \mathbb{R}^2$ mit $\mathrm{Spur}(\gamma) \subseteq M, \ \gamma(t_0) = p \ \mathrm{und} \ \vec{\nu}_{\gamma}(t_0) = \tilde{N}(p).$

SATZ 3.21

Die Weingartenabbildung ist selbstadjungiert bzgl. der ersten Fundamentalform, d.h.

$$\forall v, w \in T_p M : g_p(\mathscr{L}_p(v), w) = g_p(v, \mathscr{L}_p(w)).$$

BEWEIS

Sei $N(\cdot) = (\cdot, \tilde{N}(\cdot))$ eine Orientierung von M und (U, φ) ein lokales Koordinatensystem bei p. Wir zeigen, dass die Gleichung für v, w aus der kanonischen Basis von T_pM erfüllt ist. Es gilt

$$0 = \partial_j \underbrace{\langle \tilde{N}(\varphi(x)), \partial_i \varphi(x) \rangle}_{\equiv 0} = \langle \underbrace{\mathbf{d}_x(\tilde{N} \circ \varphi)(e_j)}_{=(\mathbf{d}_{\varphi(x)}\tilde{N} \circ \mathbf{d}_x \varphi(e_j))}, \mathbf{d}_x \varphi(e_i) \rangle + \langle \tilde{N}(\varphi(x)), \partial_j \partial_i \varphi(x) \rangle$$

$$= (\mathcal{L}_{\varphi(x)}(\mathbf{d}_x \varphi(e_j))$$

$$= -\mathcal{L}_{\varphi(x)}(\partial_j \varphi(x))$$

Mit $p = \varphi(x)$ und $\partial_j \partial_i \varphi(x) = \partial_i \partial_j \varphi(x)$ folgt damit

$$\langle \mathscr{L}_p \partial_i \varphi(x), \partial_i \varphi(x) \rangle = \langle \tilde{N}(p), \partial_i \partial_j \varphi(x) \rangle = \langle \tilde{N}(p), \partial_i \partial_i \varphi(x) \rangle = \langle \mathscr{L}_p \partial_i \varphi(x), \partial_i \varphi(x) \rangle.$$

Da $(d_x \varphi(e_1), ..., d_x \varphi(e_n)) = (\partial_1 \varphi(x), ..., \partial_n \varphi(x))$ eine Basis von $T_p M$ ist, folgt die Behauptung.

Definition 3.22

Die Eigenwerte $\lambda_1(p) \leq ... \leq \lambda_n(p)$ von \mathcal{L}_p heißen die Hauptkr"ummungen von M in p. Jeder normierte Eigenvektor von \mathcal{L}_p heißt eine Hauptkr"ummungsrichtung.

Die $mittlere\ Kr\ddot{u}mmung\ von\ M$ in p ist definiert als

$$H(p) := \frac{1}{n} \operatorname{Spur}(\mathscr{L}_p) = \frac{1}{n} \sum_{k=1}^{n} \lambda_k(p).$$

Die $Gau\beta$ -Kronecker-Krümmung von M in p ist

$$K(p) := \det(\mathcal{L}_p) = \prod_{k=1}^n \lambda_k(p).$$

Bemerkung 3.23

Bei Änderung der Orientierung von M nahe p auf -N geht \mathcal{L}_p über in $-\mathcal{L}_p$. Das mittlere Krümmungsfeld

$$\vec{H}(p) := H(p)N(p) = (p, H(p)\tilde{N}(p))$$

ist also auch für nicht orientierte bzw. nicht orientierbare Hyperflächen wohldefiniert.

Dies gilt auch für die Gauß-Kronecker-Krümmung, falls n gerade.

3.5 Die Normalkrümmung

Definition 3.24

Seien M orientiert und $v \in T_pM$ mit ||v|| = 1. Dann heißt $\varkappa(v) := g_p(\mathscr{L}_p(v), v)$ die Normalkrümmung von M in Richtung v.

Bemerkung 3.25

Sind M orientiert durch N, $p \in M$, $v \in T_pM$ und $\alpha : (-\epsilon, \epsilon) \to M$ glatt mit $v = (\alpha(0), \dot{\alpha}(0))$, so ist $g_p(\mathscr{L}_p(v), v) = \langle \ddot{\alpha}(0), \tilde{N}(p) \rangle$:

$$0 = \langle \dot{\alpha}, \tilde{N} \circ \alpha \rangle \dot{(}0)$$

$$= \langle \ddot{\alpha}(0), \tilde{N}(p) \rangle + \langle \dot{\alpha}(0), (\tilde{N} \circ \alpha) \dot{(}0) \rangle$$

$$= \langle \ddot{\alpha}(0), \tilde{N}(p) \rangle + g_p((p, \dot{\alpha}(0)), (p, (\tilde{N} \circ \alpha) \dot{(}0)))$$

$$= \langle \ddot{\alpha}(0), \tilde{N}(p) \rangle + g_p(-\nabla_v N, v)$$

$$= \langle \ddot{\alpha}(0), \tilde{N}(p) \rangle - g_p(\mathcal{L}_p(v), v).$$

SATZ 3.26

Seien M orientiert durch N und $v = (p, \tilde{v}) \in T_p M$ mit ||v|| = 1. Setze

$$E(p) := \{ p + s\tilde{v} + t\tilde{N}(p) \mid s, t \in \mathbb{R} \} = \{ p \} + \operatorname{span}\{\tilde{v}, \tilde{N}(p) \} \cong \mathbb{R}^2.$$
 (normaler Schnitt)

Dann gibt es ein offenes $U \subseteq \mathbb{R}^{n+1}$ mit $p \in U$ und eine ebene C^{∞} -Kurve Γ in E(p) derart, dass $p \in \operatorname{Spur}(\Gamma) \subseteq U \cap M \cap E(p)$ und $\varkappa(v) = \varkappa_{\gamma}(t_0)$ für jeden Repräsentanten γ von Γ mit $\gamma(t_0) = p$.

Beweis

Seien $U\subseteq\mathbb{R}^{n+1}$ und $f\in\mathcal{C}^\infty(U,\mathbb{R})$ mit $M\cap U=f^{-1}(\{0\})$ und 0 regulärer Wert von f. Wegen $\langle\nabla f(p),\tilde{N}(p)\rangle\neq 0$ können wir Œ annehmen, dass $\langle\nabla f(x),\tilde{N}(p)\rangle\neq 0$ für alle $x\in M\cap U$. Parametrisiere E(p) durch

$$\iota: \mathbb{R}^2 \to \mathbb{R}^{n+1}, \qquad \quad \iota(s,t) := p + s\tilde{v} + t\tilde{N}(p)$$

und setze $\tilde{U}:=\iota^{-1}(U),\ g:=f\circ\iota:\tilde{U}\to\mathbb{R}.$ Dann ist $\tilde{M}:=\iota^{-1}(M\cap U)=g^{-1}(0)$ und für alle $s,t\in\tilde{M}$ gilt

$$\nabla g(s,t) = ((\nabla f)(\iota(s,t))\partial_s \iota(s,t), (\nabla f)(\iota(s,t))\partial_t \iota(s,t))$$

$$= ((\nabla f)(\iota(s,t))\tilde{v}, (\nabla f)(\iota(s,t))\tilde{N}(p))$$

$$= \langle 0, \pm ||(\nabla f)(\iota(s,t))||\rangle$$

$$\neq 0,$$

d.h. \tilde{M} ist eine Hyperfläche im \mathbb{R}^2 . Werde diese bei $(0,0) = \iota^{-1}(p)$ durch $\gamma : I \subseteq \mathbb{R} \to \mathbb{R}^2$ lokal parametrisiert mit $\gamma(t_0) = 0$, $||\dot{\gamma}|| \equiv 1$ und $\dot{\gamma}(t_0) = (1,0)$ (wegen $\nabla g(0,0) = (0,\pm *)$ ist (1,0) tangential an \tilde{M}). Dann sind $\vec{\nu}_{\gamma}(t_0) = (0,1)$ und

$$\varkappa_{\gamma}(t_0) = \langle \ddot{\gamma}(t_0), \vec{\nu}_{\gamma}(t_0) \rangle = \ddot{\gamma}_2(t_0).$$

Andererseits gilt für $\alpha := \iota \circ \gamma$, dass $\alpha(t_0) = p$ und $\dot{\alpha}(t) = \dot{\gamma}_1(t)\tilde{v} + \dot{\gamma}_2(t)\tilde{N}(p)$, also $\dot{\alpha}(t_0) = \tilde{v}$ und nach Bem. 3.25

$$\varkappa(v) = \langle \ddot{\alpha}(t_0), \tilde{N}(p) \rangle = \ddot{\gamma}_2(t_0).$$

Für die Kurve $\Gamma := [\iota \circ \gamma] = [\alpha]$ folgt also die Behauptung.

3.6 Die zweite Fundamentalform

DEFINITION 3.27

Sei M orientiert. Die zweite Fundamentalform von M im Punkt $p \in M$ ist die Bilinearform

$$h_p(v, w) := g_p(\mathscr{L}_p(v), w) \qquad (v, w \in T_pM).$$

Bemerkung 3.28

Die mit \mathcal{L}_p assoziierte quadratische Form

$$\mathscr{S}_p(v) := h_p(v, v) = g_p(\mathscr{L}_p(v), v) \qquad (v \in T_pM)$$

enthält genau so viel Information wie die zweite Fundamentalform h_p :

$$h_p(v, w) = \frac{1}{2} (\mathscr{S}_p(v + w) - \mathscr{S}_p(v) - \mathscr{S}_p(w)).$$

Man bezeichnet daher auch \mathcal{S}_p als die zweite Fundamentalform von M in p.

SATZ 3.29

Sei M eine kompakte, orientierte Hyperfläche, dann gibt es ein $p \in M$, so dass h_p positiv oder negativ definit ist.

Insbesondere sind alle Normalkrümmungen in p positiv oder negativ.

BEWEIS

Setze $g: \mathbb{R}^{n+1} \to \mathbb{R}, \ x \mapsto ||x||^2$. Da M kompakt, gibt es $p \in M$ mit $g(p) = \max\{g(q) \mid q \in M\}$.

Seien $U \subseteq \mathbb{R}^{n+1}$ eine offene Umgebung von $p, f \in \mathcal{C}^{\infty}(U, \mathbb{R})$ und $y \in \mathbb{R}$ ein regulärer Wert von f mit $M \cap U = f^{-1}(y)$. Nach dem Multiplikatorensatz von Lagrange existiert dann ein $\tilde{\mu} \in \mathbb{R}$ derart, dass $\nabla g(p) = \tilde{\mu} \nabla f(p)$, wegen $N(p) = (p, \frac{\nabla f(p)}{||\nabla f(p)||})$ also auch ein $\mu \in \mathbb{R}$ mit $\mu \tilde{N}(p) = \nabla g(p) = 2p$, insbesondere $|\mu| = 2||p||$.

Ist $\mu=0$, dann auch p=0; wegen $g(0)=\min\{g(q)\mid q\in M\}$ können wir also Œ annehmen, dass $\mu>0$ oder $\mu<0$.

Ist $\mu > 0$, dann $\tilde{N}(p) = \frac{p}{||p||}$. Sei $v \in T_pM$, dargestellt durch $v = (p, \dot{\alpha}(0))$, normiert, dann besitzt $g \circ \alpha$ ein (lokales) Maximum in t = 0, d.h.

$$0 \geq (g \circ \alpha)\ddot{}(0)$$

$$= (((\nabla g) \circ \alpha) \cdot \dot{\alpha})\dot{}(0)$$

$$= \langle 2\alpha, \dot{\alpha}\rangle\dot{}(0)$$

$$= 2(||\dot{\alpha}(0)||^2 + \langle \alpha(0), \ddot{\alpha}(0)\rangle)$$

$$= 2(1 + ||p||\langle \tilde{N}(p), \ddot{\alpha}(0)\rangle)$$

$$= 2(1 + ||p||\varkappa(v)),$$

also $\varkappa(v) \leq -\frac{1}{||p||} < 0$, d.h. h_p ist negative definit.

Ist $\mu > 0$, so erhalten wir durch analoge Rechnung $\varkappa(v) > 0$, d.h. h_p ist dann positiv definit.

Bemerkung 3.30 (lokale Darstellung der zweiten Fundamentalform)

Ist (U,φ) ein lokales Koordinatensystem von M, so ist h auf $\varphi(U)$ eindeutig bestimmt durch

$$h_{ij}^{\varphi}(x) := h_{\varphi(x)}(\mathrm{d}_x \varphi(e_i), \mathrm{d}_x \varphi(e_j)) \stackrel{(3.21)}{=} \langle \tilde{N}(\varphi(x)), \partial_i \partial_j \varphi(x) \rangle \qquad (x \in U).$$

Die Funktion $h^{\varphi} := (h_{ij}^{\varphi})_{1 \leq i \leq n}^{1 \leq j \leq n} : U \to \mathbb{R}^{n \times n}$ heißt die *lokale Darstellung* der zweiten Fundamentalform bzgl. (U, φ) . Die Hauptkrümmungen sind die Eigenwerte von $(h_{ij}^{\varphi}(x)) = \operatorname{Mat}(\mathscr{L}_{\varphi(x)})$.

SATZ 3.31

Ist $(\tilde{U}, \tilde{\varphi})$ ein weiteres lokales Koordinatensystem mit $\varphi(x) = \tilde{\varphi}(\tilde{x})$, so gelten

$$h_{ij}^{\tilde{\varphi}}(\tilde{x}) = \sum_{k,l=1}^{n} h_{kl}^{\varphi}(x) \partial_{i}(\varphi^{-1} \circ \tilde{\varphi})_{k}(\tilde{x}) \partial_{j}(\varphi^{-1} \circ \tilde{\varphi})_{l}(\tilde{x})$$

bzw.

$$h^{\tilde{\varphi}}(\tilde{x}) = d(\varphi^{-1} \circ \tilde{\varphi})(\tilde{x})^T h^{\varphi}(x) d(\varphi^{-1} \circ \tilde{\varphi})(\tilde{x}).$$

BEWEIS

Folgt wie Satz 3.5 aus der Transformationsformel für die Gramsche Matrix der symmetrischen Bilinearform $(h_{ij}(x))_{\substack{1 \le j \le n \\ 1 \le i < n}}^n$.

Beispiel 3.32

Sei M der Graph von $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, parametrisiert durch $\varphi:x\mapsto(x,u(x))$. Dann ist

$$h_{ij}^{\varphi}(x) \stackrel{(3.12)}{=} \left\langle \frac{(-\nabla u(x), 1)}{\sqrt{1 + ||\nabla u(x)||^2}}, \partial_i \partial_j \varphi(x) \right\rangle = \frac{\partial_i \partial_j u(x)}{\sqrt{1 + ||\nabla u(x)||^2}} \qquad (x \in \Omega).$$

DEFINITION 3.33

Sei (U,φ) eine lokale Parametrisierung von M. Dann heißen

$$\Gamma_{ij}^k := \Gamma_{ij}^{k\varphi} := \frac{1}{2} \sum_{l=1}^n g^{kl} (\partial_i g_{jl} + \partial_j g_{li} - \partial_l g_{ij}) : U \to \mathbb{R}$$

die Christoffel-Symbole der ersten Fundamentalform (bzgl. (U, φ)).

SATZ 3.34 (Gauß-Formel)

Seien $N(\cdot)=(\cdot,\tilde{N}(\cdot))$ eine Orientierung von M und (U,φ) eine lokale Parametrisierung. Dann gilt

$$h_{ij}^{\varphi}(x)\tilde{N}(\varphi(x)) = \partial_i \partial_j \varphi(x) - \sum_{k=1}^n \Gamma_{ij}^{k\varphi}(x) \partial_k \varphi(x) \qquad (x \in U).$$

BEWEIS

Jedes $w = w_1 + w_2 \in T_pM \oplus T_pM^{\perp} = \mathbb{R}^{n+1}$ hat nach (3.2) eine Darstellung

$$w = \sum_{k,l=1}^{n} g^{kl}(x) \langle w, \partial_l \varphi(x) \rangle \partial_k \varphi(x) + \langle w, \tilde{N}(\varphi(x)) \rangle \tilde{N}(\varphi(x)) \qquad (x \in U \text{ bel.}).$$

Setze $w := \partial_i \partial_i \varphi(x)$, dann

$$\partial_i \partial_j \varphi(x) \stackrel{(3.30)}{=} \sum_{k,l=1}^n g^{kl}(x) \langle \partial_i \partial_j \varphi(x), \partial_l \varphi(x) \rangle \partial_k \varphi(x) + h_{ij}(x) \tilde{N}(\varphi(x)).$$

Andererseits ist

$$\Gamma_{ij}^{k}(x) = \sum_{l=1}^{n} \frac{1}{2} g^{kl}(x) (\partial_{i}g_{jl}(x) + \partial_{j}g_{il}(x) - \partial_{l}g_{ij}(x))$$

$$= \sum_{l=1}^{n} \frac{1}{2} g^{kl}(x) (\partial_{i}\langle\partial_{j}\varphi(x),\partial_{l}\varphi(x)\rangle + \partial_{j}\langle\partial_{i}\varphi(x),\partial_{l}\varphi(x)\rangle - \partial_{l}\langle\partial_{i}\varphi(x),\partial_{j}\varphi(x)\rangle)$$

$$= \sum_{l=1}^{n} g^{kl}\langle\partial_{i}\partial_{j}\varphi(x),\partial_{l}\varphi(x)\rangle.$$

3.7 Mittlere Krümmung und Gauß-Kronecker-Krümmung

SATZ 3.35 (lokale Darstellung der mittleren Krümmung und der Gauß-Kronecker-Krümmung)

Seien (U, φ) ein lokales Koordinatensystem von M und $x \in U$.

Dann besitzen die mittlere Krümmung H und die Gauß-Kronecker-Krümmung K lokale Darstellungen

$$\begin{split} H(\varphi(x)) &=& \frac{1}{n} \sum_{i,j=1}^n g_{\varphi}^{ij}(x) h_{ij}^{\varphi}(x); \\ K(\varphi(x)) &=& \frac{\det(h^{\varphi}(x))}{\det(g^{\varphi}(x))}. \end{split}$$

Insbesondere sind $H, K : M \to \mathbb{R}$ glatte Funktionen.

BEWEIS

Sei $p = \varphi(x)$. Da \mathcal{L}_p selbstadjungiert ist, gibt es eine Orthonormalbasis $\mathcal{E} := (e_1, ..., e_n)$ von T_pM aus Hauptkrümmungsrichtungen. Insbesondere ist

$$h_p(e_i, e_j) = g_p(\mathcal{L}_p(e_i), e_j) = \lambda_i(p)g_p(e_i, e_j) = \lambda_i(p)\delta_{ij}.$$

Bezeichne $\mathcal{F} := (f_1, ..., f_n) := (\partial_1 \varphi(x), ..., \partial_n \varphi(x))$ die kanonische Basis von $\tilde{T}_p M$ und $A = (a_{ij})_{1 \leq i \leq n}^{1 \leq j \leq n}$ die Transformationsmatrix von $(\tilde{T}_p M, \mathcal{E})$ nach $(\tilde{T}_p M, \mathcal{F})$, d.h.

$$\Rightarrow \operatorname{Lin}(A)(e^{(i)}) = (\Psi_{\mathcal{F}} \circ \Psi_{\mathcal{E}}^{-1})(e^{(i)}) = \Psi_{\mathcal{F}}(e_i) = \Psi_{\mathcal{F}}(\sum a_{ki} f_k) = \sum a_{ki} \Psi_{\mathcal{F}}(f_k) = \sum a_{ki} e^{(k)} = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix}.$$

Damit gilt nach der Transformationsformel (3.2)

$$g^{\varphi}(x) = (A^{-1})^T \operatorname{Id}(A^{-1})$$
 bzw. $(g^{\varphi})^{-1}(x) =: g_{\varphi}(x) = AA^T$

und wir erhalten

$$nH(p) = \sum_{k=1}^{n} \lambda_k(p) = \sum_{i,j=1}^{n} h_p(e_i, e_j) = \sum_{i,k,l=1}^{n} a_{ki} a_{li} h_p(f_k, f_l) = \sum_{k,l=1}^{n} \left(\sum_{i=1}^{n} a_{ki} a_{li} \right) h_{kl}^{\varphi}(x) = \sum_{k,l=1}^{n} g_{\varphi}^{kl}(x) h_{kl}^{\varphi}(x).$$

Weiter hat K(p) wegen $(h_p(e_i, e_j))_{1 \le i \le n}^{1 \le j \le n} = \text{diag}(\lambda_1(p), ..., \lambda_n(p)) = A^T h^{\varphi}(x) A$ die Darstellung

$$K(p) = \prod_{k=1}^{n} \lambda_k(p) = \frac{\det(h_p(e_i, e_j))_{1 \le i \le n}^{1 \le j \le n}}{\det(\operatorname{Id})} = \frac{\det(A^T h^{\varphi}(x) A)}{\det(A^T g^{\varphi}(x) A)} = \frac{\det h^{\varphi}(x)}{\det g^{\varphi}(x)}.$$

THEOREM 3.36

Seien M orientiert durch N und $p \in M$.

Ist Z nahe p ein glattes Vektorfeld mit $N = \frac{Z}{||Z||}$ und ist $\mathcal{V} := (v_1, ..., v_n)$ eine Basis von T_pM , so gilt

$$K(p) = \frac{(-1)^n}{||Z(p)||^n} \frac{\det(\nabla_{v_1} Z, ..., \nabla_{v_n} Z, Z(p))}{\det(v_1, ..., v_n, Z(p))}.$$

Bemerkung 3.37

Die mittlere Krümmung ist das arithmetische Mittel der Normalkrümmungen in Richtung der Hauptkrümmungen.

Martin Gubisch 45 SS 2009

3.8 Integration auf Hyperflächen

DEFINITION 3.38

Seien $f: M \to \mathbb{C} \cup \{\infty\}$ und (U, φ) ein lokales Koordinatensystem von M derart, dass für den Träger $\mathrm{supp}(f) := \overline{\{x \in M \mid f(x) \neq 0\}}$ von f gilt $\mathrm{supp}(f) \subseteq \varphi(U)$.

Wir nennen f integrierbar über M, falls

$$\int_{M} f(x) \, d\sigma(x) := \int_{U} f(\varphi(x)) \sqrt{\det(g^{\varphi}(x))} \, dx < \infty$$

(insbesondere $(f \circ \varphi)\sqrt{\det(g^{\varphi})} \in L^1(U)$).

Der formale Ausdruck $\sqrt{\det(g^{\varphi})}$ heißt *Flächenelement* (bzgl. (U, φ)).

Bemerkung 3.39

Der Wert $\int_M f(x) \, d\sigma(x)$ hängt nicht von der Wahl der Parametrisierung (U, φ) ab: Sei dazu $(\tilde{U}, \tilde{\varphi})$ ein weiteres lokales Koordinatensystem mit supp $(f) \subseteq \tilde{\varphi}(\tilde{U})$. Nach Satz 3.5 gilt mit $W := \varphi^{-1}(\varphi(U) \cap \tilde{\varphi}(\tilde{U}))$, $\tilde{W} := \tilde{\varphi}^{-1}(\varphi(U) \cap \tilde{\varphi}(\tilde{U}))$ und $\phi := \varphi^{-1} \circ \tilde{\varphi} : \tilde{W} \to W$, dass

$$\forall \tilde{x} \in \tilde{W} : \sqrt{\det(g^{\tilde{\varphi}}(\tilde{x}))} = |\det(\mathrm{d}\phi(\tilde{x}))| \sqrt{\det(g^{\varphi}(\phi(\tilde{x})))}.$$

Nach dem Transformationssatz für Integrale folgt

$$\int_{\tilde{U}} f(\tilde{\varphi}(\tilde{x})) \sqrt{\det(g^{\tilde{\varphi}}(\tilde{x}))} d\tilde{x}$$

$$= \int_{\tilde{W}} (f \circ \varphi)(\phi(\tilde{x})) \sqrt{\det(g^{\varphi}(\phi(\tilde{x})))} |\det(d\phi(\tilde{x}))| d\tilde{x}$$

$$= \int_{W} (f \circ \varphi)(x) \sqrt{\det(g^{\varphi}(x))} dx$$

$$= \int_{U} f(\varphi(x)) \sqrt{\det(g^{\varphi}(x))} dx.$$

Wir nehmen ab jetzt an, dass f obigen Voraussetzungen genügt.

Beispiel 3.40

(1) Seien M eindimensional und $\gamma: I \to \mathbb{R}^2$ eine lokale Parametrisierung von M, dann ist

$$\int_{M} f(t) \, d\sigma(t) = \int_{I} f(\gamma(t)) ||\dot{\gamma}(t)|| \, dt.$$

(2) Sei M der Graph von $u: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, parametrisiert durch $\varphi: x \mapsto (x, u(x))$, dann gilt

$$\int_M f(x) \ \mathrm{d}\sigma(x) = \int_\Omega f(x,u(x)) \sqrt{1 + ||\nabla u(x)||^2} \ \mathrm{d}x.$$

Bemerkung 3.41 (Zerlegung der Eins)

Sei $\mathcal{V} := (V_{\alpha})_{\alpha \in A}$ eine offene Überdeckung von M, d.h. alle V_{α} offen und $M = \bigcup \{V_{\alpha} \mid \alpha \in A\}$.

Dann gibt es stetige Funktionen $\psi_i: M \to [0,1], \ i \in \mathbb{N}$, mit folgenden Eigenschaften:

- (1) Für jedes $i \in \mathbb{N}$ ist supp $(\psi_i) \subseteq V$ für ein $V \in \mathcal{V}$;
- (2) Für jedes Kompaktum $K\subseteq M$ gibt es ein $i\in\mathbb{N}$ mit $\psi_j|_K\equiv 0$ für alle $j\geq i;$
- (3) Für jedes $p \in M$ gilt $\sum_{i=1}^{\infty} \psi_i(p) = 1$.

Man nennt $\Psi := (\psi_i)_{i \in \mathbb{N}}$ eine (der Überdeckung \mathcal{V} untergeordnete) Zerlegung der Eins.

DEFINITION 3.42

Seien $\mathcal{V} = (\varphi_{\alpha}(U_{\alpha}))_{\alpha \in A}$ eine Überdeckung von M mit lokalen Koordinatensystemen $(U_{\alpha}, \varphi_{\alpha})$ $(\alpha \in A)$ und $\Psi = (\psi_i)_{i \in \mathbb{N}}$ eine \mathcal{V} untergeordnete Zerlegung der Eins.

Eine Funktion $f: M \to \mathbb{C} \cup \{\infty\}$ heißt *integrierbar über M*, falls gelten:

- (1) alle $f \cdot \psi_i$ sind über M integrierbar, d.h. $\int_M f(x)\psi_i(x) d\sigma(x) < \infty$ für alle i und
- (2) $\sum_{i=1}^{\infty} \int_{M} |f(x)| \psi_{i}(x) \, d\sigma(x) < \infty.$

Wir nennen

$$\int_{M} f(x) \, d\sigma(x) := \sum_{i=1}^{\infty} \int_{M} f(x) \psi_{i}(x) \, d\sigma(x)$$

dann das $Integral \ von \ f \ \ddot{u}ber \ M$.

Bemerkung 3.43

Die Definition ist unabhängig von der Wahl von V, d.h. ist f integrierbar über M für eine Überdeckung V, dann für jede beliebige.

Auch der Wert des Integrals ist unabhängig von der Wahl von \mathcal{V} .

DEFINITION 3.44

Seien $A \subseteq M$ und $f: A \to \mathbb{C} \cup \{\infty\}$. f heißt integrierbar über A, falls die Funktion

$$f_A: M \to \mathbb{C} \cup \{\infty\}, \qquad x \mapsto \begin{cases} f(x) & x \in A \\ 0 & x \notin A \end{cases}$$

über M integrierbar ist.

A heißt messbar, falls die Einsfunktion 1 über A integrierbar ist.

Wir schreiben

$$\int_A f(x) \, d\sigma(x) := \int_M f_A(x) \, d\sigma(x), \qquad \text{vol}(A) := \int_A 1 \, d\sigma(x).$$

vol(A) heißt das Volumen bzw. der Flächeninhalt von A.

Ist $A \subseteq M$ messbar mit vol(A) = 0, so heißt A eine Nullmenge.

Bemerkung 3.45

Genau dann ist ein messbares $A \subseteq M$ eine Nullmenge, wenn $\varphi^{-1}(A \cap \varphi(U))$ in U eine Lebesgue-Nullmenge ist für jedes lokale Koordinatensystem (U, φ) von M.

THEOREM 3.46

- (1) Seien $f, g: M \to \mathbb{C} \cup \{\infty\}$, wobei f integrierbar über M. Stimmen f, g außerhalb einer Nullmenge überein, so ist auch g integrierbar und liefert den gleichen Integralwert über M wie f.
- (2) Ist $A \subseteq M$ eine Nullmenge, so gilt $\int_M f(x) d\sigma(x) = \int_{M \setminus A} f(x) d\sigma(x)$.

3.9 Minimalflächen

Definition 3.47

Eine Hyperfläche M heißt eine Minimalfläche, falls $\vec{H} \equiv 0$ auf M.

Bemerkung 3.48

- (1) Bei orientierten Hyperflächen ist dies äquivalent dazu, dass $H \equiv 0$ auf M.
- (2) Nach Satz 3.29 gibt es keine kompakten Minimalflächen.

Beispiel 3.49

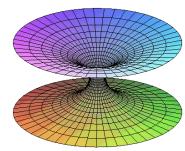
Sei M eine Rotationsfläche, gegeben durch

$$\varphi(s,t) := \begin{pmatrix} r(s)\cos(t) \\ r(s)\sin(t) \\ s \end{pmatrix} \qquad ((s,t) \in (a,b) \times (-\pi,\pi))$$

mit glattem, positivem $r:(a,b)\to\mathbb{R}.$ Dann ist M genau dann eine Minimalfläche, wenn

$$\frac{\dot{r}(s)\ddot{r}(s)}{1+\dot{r}(s)^2} = \frac{\dot{r}(s)}{r(s)} \hspace{1cm} (s \in (a,b)) \hspace{1cm} (\ddot{\mathbf{U}} \mathbf{bungen}).$$

Integration liefert



$$\frac{1}{2}\ln(1+\dot{r}(s)^2) = \ln(r(s)) + \ln(c)$$

$$\Leftrightarrow 1+\dot{r}(s)^2 = cr$$

$$\Leftrightarrow \dot{r}(s) = \pm(c^2r(s)^2 - 1)$$

$$\Leftrightarrow r(s) = \frac{1}{|c|}\cosh(cs+d), \ c, d \in \mathbb{R}.$$

Die resultierende Fkäche wird dann ein *Katenoid* genannt.

Beispiel 3.50

Sei M der Graph von $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ parametrisiert durch $\varphi:x\mapsto(x,u(x)).$ Dann ist

$$g^{\varphi}(x) \stackrel{(3.7)}{=} \operatorname{Id} + \nabla u(x)^T \nabla u(x) \Rightarrow g_{\varphi}^{-1}(x) = \operatorname{Id} - \frac{\nabla u(x)^T \nabla u(x)}{1 + ||\nabla u(x)||^2}.$$

Zusammen mit

$$h_{ij}^{\varphi}(x) \stackrel{(3.32)}{=} \frac{\partial_i \partial_j u(x)}{\sqrt{1 + ||\nabla u(x)||^2}}, \qquad H(\varphi(x)) \stackrel{(3.35)}{=} \frac{1}{n} \sum_{i,j=1}^n g_{\varphi}^{ij}(x) h_{ij}^{\varphi}(x)$$

ergibt sich für die mittlere Krümmung bzgl. (Ω, φ) , dass

$$H \circ \varphi = \frac{1}{n} \sum_{i,j=1}^{n} \frac{\partial_{i} \partial_{j} u}{\sqrt{1 + ||\nabla u||^{2}}} \left(\delta_{ij} - \frac{\partial_{i} u \partial_{j} u}{1 + ||\nabla u||^{2}} \right).$$

Somit ist M genau dann eine Minimalfläche, wenn u folgende quasilineare PDE auf Ω erfüllt:

$$\Delta u = \frac{1}{\sqrt{1+||\nabla u||^2}} \sum_{i,j=1}^n \partial_i u \partial_j u \partial_i \partial_j u.$$

SATZ 3.51

Seien M eine Hyperfläche mit endlichem Flächeninhalt und $X=(\cdot,\tilde{X}(\cdot))$ ein glattes Normalenvektorfeld auf M mit kompaktem Träger. Dann ist $M(t):=M(t)(X):=\{p+t\tilde{X}(p)\mid p\in M\}$ für hinreichend kleine t eine Hyperfläche, die eigentliche, normale Variation von M, und es gilt

$$(\operatorname{vol}(M))\dot{}(0) = -n \int_M \langle X(p), \vec{H}(p) \rangle \, d\sigma(p).$$

Martin Gubisch 48 SS 2009

BEWEIS

Wir nehmen zunächst an, dass es ein Koordinatensystem (U, φ) gibt mit supp $(X) \subseteq \varphi(U)$. Wir orientieren $\varphi(U)$ wie in (3.11) durch ein glattes Einheitsnormalenfeld N derart, dass

$$\forall x \in U : \det \left(\partial_1 \varphi(x), ..., \partial_n \varphi(x), \tilde{N}(\varphi(x)) \right) > 0.$$
 (*)

Weiter definiert $\varphi_t : x \mapsto \varphi(x) + t\tilde{X}(\varphi(x))$ $(x \in U)$ für hinreichend kleines t eine lokale Parametrisierung von M_t (Störungsresultat) und mit $f(p) := \langle X(p), N(p) \rangle$ $(p \in \varphi(U))$ gilt

$$\tilde{X}(p) = \langle X(p), N(p) \rangle \tilde{N}(p) = f(p)\tilde{N}(p)$$

Differenziation nach Produktregel ergibt mit $p = \varphi(x)$ also

$$\partial_i \varphi_t(x) = \partial_i \varphi(x) + t \partial_i (f \circ \varphi)(x) (\tilde{N}(\varphi(x))) + t f(\varphi(x)) \partial_i (\tilde{N} \circ \varphi)(x).$$

Sei $A:=(a_{ij}(x))_{1\leq i\leq n}^{1\leq j\leq n}=\mathrm{Mat}(\mathscr{L}_p)$ die zu $\mathscr{L}_{\varphi(x)}$ gehörige Matrix bzgl. der zu φ gehörigen, kanonischen Basis von T_pM , dann ist

$$\partial_i(\tilde{N}\circ\varphi)(x) = -\mathscr{L}_{\varphi(x)}(\partial_i\varphi(x)) = -\sum_{j=1}^n a_{ji}(x)\partial_j\varphi(x).$$

Sei N_t ein Normalenfeld zu φ_t vom Typ (*), dann

$$\begin{split} (\operatorname{vol}(M)) \dot{\ } (0) &= \left. \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t} \int_{M_t} 1 \; \mathrm{d}\sigma(t) \right|_{t=0} \\ &= \left. \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}t} \int_{U} \underbrace{\sqrt{\det(g^{\varphi_t}(x))}} \; \mathrm{d}x \right|_{t=0} \\ &= \sqrt{\det(\langle \partial_i \varphi_t(x), \partial_j \varphi_t(x) \rangle)} \\ &= \left. \int_{U} \frac{\mathrm{d}}{\mathrm{d}t} \det(\partial_1 \varphi_t(x), ..., \partial_n \varphi_t(x), \tilde{N}_t(\varphi_t(x))) \; \mathrm{d}x \right|_{t=0}. \end{split}$$

Da det multilinear, gilt " $(\det(\varphi_1(t), \varphi_2(t)))$ " = $\det(\dot{\varphi}_1(t), \varphi_2(t)) + \det(\varphi_1(t), \dot{\varphi}_2(t))$ ", d.h.

$$\int_{U} \frac{\mathrm{d}}{\mathrm{d}t} \det(\partial_{1}\varphi_{t}(x), ..., \partial_{n}\varphi_{t}(x), (\tilde{N}_{t} \circ \varphi_{t})(x)) \Big|_{t=0} dx$$

$$= \int_{U} \sum_{i=1}^{n} \det \left(\partial_{1}\varphi(x), ..., \partial_{i}(f \circ \varphi)(x)(\tilde{N} \circ \varphi)(x) - f(\varphi(x)) \sum_{j=1}^{n} a_{ji}\partial_{j}\varphi(x), ..., \partial_{n}\varphi(x) \right)$$

$$+ \det \left(\partial_{1}\varphi(x), ..., \partial_{n}\varphi(x), \frac{\mathrm{d}}{\mathrm{d}t}(\tilde{N}_{t} \circ \varphi_{t}) \Big|_{t=0} \right) dx$$

$$= 0, \text{ siehe } (**)$$

$$\stackrel{\text{Lin.}}{=} \int_{U} f(\varphi(x)) \sum_{i,j=1}^{n} a_{ji} \det(\partial_{1}\varphi(x), ..., \partial_{j}\varphi(x), ..., \partial_{n}\varphi(x), \tilde{N}(\varphi(x))) dx$$

$$\stackrel{\text{Alt.}}{=} - \int_{U} f(\varphi(x)) \sum_{i=1}^{n} a_{ii} \sqrt{\det(g^{\varphi}(x))} dx$$

$$= -n \int_{U} f(\varphi(x)) H(\varphi(x)) \sqrt{\det(g^{\varphi}(x))} dx$$

$$= -n \int_{U} \langle X(\varphi(x)), \vec{H}(\varphi(x)) \rangle \sqrt{\det(g^{\varphi}(x))} dx$$

$$= -n \int_{U} \langle X(\varphi(x)), \vec{H}(\varphi(x)) \rangle d\sigma(p).$$

Noch zu (**): Wegen

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\langle (\tilde{N}_t \circ \varphi_t)(x), (\tilde{N}_t \circ \varphi_t)(x) \rangle}_{t=0} \bigg|_{t=0} = 2 \left\langle \frac{\mathrm{d}}{\mathrm{d}t} (\tilde{N}_t \circ \varphi_t) \bigg|_{t=0}, (\tilde{N} \circ \varphi)(x) \right\rangle$$

ist $(\varphi(x), \frac{\mathrm{d}}{\mathrm{d}t}(\tilde{N}_t \circ \varphi_t)(x)|_{t=0}) \in T_{\varphi(x)}M$, d.h. Linearkombination aus $\partial_1 \varphi(x), ..., \partial_n \varphi(x)$. Damit verschwindet die Determinante.

Nun zum allgemeinen Fall: Seien $\mathcal{V} = (\varphi_{\alpha}(U_{\alpha}))_{\alpha \in A}$ eine Überdeckung von M mit lokalen Koordinatensystemen $(U_{\alpha}, \varphi_{\alpha})$ $(\alpha \in A)$ und $\Psi = (\psi_{i})_{i \in \mathbb{N}}$ eine \mathcal{V} untergeordnete Zerlegung der Eins. Da supp(X) kompakt, gibt es ein $N \in \mathbb{N}$ mit $\tilde{X} = \sum_{i=1}^{N} \tilde{X}^{(i)} := \sum_{i=1}^{N} \psi_{i} \cdot \tilde{X}$. Alle $X^{(i)}$ haben dann einen kompakten Träger in einer Koordinatenumgebung. Setze

$$M(t_1, ..., t_N) := \left\{ p + \sum_{i=1}^N t_i \tilde{X}^{(i)}(p) \mid p \in M \right\},$$

dann gilt mit eben Gezeigtem

$$\begin{split} (\operatorname{vol}(M))\dot{\,}(0) &= & \left.\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{vol}(M(t,...,t))\right|_{t=0} \\ &= & \left.\sum_{i=1}^N \frac{\mathrm{d}}{\mathrm{d}t_i} \operatorname{vol}(M(0,...,t_i,...,0))\right|_{t_i=0} \\ &= & \left.-n \sum_{i=1}^N \int_M \langle X^{(i)}(p), \vec{H}(p)\rangle \, \, \mathrm{d}\sigma(p) \right. \\ &= & \left.-n \int_M \langle X(p), \vec{H}(p)\rangle \, \, \mathrm{d}\sigma(p). \end{split}$$

Korollar 3.52

Genau dann ist M eine Minimalfläche, wenn M ein kritischer Punkt des Volumenfunktionals bzgl. aller eigentlichen, normalen Variationen von M ist.

BEWEIS

 \Rightarrow : Sei M eine Minimalfläche, dann gilt nach eben Gezeigtem

$$(\operatorname{vol}(M))\dot{}(0) = -n \int_{M} \langle X(p), \underbrace{\vec{H}(p)}_{=0} \rangle d\sigma(p) = 0.$$

 \Leftarrow : Gebe es ein $p \in M$ mit $\vec{H}(p) \neq 0$. Wähle ein glattes $f: M \to [0,1]$ mit kompaktem Träger und f(p) > 0. Für $X := f \cdot \vec{H}$ gilt dann

$$(\operatorname{vol}(M))\dot{}(0) = -n \int_{M} \langle f(p)\vec{H}(p), \vec{H}(p)\rangle \, d\sigma(p) = -n \int_{M} f(p) ||\vec{H}(p)||^{2} \, d\sigma(p) < 0,$$

d.h. M ist kein kritischer Punkt von vol.

Definition 3.53

Eine Hyperfläche $M \subseteq \mathbb{R}^3$ heißt *isotherm*, falls zu jedem Punkt $p \in M$ ein lokales Koordinsystem (U, φ) existiert mit $p \in U$ und $g^{\varphi} = f \cdot \operatorname{Id}$ für eine glatte Funktion $f = f_{\varphi} : U \to \mathbb{R}$ (insbes. f > 0).

SATZ 3.54

Seien M isotherm, $p \in M$ und (U, φ) eine lokale Parametrisierung von M um p. Dann gilt

$$\forall x \in U : (\varphi(x), \Delta \varphi(x)) = 2f(x)\vec{H}(\varphi(x)).$$

Insbesondere ist M genau dann eine Minimalfläche, wenn die Koordinatenfunktionen $\varphi:U\to\mathbb{R}$ harmonisch sind für alle solchen (U,φ) .

BEWEIS

Sei $(i, j) \in \{(1, 2), (2, 1)\}, dann gilt$

$$\langle \partial_i^2 \varphi, \partial_i \varphi \rangle = \frac{1}{2} \partial_i g_{ii}^{\varphi} = \frac{1}{2} \partial_i g_{jj}^{\varphi} = \langle \partial_i \partial_j \varphi, \partial_j \varphi \rangle = \partial_j \underbrace{\langle \partial_i \varphi, \partial_j \varphi \rangle}_{=g_{ij} = 0} - \langle \partial_i \varphi, \partial_j^2 \varphi \rangle = -\langle \partial_i \varphi, \partial_j^2 \varphi \rangle,$$

also $\langle \Delta \varphi, \partial_1 \varphi \rangle \equiv \langle \Delta \varphi, \partial_2 \varphi \rangle \equiv 0$, d.h. $(\varphi(x), \Delta \varphi(x)) \in T_{\varphi(x)} M^{\perp}$.

Sei nun $\varphi(U)$ orientiert durch ein Einheitsnormalenfeld N, dann

$$\begin{array}{ccc} 2H(\varphi(x)) & \stackrel{(3.35)}{=} & \sum_{i,j=1}^2 g_{\varphi}^{ij}(x) h_{ij}^{\varphi}(x) \\ & \stackrel{\text{Vor.}}{=} & \frac{\left(h_{11}^{\varphi}(x) + h_{22}^{\varphi}(x)\right)}{f(x)} \\ & \stackrel{(3.30)}{=} & \frac{\left\langle \tilde{N}(\varphi(x)), \Delta\varphi(x) \right\rangle}{f(x)}. \end{array}$$

Damit erhalten wir wie gewünscht

$$\Delta\varphi(x) = \langle \Delta\varphi(x), \tilde{N}(\varphi(x)) \rangle \tilde{N}(\varphi(x)) = 2f(x)H(\varphi(x))\tilde{N}(\varphi(x)).$$

Beispiel 3.55 (Young-Laplace-Gleichung, 1805)

In einem kugelförmigen Wassertropfen vom Radius r herrscht aufgrund der Oberflächenspannung σ an der Grenzfläche zwischen der Flüssigkeit und der umgebenden Luft ein erhöhter Druck. Es gilt für den durch die Oberflächenspannung hervorgerufenen Druck p=p(x) in einem Punkt x, der auf der Sphäre liegt:

$$p(x) = -2\sigma H(x)$$

Herleitung: Für die Kugeloberfläche $A=4\pi r^2$ und das Kugelvolumen $V=\frac{4}{3}\pi r^3$ gilt bei infinitesimaler Änderung dr des Radius:

$$dA = 8\pi r dr, \qquad dV = 4\pi r^2 dr.$$

Die infinitesimale Änderung dW der Energie muss bei den Vorgängen identisch sein, d.h.

$$\frac{\mathrm{d}W = \sigma}{\mathrm{d}W = p} \frac{\mathrm{d}A = 8\pi\sigma r}{\mathrm{d}r} \frac{\mathrm{d}r}{\mathrm{d}r} \right\} \Rightarrow p = \frac{2\sigma}{r}.$$

Nun ist das (äußere) Einheitsnormalenfeld N der Kugel gegeben durch $N: x \mapsto (x, \frac{x}{r})$, für die mittlere Krümmung H erhalten wir also

$$H(x) = \frac{1}{2} \operatorname{Spur}(\mathscr{L}_x) = \frac{1}{2} \operatorname{Spur}(-d\tilde{N}(x)) = -\frac{1}{2r} \operatorname{Spur}(\operatorname{Id}) = -\frac{1}{2r}.$$

4 Innere Geometrie von Hyperflächen

4.1 Kovariante Ableitung

DEFINITION 4.1

Seien $I \subseteq \mathbb{R}$ ein Intervall und $\alpha: I \to M$ glatt. Ein Vektorfeld längs α ist eine glatte Funktion $X: I \to \mathbb{R}^{2(n+1)}$ mit $X(t) \in T_{\alpha(t)}(\mathbb{R}^{n+1})$ für alle $t \in I$.

Für $t \in I$ gibt es also ein glattes $\tilde{X}: I \to \mathbb{R}^{n+1}$ mit $X(t) = (\alpha(t), \tilde{X}(t)) \in T_{\alpha(t)}(\mathbb{R}^{n+1})$.

Xheißt ${\it tangential},$ falls sogar $X(t) \in T_{\alpha(t)}M$ für jedes $t \in I.$

Wir schreiben im Folgenden $\frac{d}{dt}X(t) := (\alpha(t), \frac{d}{dt}\tilde{X}(t)).$

Beispiel 4.2

- (1) Ist Y ein Vektorfeld, dann ist $X := Y \circ \alpha : I \to \mathbb{R}^{2(n+1)}$ ein tangentiales Vektorfeld längs α .
- (2) Das Geschwindigkeitsvektorfeld $\alpha'(t) := (\alpha(t), \dot{\alpha}(t))$ von α ist ein tangentiales Vektorfeld längs α .

Definition 4.3

Sei X ein tangentiales Vektorfeld längs α . Die kovariante Ableitung $\frac{\mathrm{D}}{\mathrm{d}t}X(t)$ von X in $t\in I$ ist die orthogonale Projektion von $\frac{\mathrm{d}}{\mathrm{d}t}X(t)$ auf $T_{\alpha(t)}M$ (im Raum $T_{\alpha(t)}(\mathbb{R}^{n+1})=\{\alpha(t)\}\times\mathbb{R}^{n+1}$).

Damit ist $\frac{D}{dt}X$ wieder ein tangentiales Vektorfeld längs α .

Bemerkung 4.4

Ist $N(t_0)$ ein Normalenvektor in $\alpha(t_0)$, so gilt

$$\frac{\mathrm{D}}{\mathrm{d}t}X(t_0) = \frac{\mathrm{d}}{\mathrm{d}t}X(t_0) - \left\langle \frac{\mathrm{d}}{\mathrm{d}t}X(t_0), N(t_0) \right\rangle N(t_0).$$

LEMMA 4.5

Seien X,Y tangentiale Vektorfelder längs α und $f:I\to\mathbb{R}$ glatt. Dann gelten:

- $(1) \frac{\mathrm{D}}{\mathrm{d}t}(X+Y) = \frac{\mathrm{D}}{\mathrm{d}t}X + \frac{\mathrm{D}}{\mathrm{d}t}Y;$
- (2) $\frac{\mathrm{D}}{\mathrm{d}t}(f \cdot X) = \frac{\mathrm{d}}{\mathrm{d}t}f \cdot X + f \cdot \frac{\mathrm{D}}{\mathrm{d}t}X;$
- $(3) \frac{\mathrm{d}}{\mathrm{d}t} g_{\alpha(\cdot)}(X,Y) = g_{\alpha(\cdot)}(\frac{\mathrm{D}}{\mathrm{d}t}X,Y) + g_{\alpha(\cdot)}(X,\frac{\mathrm{D}}{\mathrm{d}t}Y).$

BEWEIS

(1) und (2) folgen sofort aus der Darstellung der kovarianten Ableitung in Bemerkung 4.4.

Zu (3): Da X, Y tangential, gilt für alle $t \in I$:

$$\frac{\mathrm{d}}{\mathrm{d}t} g_{\alpha(t)}(X(t), Y(t)) = \left\langle \frac{\mathrm{d}}{\mathrm{d}t} X(t), Y(t) \right\rangle + \left\langle X(t), \frac{\mathrm{d}}{\mathrm{d}t} Y(t) \right\rangle$$

$$= \left\langle \frac{\mathrm{D}}{\mathrm{d}t} X(t), Y(t) \right\rangle + \left\langle X(t), \frac{\mathrm{D}}{\mathrm{d}t} Y(t) \right\rangle = g_{\alpha(t)} \left(\frac{\mathrm{D}}{\mathrm{d}t} X(t), Y(t) \right) + g_{\alpha(t)} \left(X(t), \frac{\mathrm{D}}{\mathrm{d}t} Y(t) \right).$$

Satz 4.6 (lokale Darstellung der kovarianten Ableitung)

Seien $\alpha: I \to M$ ein Weg (d.h. $I \subseteq \mathbb{R}$ ein Intervall und α glatt), (U, φ) ein lokales Koordinatensystem von M mit $\alpha(I) \subseteq \varphi(U)$ und X ein tangentiales Vektorfeld längs α .

Setze $u: I \to U \subseteq \mathbb{R}^n, \ t \mapsto \varphi^{-1}(\alpha(t))$ und wähle $X_1, ..., X_n: I \to \mathbb{R}$, so dass

$$X(t) = \sum_{k=1}^{n} (\alpha(t), X_k(t) \partial_k \varphi(u(t))) \qquad (t \in I),$$

d.h. $(X_1(t),...,X_n(t))^T$ ist der Koordinatenvektor von $(\alpha(t),X(t))$ bzgl. der kanonischen Basis $\{(\alpha(t),\partial_k\varphi(u(t)))\mid k=1,...,n\}$ von $T_{\alpha(t)}M$.

Dann sind die $X_1, ..., X_n$ glatte Funktionen und die kovariante Ableitung von X besitzt die lokale Darstellung

$$\frac{\mathrm{D}}{\mathrm{d}t}X(t) = \sum_{k=1}^n \bigg(\alpha(t), \bigg(\dot{X}_k(t) + \sum_{i,j=1}^n X_i(t)\dot{u}_j(t)\Gamma_{ij}^{\varphi k}(u(t))\bigg)\partial_k\varphi(u(t))\bigg).$$

BEWEIS

Mit der Gauß-Formel gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}X(t) = \sum_{k=1}^{n} \left(\alpha(t), \dot{X}_{k}(t)\partial_{k}\varphi(u(t)) + X_{k}(t) \sum_{j=1}^{n} \partial_{j}\partial_{k}\varphi(u(t))\dot{u}_{j}(t)\right) \\
= \sum_{k=1}^{n} \left(\alpha(t), \dot{X}_{k}(t)\partial_{k}\varphi(u(t)) + X_{k}(t) \sum_{j=1}^{n} \left(h_{jk}^{\varphi}(u(t)) \cdot \underbrace{(\tilde{N} \circ \varphi)(u(t))}_{=\tilde{N}(\alpha(t))} + \sum_{i=1}^{n} \Gamma_{jk}^{i\varphi}(u(t))\partial_{i}\varphi(u(t))\right)\dot{u}_{j}(t)\right),$$

Projektion auf den Tangentialraum $T_{\alpha(t)}M$ ergibt also

$$\frac{\mathrm{D}}{\mathrm{d}t}X(t) = \sum_{k=1}^{n} \left(\alpha(t), \dot{X}_{k}(t)\partial_{k}\varphi(u(t)) + X_{k}(t)\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \Gamma_{jk}^{i\varphi}(u(t))\partial_{i}\varphi(u(t))\right) \dot{u}_{j}(t)\right).$$

Nach allfälliger Umnummerierung der Indizes folgt die Behauptung.

DEFINITION 4.7

Sei X ein tangentiales Vektorfeld auf M, $v \in TM$ und α ein Weg in M mit $\alpha'(0) = v$.

Die kovariante Ableitung von X in Richtung v ist $D_v X := \frac{D}{dt}(X \circ \alpha)(0)$.

Bemerkung 4.8 (lokale Darstellung der kovarianten Richtungsableitung)

- (1) Sei $N \in \{v\}^{\perp}$ ein Normalenvektor an M, dann ist $D_v X = \nabla_v X \langle \nabla_v X, N \rangle N$ nach Bem. 3.15 unabhängig von der Wahl von α , d.h. $D_v X$ wohldefiniert.
- (2) Sei (U, φ) ein lokales Koordinatensystem bei $p = \varphi(x_0)$. Seien $(X_1(x), ..., X_n(x))^T$ der Koordinatenvektor von $X(\varphi(x))$ bzgl. der kanonischen Basis $\{(\varphi(x), \partial_k \varphi(x)) \mid k = 1, ..., n\}$ von $\tilde{T}_{\varphi(x)}M$ und $(v_1, ..., v_n)^T$ derjenige von v, d.h.

$$X(\varphi(x)) = \left(\varphi(x), \sum_{k=1}^{n} X_k(x) \partial_k \varphi(x)\right), \qquad v = \left(p, \sum_{k=1}^{n} v_k \partial_k \varphi(x_0)\right).$$

Dann besitzt $D_v X$ die lokale Darstellung

$$D_v X = \left(\varphi(x_0), \sum_{k=1}^n \left(\sum_{l=1}^n \partial_l X_k(x_0) \cdot v_l + \sum_{i,j=1}^n \Gamma_{ij}^{\varphi k}(x_0) X_i(x_0) \cdot v_j\right) \partial_k \varphi(x_0)\right).$$

- (3) Sei Y ein tangentiales Vektorfeld auf M, dann definiert $(D_Y X)(p) := D_{Y(p)} X \ (p \in M)$ ein tangentiales Vektorfeld $D_Y X$ auf M.
- (4) Seien X, Y und X_1, X_2, Y_1, Y_2 tangentiale Vektorfelder auf $M, f: M \to \mathbb{R}$ glatt und $a, b \in \mathbb{R}$. Dann gelten:
 - (a) $D_Y(aX_1 + bX_2) = aD_YX_1 + bD_YX_2$.
 - (b) $D_Y(f \cdot X) = d_{Y(\cdot)} f \cdot X + f \cdot D_Y X$.
 - (c) $dg(X_1, X_2)(Y) = g(D_Y X_1, X_2) + g(X_1, D_Y X_2).$

Genauer: $u(p) := g_p(X_1(p), X_2(p))$ definiert glattes $u : M \to \mathbb{R}$, analog für die Summanden auf der rechten Seite. du(Y) bezeichnet die Funktion $p \mapsto \pi_2(\mathrm{d}_p u Y(p)) : M \to \mathbb{R}$, wobei $\pi_2 : \mathbb{R}^2 \to \mathbb{R}$ Projektion auf die zweite Komponente.

- (d) $D_{aY_1+bY_2}X = aD_{Y_1}X + bD_{Y_2}X$.
- (e) $D_{f \cdot Y}X = f \cdot D_Y X$.

4.2 Paralleltransport

DEFINITION 4.9

Ein tangentiales Vektorfeld X längs α heißt (Levi-Civita-)parallel, falls $\frac{D}{dt}X \equiv 0$.

Bemerkung 4.10

Seien X,Y zwei parallele Vektorfelder längs $\alpha.$ Dann gelten:

- (1) $g_{\alpha(\cdot)}(X,Y)$ ist konstant auf I; insbesondere haben parallele Vektorfelder konstante Länge.
- (2) Der Winkel $\arccos\left(\frac{g_{\alpha(\cdot)}(X,Y)}{\sqrt{g_{\alpha(\cdot)}(X,X)\cdot g_{\alpha(\cdot)}(Y,Y)}}\right)$ ist konstant auf I. (3) X+Y und $c\cdot X$ ($c\in\mathbb{R}$) sind parallel längs α .

SATZ 4.11

Seien $\alpha: I \to M$ ein Weg, $t_0 \in I$ und $v \in T_{\alpha(t)}M$.

Dann gibt es genau ein paralleles Vektorfeld längs α mit $X(t_0) = v$.

BEWEIS

Sei (U,φ) ein lokales Koordinatensystem bei $\alpha(t_0)$. Dann besitzt v eine Darstellung

$$v = \sum_{k=1}^{n} v_k \partial_k \varphi(\alpha(t_0))$$

für gewisse $v_k \in \mathbb{R}$. Sei $J \subseteq I$ Intervall mit $t_0 \in J$ und $\alpha(J) \subseteq \varphi(U)$, dann setze $u(t) := \varphi^{-1}(\alpha(t))$ $(t \in J)$. Das System gewöhnlicher Differenzialgleichungen erster Ordnung

$$\begin{cases} \dot{X}_k(t) &= -\sum_{i=1}^n \bigg(\sum_{j=1}^n \dot{u}_j(t) \Gamma_{ij}^{\varphi k}(u(t))\bigg) X_i(t) =: -\sum_{i=1}^n a_{ki}(t) X_i(t), & k = 1, ..., n \\ X_k(t_0) &= v_k \end{cases}$$

bzw. mit $X(t) := (X_1(t), ..., X_n(t)), \ A(t) := (a_{ik}(t))_{i=1,...,n}^{k=1,...,n}$ und $v := (v_1, ..., v_n)$

$$\begin{cases} \dot{X}(t) &= -A(t)X(t) \\ X(t_0) &= v \end{cases}$$

besitzt nach Picard-Lindelöf genau eine Lösung X auf J. Nach Satz 4.6 definiert

$$X(t) = \sum_{k=1}^{n} (\alpha(t), X_k(t)\partial_k \varphi(u(t))) \qquad (t \in J)$$

das eindeutig bestimmte, parallele Vektorfeld X längs $\alpha|_J$ mit $X(t_0) = v$.

Seien nun $b:=\sup\{\tilde{b}\mid \exists \text{ paralleles Vektorfeld längs }\alpha|_{[t_0,\tilde{b})} \text{ mit } X(t_0)=v\}.$ Angenommen, es wäre $b_0 < b$, dann wähle $(t_j)_{j \in \mathbb{N}} \subseteq (t_0, b_0)$ mit $t_j \to b_0$. Nach Bem. 4.10 hat X konstante Länge, d.h. $(\tilde{X}(t_i))_{i\in\mathbb{N}}$ konvergiert in \mathbb{R}^n , etwa gegen \tilde{w} .

Aus Stetigkeitsgründen ist dann $w := (\alpha(b_0), \tilde{w}) \in T_{\alpha(b_0)}M$ und wir finden ein Intervall $J \subseteq I$ um t_0 sowie ein (eindeutiges) paralleles Vektorfeld Y längs $\alpha|_J$ mit $Y(b_0)=w$. Folglich ist $X\equiv Y$ auf $J\cap [t_0,b_0)$, d.h. X lässt sich auf $[t_0, b_0] \cup J$ fortsetzen zu einem Vektorfeld längs α , was im Widerspruch zur Maximalität von b_0 steht.

Definition 4.12

Seien $\alpha:[a,b]\to M$ ein Weg, $p:=\alpha(a),\ q:=\alpha(b)$. Dann heißt $P_\alpha:T_pM\to T_qM,\ v\mapsto X_v(b)$, wobei X_v das (eindeutig bestimmte) parallele Vektorfeld längs α mit $X_v(a) = v$ bezeichnet, Paralleltransport längs α .

Folgerung 4.13

Der Paralleltransport längs α ist ein isometrischer Vektorraum-Isomorphismus (insbes. $g_p(v, w) = g_q(P_\alpha v, P_\alpha w)$).

SS 2009 Martin Gubisch 54

4.3 Geodätische

DEFINITION 4.14

Ein glatter Weg $\alpha: I \to M$ heißt Geodätische, falls $\frac{D}{dt}\alpha'(t) = 0$ für alle $t \in I$.

Bemerkung 4.15

- (1) Genau dann ist ein Weg $\alpha: I \to M$ eine Geodätische, wenn $\alpha''(t) := (\alpha(t), \ddot{\alpha}(t)) \in T_{\alpha(t)}M^{\perp}$ für alle $t \in I$.
- (2) Geodätische sind proportional zur Bogenlänge parametrisiert, d.h. $g_{\alpha(\cdot)}(\alpha', \alpha') = \text{const.}$
- (3) Physikalisch: Die "Beschleunigung" $\ddot{\alpha}$ dient nur dazu, dass die Kurve in der Mannigfaltigkeit bleibt.

Beispiel 4.16

Seien $Z := \mathbb{S}^1 \times \mathbb{R}$ der Zylinder in \mathbb{R}^3 und $a, b, c, d \in \mathbb{R}$ beliebig. Dann ist $\alpha : \mathbb{R} \to Z$ mit

$$\alpha(t) := \begin{pmatrix} \cos(at+b) \\ \sin(at+b) \\ ct+d \end{pmatrix}$$

eine Geodätische, denn ist N eine der beiden Orientierungen von Z, dann ist

$$\ddot{\alpha}(t) = \begin{pmatrix} -a^2 \cos(at+b) \\ -a^2 \sin(at+b) \\ 0 \end{pmatrix} = \pm a^2 \tilde{N}(\alpha(t))$$

für alle $t \in \mathbb{R}$.

SATZ 4.17

Seien $p \in M$ und $v \in T_pM$. Dann gibt es ein offenes Intervall $I \subseteq \mathbb{R}$ mit $0 \in I$ und eine Geodätische $\alpha : I \to M$ mit $\alpha'(0) = v$ und I maximal, d.h. für jede Geodätische $\beta : J \to M$ mit $\beta'(0) = v$ gilt $J \subseteq I$ und $\alpha \equiv \beta$ auf J.

 $\alpha_v := \alpha$ heißt die *maximale Geodätische* durch p mit Anfangsgeschwindigkeit v.

BEWEIS

Sei (U,φ) ein lokales Koordinatensystem von M mit $\alpha(I) \subseteq \varphi(U)$. Dann ist $u := \varphi^{-1} \circ \alpha$ glatt mit $\alpha'(t) = (\alpha(t), \dot{u}_k(t)\partial_k\varphi(u(t)))$. Nach Satz 4.6 ist $\frac{\mathrm{D}}{\mathrm{d}t}\alpha' \equiv 0$ nahe t_0 genau dann, wenn u das System gewöhnlicher Differenzialgleichungen zweiter Ordnung

$$\ddot{u}_k(t) = -\sum_{i,j=1}^n \dot{u}_i(t)\dot{u}_j(t)\Gamma_{ij}^{k\varphi}(u(t)) = -\langle \Gamma^{k\varphi}(u(t))\dot{u}(t), \dot{u}(t)\rangle, \qquad k = 1, ..., n$$

mit $\Gamma^{k\varphi}:=(\Gamma^{k\varphi}_{ij})_{1\leq i\leq n}^{1\leq j\leq n}$ löst. Unter Vorgabe von $u(t_0)$ und $\dot{u}(t_0)$ hat dieses System genau eine Lösung nahe t_0 auf einem maximalen Existenzintervall I.

Bemerkung 4.18

Sei M kompakt, dann ist jede maximale Geodätische auf ganz \mathbb{R} definiert.

SATZ 4.19

Seien M eine durch N orientierte Hyperfläche im \mathbb{R}^3 und $\gamma:I\to\mathbb{R}^3$ eine Bogenlängenparametrisierung einer Frenet-Raumkurve mit $\mathrm{Spur}(\gamma)\subseteq M$.

Dann definiert $V_{\gamma}(t) := -\gamma'(t) \times (N \circ \gamma)(t)$ ein längs γ tangentiales Vektorfeld und es gibt genau eine Funktion $\varkappa_{\gamma}^g : I \to \mathbb{R}$ mit

$$\forall t \in I : \frac{\mathrm{D}}{\mathrm{d}t} \gamma'(t) = \varkappa_{\gamma}^{g}(t) \cdot V_{\gamma}(t).$$

 \varkappa_{γ}^{g} heißt die geodätische Krümmung von γ bzgl. M.

Martin Gubisch 55 SS 2009

 γ ist genau dann eine Geodätische in M, wenn $\varkappa_{\gamma}^g \equiv 0.$

Ist $\psi_{\gamma}(t) := \arccos(\langle \vec{\eta}_{\gamma}(t), (\tilde{N} \circ \gamma)(t) \rangle)$ $(t \in I)$ der Winkel zwischen $\vec{\eta}_{\gamma}(t)$ und $\tilde{N}(\gamma(t))$, so gelten

$$\varkappa_{\gamma}^{g}(t) = \pm \kappa_{\gamma}(t)\sin(\psi_{\gamma}(t)), \qquad \varkappa(\gamma'(t)) = \kappa_{\gamma}(t)\cos(\psi_{\gamma}(t)),$$

wobei $\varkappa(\gamma'(t))$ die Normalkrümmung von M in Richtung $\gamma'(t)$ ist und κ_{γ} die Krümmung von γ als Raumkurve.

Beweis

Sei $t \in I$, dann ist

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} g_{\gamma(t)}(\gamma'(t), \gamma'(t)) = 2g_{\gamma(t)} \left(\frac{\mathrm{D}}{\mathrm{d}t} \gamma'(t), \gamma'(t) \right),$$

d.h. $\frac{\mathrm{D}}{\mathrm{d}t}\gamma'(t) \in T_{\gamma(t)}M$ steht senkrecht auf $\gamma'(t)$. Also ist $\frac{\mathrm{D}}{\mathrm{d}t}\gamma'(t) = \varkappa_{\gamma}^g(t)V_{\gamma}(t)$, wenn wir setzen

$$\varkappa_{\gamma}^{g}(t) := g_{\gamma(t)}(\frac{\mathrm{D}}{\mathrm{d}t}\gamma'(t), V_{\gamma}(t)) = \langle \ddot{\gamma}(t), \tilde{V}_{\gamma}(t) \rangle.$$

Wegen $\vec{\eta}_{\gamma}(t) \perp \dot{\gamma}(t)$ ist mit $\sin(\arccos(\cdot)) = \pm \sqrt{1 - (\cdot)^2}$

$$\vec{\eta}_{\gamma}(t) = \langle \vec{\eta}_{\gamma}(t), (\tilde{N} \circ \gamma)(t) \rangle (\tilde{N} \circ \gamma)(t) + \langle \vec{\eta}_{\gamma}(t), \tilde{V}_{\gamma}(t) \rangle \tilde{V}_{\gamma}(t) + \underbrace{\langle \vec{\eta}_{\gamma}(t), \dot{\gamma}(t) \rangle}_{=0} \dot{\gamma}(t)$$

$$= \cos(\psi_{\gamma}(t)) \cdot (\tilde{N} \circ \gamma)(t) \pm \sin(\psi_{\gamma}(t)) \cdot \tilde{V}_{\gamma}(t).$$

Nach den Frenet-Gleichungen ist zugleich $\ddot{\gamma}(t) = \kappa_{\gamma}(t)\sin(\psi_{\gamma}(t))$, d.h.

$$\varkappa_{\gamma}^{g}(t) = \langle \kappa_{\gamma}(t) \vec{\eta}_{\gamma}(t), \tilde{V}_{\gamma}(t) \rangle = \pm \kappa_{\gamma}(t) \sin(\psi_{\gamma}(t)).$$

Schließlich ist nach Bem. 3.25

$$\varkappa(\gamma'(t)) = \langle \ddot{\gamma}(t), \tilde{N}(\gamma(t)) \rangle = \kappa_{\gamma}(t) \cdot \cos(\psi_{\gamma}(t)).$$

Definition 4.20

Sei $\alpha:[a,b]\to M$ ein Weg. Die Länge L und die Energie E von α sind definiert als

$$L(\alpha) := \int_a^b \sqrt{g_{\alpha(t)}(\alpha'(t),\alpha'(t))} \ \mathrm{d}t, \qquad \quad E(\alpha) := \frac{1}{2} \int_a^b g_{\alpha(t)}(\alpha'(t),\alpha'(t)) \ \mathrm{d}t.$$

Bemerkung 4.21

Wir nennen α "proportional zur Bogenlänge parametrisiert", falls $g_{\alpha(\cdot)}(\alpha', \alpha') \equiv \text{const.}$.

LEMMA 4.22

Für einen Weg $\alpha:[a,b]\to M$ ist

$$L(\alpha)^2 < 2(b-a)E(\alpha)$$

und "=" gilt genau dann, wenn α proportional zur Bogenlänge parametrisiert ist.

BEWEIS

Definiere $f(t) := g_{\alpha(t)}(\alpha'(t), \alpha'(t))$ $(t \in [a, b])$, dann gilt nach der Cauchy-Schwarz-Ungleichung

$$L(\alpha)^2 = \left(\int_a^b \sqrt{f(t)} \cdot 1\right)^2 \le \int_a^b f(t) \, dt \cdot \int_a^b 1 \, dt = 2(b-a)E(\alpha),$$

wobei "=" genau dann der Fall ist, wenn f und 1 linear abhängig sind.

Martin Gubisch 56 SS 2009

LEMMA 4.23

Seien I, J Intervalle in \mathbb{R} und $c: I \times J \to M$ glatt. Dann gilt

$$\forall (s,t) \in I \times J : \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{d}}{\mathrm{d}t} c(s,t) = \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}s} c(s,t),$$

wobei $\frac{\mathrm{d}}{\mathrm{d}t}c$ das Geschwindigkeitsvektorfeld von $t\mapsto c(s,t)$ und $\frac{\mathrm{d}}{\mathrm{d}s}c$ dasjenige von $s\mapsto c(s,t)$ bezeichnet.

BEWEIS

Da dies ein lokales Problem ist, sei Œ $c(I \times J) \subseteq \varphi(U)$ für ein lokales Koordinatensystem (U, φ) von M. Setze $u := \varphi^{-1} \circ c : I \times J \to U$, dann gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}c(s,t) = \left(c(s,t), \frac{\mathrm{d}}{\mathrm{d}t}(\varphi \circ u)(s,t)\right) = \left(c(s,t), \sum_{k=1}^n \partial_t u_k(s,t) \partial_k \varphi(u(s,t))\right).$$

Nach Satz 4.6 gilt dann

$$\frac{\mathrm{D}}{\mathrm{d}s}\frac{\mathrm{d}}{\mathrm{d}t}c(s,t) = \left(c(s,t), \sum_{k=1}^{n} \left(\partial_{s}\partial_{t}u_{k}(s,t) + \sum_{i,j=1}^{n} \partial_{t}u_{i}(s,t)\partial_{s}u_{j}(s,t)\Gamma_{ij}^{k\varphi}(u(s,t))\partial_{k}\varphi(u(s,t))\right)\right).$$

Wegen $\Gamma_{ij}^{k\varphi} = \Gamma_{ji}^{k\varphi}$ (i, j = 1, ..., n) nach Definition der Christoffelsymbole ist dieser Ausdruck symmetrisch in s, t, woraus die Behauptung folgt.

Bemerkung 4.24

Seien $p, q \in M$ und $c: (-\epsilon, \epsilon) \times [a, b] \to M$ glatt mit c(s, a) = p und c(s, b) = q für alle $s \in (-\epsilon, \epsilon)$.

Dann ist das Variationsvektorfeld $V:[a,b]\to\mathbb{R}^{2(n+1)},\ t\mapsto \frac{\mathrm{d}}{\mathrm{d}s}c(0,t)$ von c ein tangentiales Vektorfeld längs $t\mapsto c(0,t)$.

Ist $\alpha:[a,b]\to M$ ein Weg, dann heißt c eine Variation mit festen Randpunkten von α , falls $c(0,\cdot)=\alpha$.

Satz 4.25 (Variation der Energie)

Seien $p,q \in M$ und $c:(-\epsilon,\epsilon) \times [a,b] \to M$ glatt mit c(s,a)=p und c(s,b)=q für alle $s\in(-\epsilon,\epsilon)$, dann gilt

$$\frac{\mathrm{d}}{\mathrm{d}s}E(c(s,\cdot))\bigg|_{s=0} = -\int_a^b g_{c(0,t)}\left(V(t), \frac{\mathrm{D}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}c(0,t)\right)\mathrm{d}t.$$

BEWEIS

Wegen $V(a) = \frac{d}{ds}c(s,a)|_{s=0} = \frac{d}{ds}p = (p,0)$ und analog V(b) = (q,0) gilt

$$0 = g_q\left(V(b), \frac{\mathrm{d}}{\mathrm{d}t}c(0, b)\right) - g_p\left(V(a), \frac{\mathrm{d}}{\mathrm{d}t}c(0, a)\right)$$

$$\stackrel{\mathrm{Hauptsatz}}{=} \int_a^b \frac{\mathrm{d}}{\mathrm{d}t} g_{c(0, t)}\left(V(t), \frac{\mathrm{d}}{\mathrm{d}t}c(0, t)\right) \mathrm{d}t$$

$$= \int_a^b g_{c(0, t)}\left(\frac{\mathrm{d}}{\mathrm{d}t}V(t), \frac{\mathrm{d}}{\mathrm{d}t}c(0, t)\right) \mathrm{d}t + \int_a^b g_{c(0, t)}\left(V(t), \frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}c(0, t)\right) \mathrm{d}t$$

$$= \int_a^b g_{c(0, t)}\left(\frac{\mathrm{D}}{\mathrm{d}t}V(t), \frac{\mathrm{d}}{\mathrm{d}t}c(0, t)\right) \mathrm{d}t + \int_a^b g_{c(0, t)}\left(V(t), \frac{\mathrm{D}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}c(0, t)\right) \mathrm{d}t$$

gilt hier "partielle Integration ohne Rand":

$$\int_{a}^{b} g_{c(0,t)} \left(\frac{\mathbf{D}}{\mathrm{d}t} V(t), \frac{\mathrm{d}}{\mathrm{d}t} c(0,t) \right) \, \mathrm{d}t = -\int_{a}^{b} g_{c(0,t)} \left(V(t), \frac{\mathbf{D}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}t} c(0,t) \right) \, \mathrm{d}t. \tag{*}$$

Damit erhalten wir

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s}E(c(s,\cdot))\bigg|_{s=0} &\stackrel{(4.20)}{=} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}s}\int_{a}^{b}g_{c(0,t)}\left(\frac{\mathrm{d}}{\mathrm{d}t}c(s,t),\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)\right)\,\mathrm{d}t\bigg|_{s=0} \\ &\stackrel{\mathrm{param. \, Int.}}{=} \frac{1}{2}\int_{a}^{b}\frac{\mathrm{d}}{\mathrm{d}s}g_{c(0,t)}\left(\frac{\mathrm{d}}{\mathrm{d}t}c(s,t),\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)\right)\,\mathrm{d}t\bigg|_{s=0} \\ &\stackrel{(4.5)}{=} \int_{a}^{b}g_{c(0,t)}\left(\frac{\mathrm{D}}{\mathrm{d}s}\frac{\mathrm{d}}{\mathrm{d}t}c(s,t),\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)\right)\,\mathrm{d}t\bigg|_{s=0} \\ &\stackrel{(4.23)}{=} \int_{a}^{b}g_{c(0,t)}\left(\frac{\mathrm{D}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}s}c(s,t),\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)\right)\,\mathrm{d}t\bigg|_{s=0} \\ &\stackrel{(4.24)}{=} \int_{a}^{b}g_{c(0,t)}\left(\frac{\mathrm{D}}{\mathrm{d}t}V(t),\frac{\mathrm{d}}{\mathrm{d}t}c(0,t)\right)\,\mathrm{d}t \end{split}$$

SATZ 4.26

Ist $\alpha:[a,b]\to M$ ein Weg, der minimale Energie bzgl. aller Variationen mit festen Randpunkten hat, so ist α eine Geodätische.

BEWEIS

Angenommen, es gäbe ein $t_0 \in (a,b)$ mit $\frac{\mathrm{D}}{\mathrm{d}t}\alpha'(t_0) \neq 0$. Wir wählen ein lokales Koordinatensystem (U,φ) von M und ein offenes Intervall $J \subseteq [a,b]$ mit $t_0 \in J$ und $\alpha(J) \subseteq \varphi(U)$. Definiere $u: J \to U$ durch $t \mapsto \varphi^{-1}(\alpha(t))$ und ein Vektorfeld X längs u durch $X(t) := (\mathrm{d}_{u(t)}\varphi)^{-1}\frac{\mathrm{D}}{\mathrm{d}t}\alpha'(t) \in T_{u(t)}\mathbb{R}^n \ (t \in J)$, d.h. $\mathrm{d}_{u(t)}\varphi X(t) = \frac{\mathrm{D}}{\mathrm{d}t}\alpha'(t) \ (t \in J)$.

Wähle ein $0 \le \psi \in \mathcal{C}^{\infty}([a,b])$ mit $\operatorname{supp}(\psi) \subseteq J$ und $\psi(t_0) > 0$ und definiere für hinreichend kleines $\epsilon > 0$ eine Funktion $c: (-\epsilon, \epsilon) \times [a,b] \to M$ durch

$$c(s,t) := \left\{ \begin{array}{cc} \varphi(u(t) + s\psi(t)\tilde{X}(t)) & t \in J \\ \alpha(t) & t \notin J \end{array} \right.$$

Dann ist c eine Variation mit festen Randpunkten von α .

Für das Variationsvektorfeld $V = \frac{d}{ds}c(0,t)$ gilt offenbar $v \equiv 0$ auf $[a,b]\setminus J$ sowie

$$\forall t \in J : V(t) = \frac{\mathrm{d}}{\mathrm{d}s} \varphi(u(t) + s\psi(t)\tilde{X}(t)) \bigg|_{s=0} = \mathrm{d}_{u(t)} \varphi(\psi(t)X(t)) = \psi(t) \frac{\mathrm{D}}{\mathrm{d}t} \alpha'(t),$$

d.h.

$$\left. \frac{\mathrm{d}}{\mathrm{d}s} E(c(s,\cdot)) \right|_{s=0} = -\int_J g_{\alpha(t)} \left(V(t), \frac{\mathrm{D}}{\mathrm{d}t} \alpha'(t) \right) \, \mathrm{d}t = -\int_J \psi(t) g_{\alpha(t)} \left(\frac{\mathrm{D}}{\mathrm{d}t} \alpha'(t), \frac{\mathrm{D}}{\mathrm{d}t} \alpha'(t) \right) \, \mathrm{d}t < 0,$$

wegen der Minimalität der Energie müsste aber $\frac{d}{ds}E(c(s,\dot{s}))|_{s=0}=0$ gelten, ein Widerspruch.

Damit ist $\frac{D}{dt}\alpha \equiv 0$ auf (a,b) und wegen der Stetigkeit damit auch auf [a,b].

Korollar 4.27

Ist $\alpha:[a,b]\to M$ ein proportional zur Bogenlänge parametrisierter Weg, der minimale Länge bzgl. aller Variationen mit festen Randpunkten hat, dann ist α eine Geodätische.

BEWEIS

Nach Lemma 4.22 hat α genau dann minimale Länge bzgl. aller Variationen mit festen Randpunkten, wenn α minimale Energie bzgl. aller dieser Variationen hat.

Bemerkung 4.28

Geodätische sind i.A. nicht Energie- oder Länge-minimierend. Zwei auf einem Großkreis liegende Punkte von $\mathbb{S}^2 \subseteq \mathbb{R}^3$ können beispielsweise in der Regel mit zwei Geodätischen verschiedener Länge verbunden werden.

4.4 Die Exponenzialabbildung

Definition 4.29

Für $v \in M$ bezeichne $\alpha_v : I(v) \subseteq \mathbb{R} \to M$ die maximale Geodätische mit $\alpha'(0) = v$. Dann heißt $\exp : \mathcal{D} \subseteq TM \to M$, $\exp(v) := \alpha_v(1)$ mit $\mathcal{D} := \{v \in TM \mid [0,1] \subseteq I(v)\}$ die *Exponenzialabbildung* von M.

Für $p \in M$ setzen wir $\mathcal{D}_p := \mathcal{D} \cap T_p M$ und definieren $\exp_p : \mathcal{D}_p := \mathcal{D} \cap T_p M \to M$, $\exp_p(v) := \exp(v)$.

Beispiel 4.30

Sei $M = \mathbb{S}^2$. Für $v \in T_p M$ ist dann der Großkreis

$$\alpha_v : \mathbb{R} \to M, \ t \mapsto \cos(||v||t)p + \sin(||v||t)\frac{\tilde{v}}{||\tilde{v}||}$$

die maximale Geodätische. Also sind $\mathcal{D}=TM$ und exp : $T_pM\to M$ ist gegeben durch

$$\exp: v \mapsto \cos(||v||)p + \sin(||v||)\frac{\tilde{v}}{||\tilde{v}||}.$$

Bemerkung 4.31

Nach Bem. 4.18 ist $\mathcal{D} = TM$, falls M eine kompakte Mannigfaltigkeit ist.

Definition 4.32

Sei X ein tangentiales Vektorfeld auf M. Die maximale Integralkurve von X durch $p \in M$ ist diejenige Kurve $\gamma_p : I(p) \subseteq \mathbb{R} \to M$ mit $\gamma'_p(t) = X(\gamma_p(t))$ $(t \in I(p))$ und $\gamma_p(0) = p$, wobei I(p) maximal gewählt.

LEMMA 4.33

Seien X ein glattes, tangentiales Vektorfeld auf M und $K \subseteq M$ kompakt. Dann gibt es ein $\epsilon > 0$ und eine offene Umgebung V von K mit $\forall p \in V : (-\epsilon, \epsilon) \subseteq I(p)$ und $\psi : V \times (-\epsilon, \epsilon) \to M$, $\psi(p, t) := \gamma_p(t)$ ist glatt.

BEWEIS

Da K kompakt, genügt es, für fest gewähltes $p_0 \in K$ ein passendes ϵ und V zu finden. Wähle also ein lokales Koordinatensystem (U,φ) bei p_0 , dann definiert $Y(x) := (\mathrm{d}_x \varphi)^{-1} X(\varphi(x))$ $(x \in U)$ ein glattes Vektorfeld auf U und es ist $\alpha: I \to \varphi(U)$ eine Integralkurve von $X \Leftrightarrow \beta:= \varphi^{-1} \circ \alpha: I \to U$ ist eine Integralkurve auf Y.

Nach der "Differenzierbarkeit bzgl. den Daten" aus der Theorie gewöhnlicher Differenzialgleichungen existieren daher zu $x_0 := \varphi^{-1}(p_0)$ ein $\epsilon > 0$ und eine offene Umgebung $W \subseteq U$ von x_0 und dazu ein $\psi : (-\epsilon, \epsilon) \times W \to U$ mit den geforderten Eigenschaften. Dann hat $\tilde{\psi} := \varphi \circ \psi$ die verlangten Eigenschaften.

SATZ 4.34

Der Definitionsbereich \mathcal{D} von exp ist offen in TM und exp : $\mathcal{D} \to M$ ist glatt.

BEWEIS

Wir fassen TM als 2n-dimensionale Untermannigfaltigkeit des $\mathbb{R}^{2(n+1)}$ auf und definieren auf TM den Geodäischen $Spray\ X:TM\to TM\times\mathbb{R}^{2(n+1)}$ durch

$$X: v = (p, \tilde{v}) \mapsto (v, \tilde{v}, -g(v, \nabla_v N)\tilde{N}(p)),$$

wobei N ein bei p glattes Einheitsnormalenfeld auf M sei. Dann ist X wohldefiniert und ein glattes, tangentiales Vektorfeld an TM. Für dieses gelten:

Martin Gubisch 59 SS 2009

- (1) Ist $\alpha = \alpha_v : I \to M$ eine (maximale) Geodätische, dann definiert $\gamma_v := \alpha_v' : I \to TM$ die (maximale) Integralkurve von X in v und
- (2) Ist $\gamma = \gamma_v : I \to TM$ eine (maximale) Integralkurve an X in v, dann definiert $\alpha'_v := \gamma_v$ die (maximale) Geodätische $\alpha_v : I \to M$.

Die Geodätischen auf M entsprechen also umkehrbar eindeutig den Integralkurven an X via $\alpha'_v = \gamma_v$.

Nach Lemma 4.33 existieren zu $v \in \mathcal{D}$ eine offene Umgebung $V \subseteq TM$ des Kompaktums $\alpha'_v([0,1])$ und ein $\epsilon > 0$, so dass zu jedem $w \in V$ die maximale Integralkurve von X auf $(-\epsilon, \epsilon)$ existier und $\psi_t : V \to TM$, $w \mapsto \gamma_w(t)$ für festes $t \in (-\epsilon, \epsilon)$ glatt ist. Weiter gilt wegen der Eindeutigkeit von Integralkurven, dass $\psi_{s+t}(w) = (\psi_s \circ \psi_t)(w)$ für $s, t \in (-\epsilon, \epsilon)$ und $w, \psi_t(w) \in V$. Sei nun $N \in \mathbb{N}$ mit $\frac{1}{k} < \epsilon$, dann ist

$$W := \bigcap_{j=1}^{N-1} \left(\underbrace{\psi_{\frac{1}{k}} \circ \dots \circ \psi_{\frac{1}{k}}}_{j-\text{mal}} \right)^{-1} (V) \subseteq TM$$

definiert, offen und für alle $w \in W$ ist γ_w und damit auch α_w auf [0,1] definiert. Außerdem ist mit $\psi : [0,1] \times W \to TM$, $(t,w) \mapsto \gamma_w(t)$ auch $\alpha_w : [0,1] \to M$ glatt. Damit besitzt jedes $v \in \mathcal{D}$ eine offene Umgebung $W \subseteq \mathcal{D}$ und $\exp : \mathcal{D} \to M$ ist glatt.

Bemerkung 4.35

Für jedes $v = (p, \tilde{v}) \in T_p M$ definiert $t \mapsto \exp(tv)$ die maximale Geodätische $\alpha_v : I(v) \to M$. Wegen $\alpha_{tv}(s) = \alpha_v(ts)$ ist nämlich für s = 1 insbesondere $\exp(tv) = \alpha_{tv}(1) = \alpha_v(t)$. Speziell ist mit $v \in \mathcal{D}$ auch $tv \in \mathcal{D}$ für $t \in [0, 1]$.

SATZ 4.36

Zu jedem $p \in M$ existiert eine offene Umgebung $U_p \subseteq T_pM$ von 0, so dass $\exp_p : U_p \to \exp(U_p) \subseteq M$ ein Diffeomorphismus ist mit $\exp_p(0) = p$.

BEWEIS

Wir zeigen, dass das Differenzial $d_0 \exp_p : T_0(T_pM) \to T_pM$ invertierbar ist, dann folgt die Behauptung aus dem Satz von der inversen Funktion.

Sei $(0, v) \in T_0(T_pM)$. Setze $\beta: I \to T_pM$, $\beta(t) := tv$, dann ist $(0, v) = \beta'(0)$, d.h.

$$d_0 \exp_p(0, v) = (\exp \circ \beta)'(0) = \frac{\mathrm{d}}{\mathrm{d}t} \exp(tv) \Big|_{t=0} = \dot{\alpha}_v(0) = v.$$

DEFINITION 4.37

Sei $(v_1,...,v_n)$ eine Orthonormalbasis des T_pM . Der Isomotphismus $A: \mathbb{R}^n \to T_pM$ sei gegeben durch $x \mapsto Ax := \sum_{i=1}^n x_i v_i$.

Die Riemannschen Normalkoordinaten (U, φ) bei p sind definiert als

$$U := A^{-1}(U_p) \subseteq \mathbb{R}^n, \qquad \varphi(x) := \exp_p(Ax) \in M.$$

Bezeichne $\Psi:(0,\infty)\times(-\pi,\pi)\times(-\pi,\pi)^{n-2}\to\mathbb{R}^n\setminus\{t\leq 0\}\times\{0\}\times\mathbb{R}^{n-2},\ (r,\theta)\mapsto\Psi(r,\theta)$ die n-dimensionalen Polarkoordinaten, dann definiert

$$U := (A \circ \Psi)^{-1}(U_p), \qquad \varphi(r,\theta) := \exp_n((A \circ \Psi)(r,\theta))$$

ebenfalls eine lokale Parametrisierung (U,φ) von M bei p, die Riemannschen Polarkoordinaten.

Bemerkung 4.38

- (1) Für die Riemannschen Normalkoordinaten (U, φ) gelten $g_{ij}^{\varphi}(0) = \delta_{ij}$ und $\partial_k g_{ij}^{\varphi}(0) = 0$.
- (2) Für die Riemannschen Polarkoordinaten (U, φ) gelten $g_{rr}^{\varphi}(r, \theta) = 1$ und $g_{r\theta_i}^{\varphi}(r, \theta) = 0$.

4.5 Die Abstandsfunktion

Wiederholung 4.39

- (1) $\gamma: [a,b] \to M$ heißt ein stückweise glatter Weg, falls γ stetig ist und eine Zerlegung des Intervalls $Z = (t_0, t_1, ..., t_N) \subseteq [a,b]$ existiert mit $a = t_0 < t_1 < ... < t_N = b$, so dass $\gamma|_{(t_{i-1},t_i)}$ glatt ist für jedes i = 1, ..., N.
- (2) Die *Länge* von γ ist definiert als $L(\gamma) := \sum_{i=1}^{N} L(\gamma|_{(t_{i-1},t_i)})$.
- (3) Ist M zusammenhängend, dann lassen sich zwei Punkte $p, q \in M$ durch einen stückweise glatten Weg verbinden, denn jeder Punkt von M besitzt eine wegzusammenhängende Umgebung in M.
- (4) Die Abbildung $d: M \times M \to \mathbb{R}_0^+$ mit $d(p,q) := \inf\{L(\gamma) \mid \gamma \text{ ist stückweise glatter Weg von } p \text{ nach } q\}$ definiert eine Metrik auf M. Diese ist äquivalent zur Einschränkung $d_{\text{eukl.}}|_{M \times M}$ der euklidischen Metrik auf M, d.h. die erzeugten Topologien stimmen überein.
- (5) Nach Satz 4.36 eixistiert zu jedem $p \in M$ ein $\epsilon > 0$, so dass auf $B_{\epsilon}(p) := \{q \in M \mid d(p,q) < \epsilon\}$ Riemannsche Polarkoordinaten eingeführt werden können.
- (6) Ist M kompakt, so ist dies mit einem vom betrachteten Punkt $p \in M$ unabhängigen ϵ möglich: Überdecke M mit lokalen Systemen (U_p, φ_p) Riemannscher Polarkoordinaten, wähle eine endliche Teilüberdeckung aus $\{\varphi_p(U_p) \mid p \in M\}$ von M und wähle unter den endlich vielen zugehörigen ϵ_p das kleinste.

SATZ 4.40

Seien $p \in M$ und (U, φ) ein System lokaler Riemannscher Polarkoordinaten auf $B_{\epsilon}(p)$. Dann existiert zu jedem $q \in B_{\epsilon}(p)$, $d(p,q) = \rho$, (bis auf Umparametrisierung) genau eine Geodätische $\alpha : [a,b] \to M$ in $B_{\rho}(p)$ mit $\alpha(a) = p$ und $\alpha(b) = q$.

Diese ist die kürzeste Verbindung von p und q, d.h. $L(\alpha) = \rho$.

Lokal sind Geodätische also die kürzesten Verbindungskurven auf M zweier Punkte $p,q \in M$.

BEWEIS

Sei $\gamma:[0,T]\to M$ ein stückweise glatter Weg mit $\gamma(0)=p$ und $\gamma(T)=q$. Dann besitzt γ in Riemannschen Polarkoordinaten eine Darstellung $\gamma(t)=\varphi(r(t),\theta(t))$ mit glattem r und stückweise glattem $\theta=(\theta_1,...,\theta_{n-1})$ (\to Bild(Ψ)).

Dann gilt auf den Teilintervallen $I_k := [t_{k-1}, t_k]$ (k = 1, ..., N):

$$L(\gamma|_{I_{k}}) = \int_{t_{k-1}}^{t_{k}} \sqrt{\sum_{ij} g_{ij}^{\varphi}((r,\theta^{k})(t)) \dot{u}_{i}(t) \dot{u}_{j}(t)} dt \geq \int_{t_{k-1}}^{t_{k}} \sqrt{g_{rr}^{\varphi}((r,\theta^{k})(t)) \dot{r}(t) \dot{r}(t)} dt$$

$$= \int_{t_{k-1}}^{t_{k}} |\dot{r}(t)| dt \geq \int_{t_{k-1}}^{t_{k}} \dot{r}(t) dt = r(t_{k}) - r(t_{k-1}),$$

d.h. $L(\gamma) \ge \rho$, wobei genau dann Gleichheit gilt, wenn

$$\begin{cases} \dot{r} \geq 0 & \text{auf } [0, T] \\ \sum_{ij} g_{\theta_i^k \theta_j^k} \dot{\theta}_i^k \dot{\theta}_j^k \equiv 0 & \text{auf } [t_{k-1}, t_k], \text{ d.h. } \theta^k \text{ konstant auf } [t_{k-1}, t_k] \end{cases}$$

Also ist γ eine Umparametrisierung von $t \mapsto \varphi(t, \theta_q) : [0, \rho] \to \overline{B(p, q)}$.

Die Geodätischen in Riemannschen Polarkoordinaten haben aber gerade die Gestalt $t \mapsto \varphi(t, \theta)$.

Martin Gubisch 61 SS 2009

4.6 Riemannscher Krümmungstensor und Riccitensor

Notation 4.41

Im Folgenden seien V, W, X, Y glatte tangentiale Vektorfelder auf M und (U, φ) ein lokales Koordinatensystem. Wir definieren die Koordinatenfunktionen von $v_i = v_i^{\varphi} : U \to \mathbb{R}$ (w_i, x_i, y_i, z_i) von V (W, X, Y, Z) durch

$$V(\varphi(x)) = \left(\varphi(x), \sum_{i=1}^{n} v_i(x)\partial_i \varphi(x)\right).$$

Definition 4.42

Die zweite kovariante Ableitung von Z nach V, W ist gegeben durch

$$D_{VW}^2 Z := D_V(D_W Z) - D_{D_V W} Z : M \to TM.$$

Bemerkung 4.43 (lokale Darstellung der zweiten kovarianten Ableitung)

- (1) Es gilt $D_{VW}^2 Z(p) \in T_p M$ für alle $p \in M$.
- (2) In lokalen Koordinaten (U, φ) gilt

$$(\mathbf{D}_{VW}^2 Z)(\varphi(x)) = \left(\varphi(x), \sum_{m=1}^n u_m(x) \partial_m \varphi(x)\right)$$

mit

$$u_{m} = \sum_{ij=1}^{n} (\partial_{ij}^{2} z_{m}) v_{i} w_{j} + \sum_{ijk=1}^{n} \Gamma_{ij}^{\varphi m} (\partial_{k} z_{i}) (v_{i} w_{k} + v_{k} w_{j}) - \sum_{ijk=1}^{n} \Gamma_{ij}^{\varphi k} (\partial_{k} z_{m}) v_{i} w_{j}$$
$$+ \sum_{ijk=1}^{n} \left((\partial_{i} \Gamma_{ij}^{\varphi m}) + \sum_{l=1}^{n} (\Gamma_{li}^{\varphi m} \Gamma_{kj}^{\varphi l} - \Gamma_{kl}^{\varphi m} \Gamma_{ij}^{\varphi l}) v_{i} w_{j} z_{k} \right).$$

(3) In lokalen Koordinaten hängt $(D^2_{VW}Z)(\varphi(x))$ also nur von V(p),W(p) und partiellen Ableitungen zweiter Ordnung von Z in p ab. Wir definieren daher mit $v=V(p),\ w=W(p)$:

$$\mathbf{D}_p^2 Z : T_p M \times T_p M \to T_p M, \qquad (\mathbf{D}_p^2 Z)(v, w) := (\mathbf{D}_{VW}^2 Z)(p).$$

DEFINITION 4.44

Der $Riemannsche\ Krümmungstensor\ R$ ist definiert durch

$$R(V,W)Z := D_{VW}^2 Z - D_{WV}^2 Z : M \to TM.$$

Bemerkung 4.45 (lokale Darstellung des Riemannschen Krümmungstensors)

- (1) Es gilt $(R(V, W)Z)(p) \in T_pM$ für alle $p \in M$.
- (2) In lokalen Koordinaten (U, φ) gilt

$$(R(V,W)Z)(\varphi(x)) = \left(\varphi(x), \sum_{l=1}^{n} \left(\sum_{ijk=1}^{n} R_{ijk}^{\varphi l}(x)v_i(x)w_j(x)z_k(x)\right) \partial_l \varphi(x)\right)$$

mit

$$R_{ijk}^{\varphi l} = (\partial_i \Gamma_{kj}^{\varphi l}) - (\partial_j \Gamma_{ki}^{\varphi l}) + \sum_{m=1}^n (\Gamma_{mi}^{\varphi l} \Gamma_{kj}^{\varphi m} - \Gamma_{mj}^{\varphi l} - \Gamma_{ki}^{\varphi m}).$$

(3) Für $p \in M$ hängt (R(V,W)Z)(p) nur von $v = V(p), \ w = W(p)$ und z = Z(p) ab. Wir definieren daher

$$R_p: T_pM \times T_pM \times T_pM \to T_pM, \qquad R_p(v, w)z := (R(V, W)Z)(p).$$

(4) Der Riemannsche Krümmungstensor hat die Darstellung

$$R(V, W)Z = D_V(D_W Z) - D_W(D_V Z) - D_{[V,W]}Z$$

mit der *Lie-Klammer* $[X,Y] := \nabla_X Y - \nabla_Y X : M \to TM$. Diese definiert ein glattes, tangentiales Vektorfeld an M.

(5) Für die Koordinatenvektorfelder $E_i := E_i^{\varphi} : M \to T_p M, \ \varphi(x) \mapsto (\varphi(x), (\partial_i \varphi)(x)) \ (x \in U)$ bzw. $p \mapsto (p, (\partial_i \varphi)(\varphi^{-1}(p))) \ (p \in \varphi(U))$ gilt $[E_i, E_j] \equiv 0$, d.h. $R(E_i, E_j)$ ist ein Maß dafür, inwieweit D_{E_i} und D_{E_j} miteinander vertauschen.

SATZ 4.46 (Gauß-Gleichung)

Seien $p \in M$, N eine Orientierung von M bei p und $v, w, z \in T_pM$. Dann gilt

$$R_p(v, w)z = g_p(\mathcal{L}_p w, z)\mathcal{L}_p v - g_p(\mathcal{L}_p v, z)\mathcal{L}_p w.$$

BEWEIS

 \times gelten $V = E_i$ und $W = E_j$. Man rechnet nach, dass

$$(D_{E_i}(D_{E_i}Z) - D_{E_i}(D_{E_i}Z)) - (\langle \mathcal{L}_p E_i, Z \rangle \mathcal{L}_p E_i - \langle \mathcal{L}_p E_i, Z \rangle \mathcal{L}_p E_i) = f \cdot N$$

für eine glatte Funktion $f: \varphi(U) \to \mathbb{R}$. Damit ist

$$(\mathbf{D}_{E_i}(\mathbf{D}_{E_j}Z) - \mathbf{D}_{E_j}(\mathbf{D}_{E_i}Z)) - (\langle \mathscr{L}_p E_j, Z \rangle \mathscr{L}_p E_i - \langle \mathscr{L}_p E_i, Z \rangle \mathscr{L}_p E_j) \in T_p M \cap T_p M^\perp = \{0\},$$
 d.h.
$$\mathbf{D}_{E_i}(\mathbf{D}_{E_j}Z) - \mathbf{D}_{E_j}(\mathbf{D}_{E_i}Z) = \langle \mathscr{L}_p E_j, Z \rangle \mathscr{L}_p E_i - \langle \mathscr{L}_p E_i, Z \rangle \mathscr{L}_p E_j.$$

Korollar 4.47

(1) Sei $(\omega_{ij}^{\varphi}(x))_{1 \leq i \leq n}^{1 \leq j \leq n}$ die Matrixdarstellung der Weingartenabbildung bzgl. einem lokalen Koordinatensystem $(\overline{U}, \overline{\varphi})$ bei $p = \varphi(x)$ bzgl. der natürlichen Basis von T_pM , dann gilt

$$R_{jkl}^{\varphi i}(x) = h_{jk}^{\varphi}(x)\omega_{li}^{\varphi}(x) - h_{ik}^{\varphi}(x)\omega_{lj}^{\varphi}(x).$$

(2) Für $v, w, x, y \in T_pM$ gelten die Gleichungen

$$R_{p}(v, w)x = -R_{p}(w, v)x,$$

$$g_{p}(R_{p}(v, w)x, y) = g_{p}(R_{p}(x, y)v, w),$$

$$g_{p}(R_{p}(v, w)x, y) = -g_{p}(R_{p}(v, w)y, x)$$

sowie die Erste Bianchi-Identität

$$R_{p}(v, w)x + R_{p}(w, x)v + R_{p}(x, v)w = 0.$$

(3) Mit $R_{ijkl}^{\varphi}(x) := g_{\varphi(x)}(R(E_i^{\varphi}, E_i^{\varphi}) E_k^{\varphi}, E_l^{\varphi})$ erhalten wir in lokalen Koordinaten

$$R_{ijkl}^{\varphi} = \sum_{s=1}^n R_{ijk}^{\varphi s} g_{sl}^{\varphi} \qquad \text{bzw.} \qquad R_{ijk}^{\varphi j} = \sum_{l=1}^n R_{ijkl}^{\varphi} g_{\varphi}^{lj}.$$

Die Gleichungen in (2) übersetzen sich dann in

$$\begin{array}{rcl} R_{ijkl}^{\varphi} & = & -R_{jikl}^{\varphi}, \\ R_{ijkl}^{\varphi} & = & R_{klij}^{\varphi}, \\ R_{ijkl}^{\varphi} & = & -R_{ijlk}^{\varphi} \end{array}$$

sowie

$$R_{ijkl}^{\varphi} + R_{jkil}^{\varphi} + R_{kijl}^{\varphi} = 0.$$

KOROLLAR 4.48 (Theorema egregium)

Seien $e_1,...,e_n$ die Hauptkrümmungsrichtungen von M in p mit zugehörigen Hauptkrümmungen $\lambda_1,...,\lambda_n$, d.h. $\mathcal{L}_p(e_i)=\lambda_i e_i$ (i=1,...,n). Dann gilt nach der Gauß-Gleichung für $i,j\in\{1,...,n\}$:

$$g_p(R_p(e_i, e_j)e_j, e_i) = \lambda_i \lambda_j.$$

Speziell für $\dim(M) = 2$ erhalten wir das *Theorema egregium*

$$K(p) = g_p(R_p(e_i, e_j)e_j, e_i).$$

Bemerkung 4.49

(1) Seien dim $(M) = 2, p \in M$ und $v, w, x \in T_pM$. Dann gilt

$$R_p(v,w)x = K(p)(g_p(w,x)v - g_p(v,x)w)$$

Sei nämlich $S:(T_pM)^4\to\mathbb{R}$ eine Multilinearform, die für $v,w,x,y\in T_pM$ die folgenden Symmetrien erfüllt:

$$-S(w, v, x, y) = S(v, w, x, y) = -S(w, v, y, x).$$

Sei (e_1, e_2) eine Basis von T_pM , dann ist S schon durch den Wert $S(e_1, e_2, e_1, e_2)$ eindeutig festgelegt, denn

$$S(v, w, x, y) = (v_1w_2 - v_2w_1)S(e_1, e_2, x, y) = (v_1w_2 - v_2w_1)(x_1y_2 - x_2y_1)S(e_1, e_2, e_1, e_2)$$

mit $v = v_1e_1 + v_2e_2$, $w = w_1e_1 + w_2e_2$, $x = x_1e_1 + x_2e_2$, $y = y_1e_1 + y_2e_2$. Nun sind

$$S_1(v, w, x, y) := g_p(R_p(v, w)x, y),$$

$$S_2(v, w, x, y) := K(p)(g_p(w, x)g_p(v, y) - g_p(v, x)g_p(w, y))$$

solche S und nach dem Theorema egregium gilt speziell mit der Basis (e_1, e_2) der Hauptkrümmungsrichtungen:

$$S_1(e_1, e_2, e_1, e_2) = -K(p) = S_2(e_1, e_2, e_1, e_2).$$

Damit ist $S_1 \equiv S_2$.

(2) In lokalen Koordinaten (U, φ) gilt

$$R_{ijk}^{\varphi l}(x) = (K \circ \varphi)(x)(g_{jk}^{\varphi}(x)\delta_{li} - g_{ik}^{\varphi}(x)\delta_{lj})$$

Definition 4.50

Für $v, w \in T_pM$ definiere $\mathbf{v} * \mathbf{w} := \sqrt{g_p(v, v)g_p(w, w) - g_p(v, w)^2}$.

Für einen zweidimensionalen Unterraum Σ von T_pM mit Basis (v,w) heißt

$$K_{\mathbf{p}}(\Sigma) := \frac{g_p(R_p(v, w)w, v)}{(v * w)^2}$$

die Schnittkrümmung von Σ bei p.

Bemerkung 4.51

(1) $K_p(\Sigma)$ ist wohldefiniert, d.h. unabhängig von der gewählten Basis (v, w). Sei nämlich (e_1, e_2) eine Orthonormalbasis von Σ , dann gilt mit der Multilinearität von R und den Symmetrien aus Kor. 4.47 (2):

$$g_p(R_p(v,w)w,v) = (v_1w_2 - v_2w_1)g_p(R_p(e_1,e_2)w,v) = (v_1w_2 - v_2w_1)^2g_p(R_p(e_1,e_2)e_1,e_2).$$

Mit $e_1 * e_2 = 1$ und $v * w = (v_1 w_2 - v_2 w_1)^2$ folgt

$$K_p(\Sigma) = \frac{g_p(R_p(v, w)w, v)}{(v_1w_2 - v_2w_1)^2} = g_p(R_p(e_1, e_2)e_2, e_1).$$

(2) Mit allen $g_p(R_p(v, w)x, y)$ kennt man auch alle $R_p(v, w)x$, also R_p . Die $g_p(R_p(v, w)x, y)$ wiederum sind durch Kenntnis aller Schnittkrümmungen $K(z_1, z_2) := K(\operatorname{span}(z_1, z_2))$ eindeutig bestimmt. \blacklozenge

Definition 4.52

Sei $p \in M$. Die Bilinearform $\operatorname{Ric}_p : T_pM \times T_pM \to \mathbb{R}$, gegeben durch

$$\operatorname{Ric}_p(v, w) := \frac{\operatorname{spur}(y \mapsto R_p(v, y)w)}{n-1}$$

heißt der Riccitensor in p.

Bemerkung 4.53

(1) Ric_p ist symmetrisch, d.h. es gibt genau eine lineare, symmetrische Abbildung $Q: T_pM \to T_pM$ mit $g_p(Qv, w) = \text{Ric}_p(v, w) \ (v, w \in T_pM) \ (\text{Riesz})$. Die *Skalarkrümmung* von M in p ist gegeben durch

$$\underline{\mathrm{Sc}(p)} := \frac{\mathrm{spur}(Q)}{n}.$$

(2) Ist $(e_1,...,e_n)$ eine Orthonormalbasis von M, dann gilt

$$Sc(p) = \frac{1}{n} \sum_{i=1}^{n} Ric_p(e_i, e_i) = \frac{1}{n(n-1)} \sum_{i=1}^{n} g_p(R_p(e_i, e_j)e_j, e_i).$$

(3) Speziell im Fall $\dim(M) = 2$ ist nach dem Theorema egregium Sc(p) = K(p):

$$Sc(p) = \frac{1}{2}(g_p(R_p(e_1, e_2)e_2, e_1) + g_p(R_p(e_2, e_1)e_1, e_2)) = K(p).$$

Bemerkung 4.54 (lokale Darstellung von Riccitensor und Skalarkrümmung)

Sei (U,φ) ein lokales Koordinatensystem von M bei $p=\varphi(x)$. Setze $R_{ik}^{\varphi}(x):=\mathrm{Ric}_p(E_i^{\varphi},E_k^{\varphi})$, dann

$$R_{ik}^{\varphi}(x) = \frac{1}{n-1} \sum_{i=1}^{n} R_{ijk}^{\varphi j}(x) = \frac{1}{n-1} \sum_{il=1}^{n} R_{ijkl}^{\varphi}(x) g_{\varphi}^{lj}(x), \quad \operatorname{Sc}(\varphi(x)) = \frac{1}{n(n-1)} \sum_{ik=1}^{n} R_{ik}^{\varphi}(x) g_{\varphi}^{ik}(x). \quad \blacklozenge$$

4.7 Innere Geometrie von Hyperflächen

Vorbemerkung 4.55

Als "Größen der inneren Geometrie" einer Hyperfläche M bezeichnen wir diejenigen Größen, die man durch Kurvenlängenbestimmung und Ableiten beschreiben kann.

- (1) Kennt man die erste Fundamentalform, so ist die Länge einer Kurve $\alpha:[0,T]\to M$ gegeben durch $L(\alpha)=\int_0^T||\alpha'(\tau)||\ \mathrm{d}\tau.$
- (2) Kennt man umgekehrt die Länge einer jeden Kurve auf M, dann ist wegen $||\alpha'(0)|| = \frac{\mathrm{d}}{\mathrm{d}t}L(\alpha|_{[0,t]})|_{t=0}$ und $g_p(v,w) = \frac{1}{2}(||v+w||^2 ||v||^2 |w||^2)$ $(v,w \in T_pM)$ auch die erste Fundamentalform bekannt.

Größen der inneren Geometrie sind also genau diejenigen, die nur von der ersten Fundamentalform abhängen.

Definition 4.56

Seien M, N Hyperflächen im \mathbb{R}^{n+1} und $\Phi: M \to N$ ein Diffeomorphismus.

 Φ heißt eine ${\it Isometrie},$ falls für alle $p\in M$ und alle $v,w\in T_pM$ gilt

$$g_p^M(v, w) = g_{\Phi(p)}^N(\mathbf{d}_p \Phi(v), \mathbf{d}_p \Phi(w)).$$

In diesem Fall heißen M, N isometrisch.

M heißt lokal isometrisch zu N, falls zu jedem $p \in M$ eine offene Umgebung V und eine Isometrie $\Phi: V \to \Phi(V)$ existieren.

M, N heißen lokal isometrisch, falls M lokal isometrisch zu N und N lokal isometrisch zu M.

Bemerkung 4.57

Seien M,N Hyperflächen im \mathbb{R}^{n+1} , (U,φ) ein lokales Koordinatemsystem von M und $\Phi:\varphi(U)\to\Phi(\varphi(U))$ eine Isometrie. Dann ist $(U,\Phi\circ\varphi)$ ein lokales Koordinatensystem von N und es gilt $g_{ij}^{\Phi\circ\varphi}=g_{ij}^{\varphi}$ auf U:

Seien $\psi := \Phi \circ \varphi, \ x \in U$ und $p = \varphi(x)$, dann

$$g_{ij}^{\psi}(x) = g_{\psi(x)}(\mathbf{d}_x\psi(e_i), \mathbf{d}_x\psi(e_j)) = g_{\Phi(p)}(\mathbf{d}_p\Phi\mathbf{d}_x\varphi(e_i), \mathbf{d}_p\Phi\mathbf{d}_x\varphi(e_j))$$
$$= g_p(\mathbf{d}_x\varphi(e_i), \mathbf{d}_x\varphi(e_j)) = g_{ij}^{\varphi}(x).$$

DEFINITION 4.58

Geometrische Größen, die sich unter lokaler Isometrie nicht ändern, heißen die *Größen der inneren Geometrie*.

Bemerkung 4.59

Damit sind alle Größen, die nur von der ersten Fundamentalform abhängen, Größen der inneren Geometrie, zum Beispiel

- (1) Flächenelement
- (2) Riemannscher Krümmungstensor
- (3) Riccitensor

- (4) Skalarkrümmung
- (5) Gauß-Kronecker-Krümmung für $\dim(M)$ gerade
- (6) Kovariante Ableitung.

Keine Größen der inneren Geometrie sind

- (1) zweite Fundamentalform
- (2) Weingarten-Abbildung

- (3) Hauptkrümmungen
- (4) mittlere Krümmung

Korollar 4.60

Es gibt keine perfekten Landkarten, d.h. es gibt keine lokale Isometrie der Kugel \mathbb{S}^2 auf die Ebene \mathbb{R}^2 .

BEWEIS

Die Gaußkrümmung bleibt unter lokaler Isometrie erhalten, aber $K_{\mathbb{S}^2} \equiv 1 \neq 0 \equiv K_{\mathbb{R}^2}$.

Martin Gubisch 66 SS 2009

4.8 Jacobi-Felder

DEFINITION 4.61

Sei $\alpha: I \to M$ ein glatter Weg. Ein glattes, tangentiales Vektorfeld X längs α heißt Jacobi-Feld, falls

$$\frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}t} X(t) = -R(X(t), \alpha'(t)) \alpha'(t).$$

Bemerkung 4.62

Die Jacobi-Felder sind durch die Vorgabe $X(t_0)$, $\frac{D}{dt}X(t_0)$ eindeutig bestimmt und bilden einen 2n-dimensionalen Vektorraum.

Seien nämlich $E_1,...,E_n$ längs α parallele Vektorfelder, die in einem (und damit jedem) Punkt eine Orthonormalbasis bilden. Mit der Einführung von Koordinaten $x_1,...,x_n$ für $X(t) = \sum_{i=1}^n x_i(t)E_i(t)$ und $A(t) = (a_{ij}(t))_{1 \le i \le n}^{1 \le j \le n}$, gegeben durch $a_{ij}(t) = g_{\alpha(t)}(R(E_i(t),\alpha'(t))\alpha'(t),E_j(t))$, ist dann

$$\frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}t} X(t) = \sum_{i=1}^{n} \ddot{x}_i(t) E_i(t), \qquad R(X(t), \alpha'(t)) \alpha'(t) = \sum_{i=1}^{n} x_i(t) a_{ij}(t) E_i(t),$$

d.h. X ist genau dann ein eindeutig bestimmtes Jacobi-Feld, wenn die Koordinaten x_i von X folgendes System lösen:

$$\begin{cases} \ddot{x}(t) &= -A(t)x(t) \\ x(t_0) &= x_0 \\ \dot{x}(t_0) &= x_1 \end{cases}.$$

Bemerkung 4.63

Ist $\alpha: I \to M$ eine Geodätische, dann heißt ein glattes $c: (-\epsilon, \epsilon) \times I \to M$ mit $c(0, \cdot) = \alpha$ eine *geodätische Variation* von α , falls $c(s, \cdot)$ eine Geodätische ist für jedes $s \in (-\epsilon, \epsilon)$.

SATZ 4.64

Ist c eine geodätische Variation von α , dann ist das zugehörige Variationsvektorfeld $V := \frac{\mathrm{d}}{\mathrm{d}s} c(s,\cdot)|_{s=0}$ ein Jacobi-Feld längs α .

BEWEIS

Da $c(s,\cdot)$ Geodätische für $s\in(-\epsilon,\epsilon)$, gilt $\frac{\mathrm{D}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}c(s,t)=0$ für alle $t\in I$, also

$$0 = \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}t} c = \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}s} \frac{\mathrm{d}}{\mathrm{d}t} c + R\left(\frac{\mathrm{d}}{\mathrm{d}s}c, \frac{\mathrm{d}}{\mathrm{d}t}c\right) \frac{\mathrm{d}}{\mathrm{d}t} c = \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}s} c + R\left(\frac{\mathrm{d}}{\mathrm{d}s}c, \frac{\mathrm{d}}{\mathrm{d}t}c\right) \frac{\mathrm{d}}{\mathrm{d}t} c.$$

Auswerten in s = 0 liefert

$$0 \equiv \frac{\mathrm{D}}{\mathrm{d}t} \frac{\mathrm{D}}{\mathrm{d}t} V + R(V, \alpha') \alpha'.$$

SATZ 4.65

Seien $\alpha:I\to M$ eine Geodätische und X ein Jacobi-Feld längs $\alpha.$ Dann ist X das Variationsvektorfeld einer geodätischen Variation von $\alpha.$

4.9 Ausblick: Topologische Mannigfaltigkeiten

DEFINITION 4.66

Eine n-dimensionale, topologische Mannigfaltigkeit M ist ein Hausdorffscher topologischer Raum mit abzählbarer Basis, der lokal homöomorph zum \mathbb{R}^n ist.

Eine Abbildung $\partial: \mathcal{C}^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ heißt $\underbrace{Derivation}$ bei $p \in M$, falls ∂ linear ist und die "Produktregel" erfüllt, d.h. falls für alle $f, g \in \mathcal{C}^{\infty}(M, \mathbb{R})$ und alle $\alpha, \beta \in \mathbb{C}$ gilt

$$\partial(\alpha f + \beta g) = \alpha \partial f + \beta \partial g, \qquad \quad \partial(f \cdot g) = \partial f \cdot g(p) + f(p) \cdot \partial_g.$$

Die Menge D_pM aller Derivationen bei p kann mit einer Vektorraumstruktur versehen werden via

$$(\alpha \partial_1 + \beta \partial_2)(f) := \alpha \partial_1(f) + \beta \partial_2(f) \qquad (\partial_1, \partial_2 \in D_p M, \ \alpha, \beta \in \mathbb{R}).$$

Der Tangentialraum von M bei $p \in M$ ist $T_pM := \{ [\gamma]_p \mid \gamma \in \mathcal{C}^{\infty}(I, M), \ \gamma(0) = p \}.$

Bemerkung 4.67

Speziell für Teilmannigfaltigkeiten $M \subseteq \mathbb{R}^n$ ist $\gamma'(0) \mapsto [\gamma]_p$ eine Bijektion.

DEFINITION 4.68

Eine Riemannsche Mannigfaltigkeit ist eine "differenzierbare" Mannigfaltigkeit mit einer "Riemann-Struktur" $g_p(\cdot,\cdot)$, d.h. $p\mapsto g_p$ muss eine symmetrischen Bilinearform sein.

Bemerkung 4.69

Man kann zeigen, dass auf jeder differenzierbaren Mannigfaltigkeit eine Riemann-Struktur existiert.

DEFINITION 4.70

Ein affiner Zusammenhang D auf einer differenzierbaren Riemannschen Mannigfaltigkeit ist eine Abbildung D: VM² \rightarrow VM, VM die Menge aller (tangentialen) Vektorfelder, $(X,Y) \mapsto D_X Y$, so dass für alle $f, g \in \mathcal{C}^{\infty}(M, \mathbb{R})$ und alle $X, Y, Z \in VM$ gelten:

$$D_{fX+gY}(Z) = fD_X Z + gD_Y Z \qquad D_X(fY+gZ) = fD_X Z + gD_Y Z.$$

Bemerkung 4.71

Damit können wir Begriffe wie "paralleles Feld" und "Parallelverschiebung" definieren.

Definition 4.72

Ein affiner Zusammenhang D auf einer Riemannschen Mannigfaltigkeit (M, g) heißt *verträglich* mit g, falls die Abbildung $g_{\alpha(\cdot)}(X_V, X_W)$ für alle X, V, W konstant ist ("Normverträglichkeit").

D heißt symmetrisch, falls $D_XY - D_YX = [X, Y] (=: X(Y) - Y(X)).$

Bemerkung 4.73

Zu jeder differenzierbaren Riemannschen Mannigfaltigkeit (M,g) existiert genau ein affiner Zusammenhang D, der verträglich und symmetrisch ist. Dieser heißt $\underline{Levi-Civita-Zusammenhang}$.

DEFINITION 4.74

Eine differenzierbare Riemannsche Mannigfaltigkeit M heißt geodätisch vollständig, falls für alle $p \in M$ eine "Exponenzialabbildung" $\exp_p : T_pM \to M$ auf ganz T_pM definiert ist.

SATZ 4.75 (Hopf-Ruiov, 1931)

Sei M eine zusammenhängende Riemannsche Mannigfaltigkeit. Dann sind äquivalent:

- (1) M ist geodätisch vollständig.
- (2) Abgeschlossene, beschränkte Teilmengen von (M, d) sind kompakt (d "Abstandsfunktion").
- (3) (M,d) ist vollständig.

Martin Gubisch 68 SS 2009