Unversität Konstanz FACHBEREICH MATHEMATIK UND STATISTIK Prof. Dr. Stefan Volkwein DR. MATTHIAS KOTSCHOTE

Analysis 2 Serie 7

1. Aufgabe (4 Punkte):

- (i) Es sei $A \in \mathbb{R}^{n \times n}$ symmetrisch. Dann gilt: A ist positiv (semi-)definit \Leftrightarrow alle Eigenwerte sind positiv (nichtnegativ). (λ ist Eigenwert von A, falls die Gleichung $Ax = \lambda x$ mindestens eine Lösung $x \neq 0$ besitzt. x wird dann als Eigenvektor zum Eigenwert λ bezeichnet.)
- (ii) Es sei $B \in \mathbb{R}^{2\times 2}$ symmetrisch. Dann gilt:
 - (a) $B = (b_{ij})_{i,j=1,2}$ positiv (negativ) definit $\Leftrightarrow b_{11} > (<)0$ und det(B) > (>)0.
 - (b) B indefinit $\Leftrightarrow det(B) < 0$.

2. Aufgabe (3 Punkte):

Sei Q_a^3 die Menge aller Quader im \mathbb{R}^3 , deren Kantenlängensumme gleich a ist. Welcher Quader aus Q_3^3 hat das größte Volumen?

3. Aufgabe (6 Punkte):

Sei $A \in \mathbb{R}^{m \times n}$ mit rk(A) = n (d.h. $m \ge n$) und $b \in \mathbb{R}^m$. Setze $f(x) := |Ax - b|^2 \equiv$ $x^T A^T A x - b^T A x - x^T A^T b + b^T b$, d.h. $f: \mathbb{R}^n \mapsto \mathbb{R}_+$.

- (a) $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, 2, 3$, seien definiert durch $f_1(x) := (c|x) \equiv c^T x, c \in \mathbb{R}^n$, $f_2(x) := (x|d) \equiv x^T d, d \in \mathbb{R}^n$, und $f_3(x) := (x|Bx) \equiv x^T Bx, B \in \mathbb{R}^{n \times n}$. Berechnen Sie die Ableitungen von f_i , i = 1, 2, 3.
- (b) Bestimmen Sie die Menge der kritischen Punkte von f(x). (Die Ergebnisse aus (a) sind dabei hilfreich.)
- (c) An welchen dieser Punkte liegt ein lokales (striktes) Minimum vor?

4. Aufgabe (3 Punkte):

Welche der folgenden Funktionen $f:D\mapsto\mathbb{R},\,D\subset\mathbb{R}^2$, nimmt ihr Minimum auf D an?

- 1. $D = \overline{B(0,1)}, f(x,y) := xy^2 + e^{3+x^2-y^3}.$
- 2. $D = \mathbb{R}^2$, $f(x,y) := x^4 + y^6 3xy^2$. 3. $D = \{(x,y)^T \in \mathbb{R}^2 : |xy| \le 1\}$, $f(x,y) = e^{-|x|+y} \cos(x+y)$.

Alle Aufgaben sind schriftlich zu bearbeiten und ausreichend zu begründen. Abgabe der Lösungen am 15.06.09., 12.00 Uhr.