UNVERSITÄT KONSTANZ
FACHBEREICH MATHEMATIK UND STATISTIK
PROF. DR. STEFAN VOLKWEIN
DR. MATTHIAS KOTSCHOTE

Analysis 2 Serie 9

1. Aufgabe (4 Punkte):

Es seien $f \in \text{Diff}^1(\mathbb{R}^m; \mathbb{R}^m)$ und $g \in C^1(\mathbb{R}^m; \mathbb{R}^m)$, und eine der Voraussetzungen

- (a) f^{-1} und g sind Lipschitz-stetig (global),
- (b) g verschwindet außerhalb einer beschränkten Teilmenge von \mathbb{R}^m , d.h. die Menge supp $g := \{x \in \mathbb{R}^m : g(x) \neq 0\}$ ist beschränkt,

sei erfüllt. Dann gibt es ein $\varepsilon_0 > 0$ mit $f + \varepsilon g \in \text{Diff}^1(\mathbb{R}^m; \mathbb{R}^m)$ für $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$, d.h. Diff¹ ist stabil bzgl. kleiner Störungen mit obigen Eigenschaften. Hinweis: Man betrachte die Funktion $h := I + f^{-1} \circ (\varepsilon g)$.

2. Aufgabe (4 Punkte):

Für welche der Punkte (x,y)=(-4,1), (-2,-2), (6,1) in \mathbb{R}^2 läßt sich die Gleichung

$$x^2 - 2xy + 4y^3 = 28$$

in einem Interval um x eindeutig und stetig differenzierbar nach y auflösen?

3. Aufgabe (4 Punkte):

Bestimmen Sie das größtmöglichste Volumen eines achsenparallelen Quaders, der dem Ellipsoid

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

einbeschrieben ist. Hinweis: Jeder achsenparallel einbeschriebene Quader hat genau eine Ecke $(x,y,z) \in E$, die im nichtnegativen Oktanten liegt, und deshalb kann die Zielfunktion (Volumen des Quaders) auf $V_{Quader} = 8xyz$, $\forall x,y,z \geq 0$, reduziert werden.

4. Aufgabe (4 Punkte):

Die affine Ebene $\{(x,y,z)^T \in \mathbb{R}^3 : 2y+4z=6\}$ schneidet den Kegel $\{(x,y,z)^T \in \mathbb{R}^3 : z^2=2x^2+y^2\}$ längs einer Kurve K. Welcher Punkt auf K hat den geringsten Abstand zum Nullpunkt und welcher den größten Abstand?

Alle Aufgaben sind schriftlich zu bearbeiten und ausreichend zu begründen. Abgabe der Lösungen am 29.06.09., 12.00 Uhr.