Übungen zur Funktionalanalysis, Blatt 8

Die Lösungen sind abzugeben am Freitag, 11.06.2010, in den Briefkästen auf F 4.

- 1. Zeigen Sie zunächst: es ist nicht möglich, die Menge der irrationalen Zahlen im Intervall [0,1] zu schreiben als abzählbare Vereinigung von abgeschlossenen Mengen.
 - Zeigen Sie darauf aufbauend: es gibt keine Funktion, die in jedem rationalen Punkt von [0,1] stetig ist, und unstetig in jedem irrationalen Punkt aus [0,1].
- 2. Seien X_1, X_2, X_3 Banachräume, $T: X_1 \to X_2$ sei linear, $S: X_2 \to X_3$ sei linear, injektiv, stetig; und die Komposition $S \circ T: X_1 \to X_3$ sei stetig.
 - Zeigen Sie (mit Argumentation über die Graphen von Abbildungen), daß auch T stetig ist.
- 3. Seien X_1 und X_2 normierte Räume, Y ein linearer Unterraum von X_1 , und sei $T \colon Y \to X_2$ eine lineare Abbildung. Beweisen Sie:
 - (a) Durch $||y||_T := ||y||_{X_1} + ||Ty||_{X_2}$ für $y \in Y$ wird Y zu einem normierten Raum Y_T .
 - (b) Wenn X_1 und X_2 sogar Banachräume sind, und wenn T graphen-abgeschlossen ist, und Y ein abgeschlossener Unterraum von X_1 , dann ist Y_T ein Banachraum, und es ist $T: Y_T \to X_2$ stetig.
- 4. Sei X ein Banachraum, Y ein normierter Raum, und seien A_1, A_2, \ldots lineare stetige Operatoren von X nach Y. Die Folge (A_1, A_2, \ldots) konvergiere punktweise gegen eine Abbildung $A: X \to Y$.

Zeigen Sie: die Folge der Normen $||A_n||_{X\to Y}$ ist beschränkt, A ist linear und stetig, und es ist $||A||_{X\to Y} \le \liminf_{n\to\infty} ||A_n||_{X\to Y}$.

Sei nun Z ein normierter Raum (nicht unbedingt vollständig). Zeigen Sie: falls $(z_1, z_2, ...)$ eine Folge in Z ist, die schwach gegen einen Grenzwert $z \in Z$ strebt, dann ist $||z||_Z \le \lim_{n \to \infty} ||z_n||_Z$.

Die Klausur findet am 26.07. nachmittags statt.