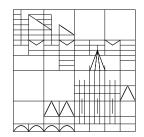
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Gottfried Barthel. Sabine Burgdorf/Daniel Plaumann WS 2007/2008



LINEARE ALGEBRA I

3. Übungsblatt

Abgabe am am Freitag, dem 07.11.2007, **bis 10:15 Uhr** in den entsprechenden Briefkasten neben Raum F411

9. Die Kleinsche Vierergruppe ist gegeben durch die Menge $V = \{e, a, b, c\}$ und die Verknüpfung *, welche durch folgende Verknüpfungstafel festgelegt ist.

D.h. es gilt beispielsweise a * b = c. Zeigen Sie, dass (V, *) eine abelsche Gruppe ist.

10. (a) Sei (G, *) eine Gruppe mit Verknüpfung * und neutralem Element e. Zeigen Sie, dass für alle $a, b \in G$ folgende Aussagen gelten:

(1)
$$a * b = a \implies b = e$$

$$(2) (\overline{a*b}) = \overleftarrow{b} * \overleftarrow{a}$$

(3)
$$a * a = e \implies a = \overleftarrow{a}$$

$$(4) (\forall a \in G : a * a = e) \implies (\forall a, b \in G : a * b = b * a)$$

(b) Seien G, H zwei Gruppen und $\varphi: G \to H$ ein bijektiver Gruppenhomomorphismus. Zeigen Sie, dass dann auch die Umkehrabbildung $\varphi^{-1}: H \to G$ ein Gruppenhomomorphismus ist.

11. Beweisen oder widerlegen Sie, dass die folgenden Mengen mit der angegebenen Verknüpfung jeweils eine Gruppe bilden. Dabei sei (G, *) eine Gruppe und X eine beliebige Menge.

- (a) \mathbb{R}^3 mit dem Kreuzprodukt \times
- (b) $\{(x,y) \in \mathbb{R}^2 : xy = 1\} \text{ mit } (x_1,y_1) \bullet (x_2,y_2) = (x_1x_2,y_1y_2)$
- (c) $\{\varphi: G \to G; \varphi \text{ ist Gruppenhomomorphismus}\}$ mit der Komposition \circ
- (d) $\{f: X \to G\} \text{ mit } (f \star g)(x) = f(x) * g(x)$

12. Sei X eine Menge und $\mathcal{P}(X) = \{A; A \text{ ist Teilmenge von } X\}$ die zugehörige Potenzmenge von X. Wir definieren eine Verknüpfung Δ zwischen zwei Elementen $A, B \in \mathcal{P}(X)$ durch die symmetrische Differenz, also $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

- (a) Zeigen Sie, dass $(\mathcal{P}(X), \Delta)$ eine abelsche Gruppe ist, in der jedes Element zu sich selbst invers ist, d.h. für alle $A \in \mathcal{P}(X)$ gilt $A \Delta A = e$.
- (b) Sei $X = \{x, y\}$. Zeigen Sie, dass die Verknüpfungstafel von $(\mathcal{P}(X), \Delta)$ der Verknüpfungstafel der Kleinschen Vierergruppe (V, *) aus Aufgabe 9 entspricht.