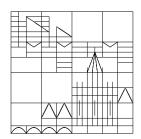
Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Gottfried Barthel. Sabine Burgdorf/Daniel Plaumann WS 2007/2008



LINEARE ALGEBRA I

8. Übungsblatt

Abgabe am Freitag, dem 21. Dezember 2007, **bis 10:15 Uhr** in den entsprechenden Briefkasten neben Raum F411

Es sei stets K ein Körper.

29. Es sei V ein K-Vektorraum der Dimension d, und sei H eine Hyperbene in V, d.h. ein Untervektorraum von V mit $\dim_K(H) = d - 1$. Zeigen Sie: Für jeden Untervektorraum U von V mit $U \not\subseteq H$ gilt

$$\dim(U \cap H) = \dim(U) - 1.$$

- **30.** Sei V ein endlich-erzeugter K-Vektorraum, und sei U ein Untervektorraum von V. Zeigen Sie: Es gibt einen Untervektorraum U' von V derart, dass die folgenden beiden Bedingungen erfüllt sind:
 - (1) U + U' = V.
 - (2) $U \cap U' = \{0\};$

Der Untervektorraum U' heißt ein Komplement von U in V.

(Hinweis: Benutzen Sie den Basis-Ergänzungssatz.)

- **31.** Es seien V und W zwei K-Vektorräume mit V endlich-erzeugt, und sei $\varphi\colon V\to W$ eine K-lineare Abbildung. Zeigen Sie:
 - (a) Ist φ injektiv, so gilt $\dim(\text{Bild}(\varphi)) = \dim(V)$.
 - (b) Es gilt:

$$\dim(\operatorname{Kern}(\varphi)) + \dim(\operatorname{Bild}(\varphi)) = \dim(V).$$

(Hinweis: Wenden Sie Aufgabe 30 mit $U := \operatorname{Kern}(\varphi)$ an. Was können Sie über $\varphi|_{U'}$ sagen?)

32. Es sei V ein endlich-erzeugter K-Vektorraum, und sei $\varphi \colon V \to V$ ein Endomorphismus von V. Zeigen Sie, dass φ genau dann injektiv ist, wenn φ surjektiv ist.