Basiswechsel

Seien V ein endlich dimensionaler K-Vektorraum mit Basen $\mathfrak{V}, \mathfrak{W}$. Wir suchen die Matrix, die Koordinatenvektoren bzgl. \mathfrak{V} in Kooedinatenvektoren bzgl. \mathfrak{W} transformiert.

Wir benötigen dazu keine neue Theorie; statt dessen benutzen wir mit $\Psi = \mathrm{id}$ das bekannte Diagramm

$$\begin{array}{cccc} v_i & \mathfrak{V} & V & \stackrel{\Psi}{\longrightarrow} V & \mathfrak{W} & w_j \\ \downarrow & \Psi_{\mathfrak{V}} & \downarrow & \downarrow & \Psi_{\mathfrak{W}} & \downarrow \\ e^{(i)} & \mathfrak{E}_n & K^n \stackrel{L(A)}{\longrightarrow} K^n & \mathfrak{E}_n & e^{(j)} \end{array}$$

Betrachte das Diagramm

$$V \xrightarrow{\mathrm{id}} W \xrightarrow{\mathrm{id}} V$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$K^{n} \xrightarrow{L(A)} K^{n} \xrightarrow{L(B)} K^{n}$$

Dann gilt: $A = M_{\mathfrak{W}}^{\mathfrak{V}}(\mathrm{id}), \ B = M_{\mathfrak{V}}^{\mathfrak{W}}(\mathrm{id})$ und $M_{\mathfrak{V}}^{\mathfrak{W}}(\mathrm{id})M_{\mathfrak{W}}^{\mathfrak{V}}(\mathrm{id}) = M_{\mathfrak{V}}^{\mathfrak{V}}(\mathrm{id}) = I_n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, also $BA = I_n$. Also: Die Matrix $M_{\mathfrak{W}}^{\mathfrak{V}}(\mathrm{id})$ des Basiswechsels von \mathfrak{V} zu \mathfrak{W} hat die inverse Matrix $M_{\mathfrak{V}}^{\mathfrak{W}}(\mathrm{id})$.

BEISPIEL

Sei $\mathfrak{V} = (v_1, v_2, v_3)$ eine Basis des \mathbb{R} -Vektorraumes V. Da die Vektoren

$$w_1 := -v_1 + 2v_3$$

$$w_2 := -v_1 - v_2 + v_3$$

$$w_3 := -2v_1 + v_3$$
(*)

linear unabhängig sind, bildet $\mathfrak{W}:=(w_1,w_2,w_3)$ eine weitere Basis von V. Wir suchen die Matrix $A:=M_{\mathfrak{V}}^{\mathfrak{V}}(\mathrm{id})$, die den Basiswechsel von \mathfrak{V} nach \mathfrak{W} beschreibt.

Zunächst lösen wir das System (*) auf nach v_1, v_2, v_3 und erhalten so

$$v_1 = \frac{1}{3}w_1 - \frac{2}{3}w_3$$

$$v_2 = \frac{1}{3}w_1 - w_2 + \frac{1}{3}w_3$$

$$v_3 = -\frac{2}{3}w_1 - \frac{1}{3}w_3$$

Es gilt wieder $L(A) = \Psi_{\mathfrak{W}} \circ \mathrm{id} \circ \Psi_{\mathfrak{V}}^{-1}$ und die Spalten von A sind gerade $L(A)(e^{(i)})$:

$$L(A)(e^{(i)}) = (\Psi_{\mathfrak{W}} \circ \mathrm{id} \circ \Psi_{\mathfrak{V}}^{-1})(e^{(i)})$$
$$= (\Psi_{\mathfrak{W}} \circ \mathrm{id})(v_i)$$
$$= \Psi_{\mathfrak{M}}(v_i)$$

Also

$$\begin{split} &\Psi_{\mathfrak{W}}(v_1) &= \Psi_{\mathfrak{W}}\left(\frac{1}{3}w_1 - \frac{2}{3}w_3\right) = \frac{1}{3}\Psi_{\mathfrak{W}}(w_1) - \frac{2}{3}\Psi_{\mathfrak{W}}(w_3) = \frac{1}{3}e^{(1)} - \frac{2}{3}e^{(3)} = \frac{1}{3}\begin{pmatrix} 1\\0\\-2 \end{pmatrix} \\ &\Psi_{\mathfrak{W}}(v_2) &= \Psi_{\mathfrak{W}}\left(-\frac{1}{3}w_1 - w_2 + \frac{1}{3}w_3\right) = \frac{1}{3}\begin{pmatrix} 1\\-3\\1 \end{pmatrix} \\ &\Psi_{\mathfrak{W}}(v_3) &= \Psi_{\mathfrak{W}}\left(-\frac{2}{3}w_1 - \frac{1}{3}w_3\right) = \frac{1}{3}\begin{pmatrix} 2\\0\\-1 \end{pmatrix} \end{split}$$

Die Transformationsmatrix A ist also

$$\frac{1}{3} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -3 & 0 \\ -2 & 1 & -1 \end{pmatrix}$$

Sei nun $v \in V$ mit zugehörigem Koordinatenvektor $\Psi_{\mathfrak{V}}(v) = \begin{pmatrix} -2\\4\\-1 \end{pmatrix}$. Gesucht sind die Koordinaten des Vektors bzgl. \mathfrak{W} .

$$\Psi_{\mathfrak{W}}(v) = M_{\mathfrak{W}}^{\mathfrak{V}}(\mathrm{id})\Psi_{\mathfrak{V}}(v) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -3 & 0 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix}.$$

Wir betrachten jetzt konkret $V = \mathbb{R}^3$ mit Basis $\mathfrak{V} := \left(\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix}\right).$

Gesucht sind zu $v := \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} \in V$ die Koordinatenvektoren $\Psi_{\mathfrak{V}}(v)$ und $\Psi_{\mathfrak{W}}(v)$ bzgl. \mathfrak{V} und \mathfrak{W} .

$$\Psi_{\mathfrak{V}}(v) = \begin{pmatrix} 3 & 0 & -2 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}
\Psi_{\mathfrak{W}}(v) = M_{\mathfrak{W}}^{\mathfrak{V}}(\mathrm{id})\Psi_{\mathfrak{V}}(v) = \frac{1}{3} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -3 & 0 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix}$$

DARSTELLUNG LINEARER ABBILDUNGEN IN VERSCHIEDENEN BASEN

Sei $f: \mathfrak{V} \to \mathfrak{W}$ eine K-lineare Abbildung bzgl. der Basen \mathfrak{V} und \mathfrak{V} des K^n und $\mathfrak{V}', \mathfrak{W}'$ zwei weitere Basen des K^n . Dann kommutiert

$$\begin{array}{ccccc} \mathfrak{V}' & \mathfrak{V} & \mathfrak{W} & \mathfrak{W}' \\ V & \stackrel{\mathrm{id}}{\longrightarrow} V & \stackrel{f}{\longrightarrow} W & \stackrel{\mathrm{id}}{\longrightarrow} W \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ K^{n} \stackrel{\mathfrak{W}'}{\longrightarrow} (\mathrm{id}) K^{n} \stackrel{M^{\mathfrak{W}}_{\underline{\mathrm{w}}} (\mathrm{id})}{\longrightarrow} K^{m} \stackrel{M^{\mathfrak{W}}_{\underline{\mathrm{w}}'} (\mathrm{id})}{\longrightarrow} K^{m} \end{array}$$

und es gilt: $M_{\mathfrak{W}'}^{\mathfrak{V}'}(f) = M_{\mathfrak{W}'}^{\mathfrak{W}}(\mathrm{id}_W) M_{\mathfrak{W}}^{\mathfrak{V}}(f) M_{\mathfrak{V}}^{\mathfrak{V}'}(\mathrm{id}_V).$

KOROLLAR

Seien $\mathfrak{V},\mathfrak{V}'$ zwei Basen des *n*-dimensionalen *K*-Vektorraumes *V* mit Übergangsmatrix $P=M_{\mathfrak{V}'}^{\mathfrak{V}}(\mathrm{id})$. Ist dann $f:V\to V$ eine *K*-lineare Abbildung, so gilt: $M_{\mathfrak{V}'}^{\mathfrak{V}'}(f)=PM_{\mathfrak{V}}^{\mathfrak{V}}(f)P^{-1}$.