
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. HEINRICH FREISTÜHLER DIPL. FIN. ÖKON. THILO MOSELER

8. Dezember 2008

Analysis III 7. Übungsblatt

Die folgende Aufgabe ist bis zur Vorlesung vom 11. 12. 2008 vorzubereiten. Eine Abgabe ist nicht erforderlich.

Aufgabe 7.1 Für $f \in C^2(\mathbb{R}^2, \mathbb{R}^2)$, $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in \mathbb{R}^2$ bezeichne $\phi(t, a) = \begin{pmatrix} \phi_1(t, a) \\ \phi_2(t, a) \end{pmatrix}$ die Lösung des Anfangswertproblems:

$$x'(t) = f(x(t)),$$

$$x(0) = a.$$

Gegenstand der Aufgabe ist die Matrix $\frac{\partial \phi}{\partial a}(t,a)$, also die Ableitung des Lösungswertes nach dem Anfangswert.

(i) Berechnen Sie $\frac{\partial \phi}{\partial a}(t,a)$ für den Fall

$$f(x_1, x_2) = \begin{pmatrix} -2x_1 \\ -4x_2 \end{pmatrix}.$$

(ii) Sei nun

$$f(x_1, x_2) = \begin{pmatrix} -2x_1 + 3x_2^2 \\ -4x_2 + 5x_1^2 \end{pmatrix}.$$

Berechnen Sie $B(t) := \frac{\partial \phi}{\partial a}(t,0)$, indem Sie eine Differentialgleichung für B(t) aufstellen und diese lösen.

(iii) Existiert $\lim_{t\to\infty} B(t)$?