Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Martin Gubisch, Roberta Mancini, Stefan Trenz Wintersemester 2011/2012

Ausgabe: 2011/12/09 **Abgabe:** 2011/12/16

Numerik partieller Differentialgleichungen 1. Übungsblatt

Exercise 1

(4 Points)

Let $\Omega \subseteq \mathbb{R}^n$, $n \in \mathbb{N}$, be a connected and bounded domain with \mathcal{C}^1 -boundary $\partial\Omega$. Let $D_{\psi} = \{ u \in \mathcal{C}^0(\bar{\Omega}) \mid u = \psi \text{ on } \partial\Omega \}$. We consider the differential operator

$$L: \mathcal{C}^2(\overline{\Omega}) \cap D_0 \to \mathcal{C}^0(\overline{\Omega}), \qquad Lu = -\Delta u.$$

Show:

1.
$$\langle Lu, v \rangle = \langle u, Lv \rangle$$
 for $u, v \in \mathcal{C}^2(\bar{\Omega}) \cap D_0$ where $\langle \cdot, \cdot \rangle$ denotes the \mathcal{L}^2 -scalar product
 $\langle u, v \rangle = \int_{\Omega} uv \, dx \qquad (u, v \in \mathcal{C}^2(\bar{\Omega}) \cap D_0).$

- 2. *L* is positive definite, i.e. $\langle Lu, u \rangle > 0$ holds for all $u \in \mathcal{C}^2(\overline{\Omega}) \cap D_0 \setminus \{0\}$.
- 3. Consider a square domain, e.g. $\Omega = (a, b)^2$. Can the results above be applied in this situation? Give a reference and cite an appropriate theorem.

Exercise 2

Consider the linear problem

$$\begin{cases} -u''(x) + b(x)u'(x) + c(x)u(x) = f(x) \text{ for all } x \in (0,1), \\ u(0) = \alpha, u(1) = \beta, \end{cases}$$
(1)

where b, c, f are continuous functions on $[0, 1] \subseteq \mathbb{R}$ with c > 0 and α, β are real scalars.

1. Discretize (3) using the step size $h = \frac{1}{n+1}$, $n \in \mathbb{N}$, and central difference approximations for u'(x) und u''(x):

$$u'(x) \approx \frac{u(x+h) - u(x-h)}{2h}, \qquad u''(x) \approx \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}.$$

Present the linear system.

(4 Points)

2. Show that the coefficient matrix is strictly row diagonal dominant if the stepsize h is small enough.

What changes if u'(x) is approximated as follows:

$$u'(x) \approx \begin{cases} \frac{u(x+h) - u(x)}{h} & \text{if } b(x) < 0, \\ \frac{u(x) - u(x-h)}{h} & \text{if } b(x) \ge 0. \end{cases}$$
(2)

3. Name an application where the strictly diagonal dominance is important.

Remark: The approximation (2) is called *upwind scheme*. This kind of discretization is often used in the context of convection dominated equations.

Hint: Recall that a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called *strictly row diagonal dominant* if

$$\sum_{j=1, j \neq i}^{N} |a_{ij}| < |a_{ii}| \quad \text{for all } i \in \{1, \dots, n\}.$$

Exercise 3

(4 Points)

We consider the following elliptic problem in *divergence form*:

$$(a(x)v'(x))' = d(x) \text{ for } x \in \Omega = (0,1),$$
 (3a)

where $a \in \mathcal{C}^1(\overline{\Omega})$ with $a(x) \geq \underline{a} > 0$ for all $x \in \Omega$ and $d \in \mathcal{C}^0(\Omega)$. We state Dirichlet boundary conditions

$$v(0) = \alpha, \quad v(1) = \beta \tag{3b}$$

with $\alpha, \beta \in \mathbb{R}$.

Discretize the interval Ω using the equidistant grid $x_i = ih, 0 \le i \le n+1$, with the mesh size $h = \frac{1}{n+1}, n \in \mathbb{N}$. The goal is to obtain a symmetric coefficient matrix $A \in \mathbb{R}^{n \times n}$ when discretizing (3) by finite differences.

1. Approximate the outer derivative (aw)' at the grid point x_i by central difference quotients using the *intermediate* grid points $x_{i\pm\frac{1}{2}} = x_i \pm \frac{h}{2}, i = 1, ..., n$.

Write
$$a_i = a(x_i)$$
, $d_i = d(x_i)$ for $i = 0, ..., n+1$ and $a_{i\pm\frac{1}{2}} = a(x_i\pm\frac{h}{2})$ for $i = 1, ..., n$.

Use the discretization formula

$$w'(x_i) \approx \frac{w_{i+\frac{1}{2}} - w_{i-\frac{1}{2}}}{h}$$

2. For the inner derivative, replace w by v' and discretize $v'(x_{i\pm\frac{1}{2}})$ by central differences using the grid points x_{i-1}, x_i, x_{i+1} themselves.

What are the equations that you derive for the approximation of (3)? Compose the coefficient matrix explicitly.