Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz
Wintersemester 2011/2012
Ausgabe: 2011/12/09

Abgabe: 2011/12/16

Numerik partieller Differentialgleichungen 1. Übungsblatt

Exercise 1

Let $\Omega \subseteq \mathbb{R}^{n}, n \in \mathbb{N}$, be a connected and bounded domain with \mathcal{C}^{1}-boundary $\partial \Omega$. Let $D_{\psi}=\left\{u \in \mathcal{C}^{0}(\bar{\Omega}) \mid u=\psi\right.$ on $\left.\partial \Omega\right\}$. We consider the differential operator

$$
L: \mathcal{C}^{2}(\bar{\Omega}) \cap D_{0} \rightarrow \mathcal{C}^{0}(\bar{\Omega}), \quad L u=-\Delta u
$$

Show:

1. $\langle L u, v\rangle=\langle u, L v\rangle$ for $u, v \in \mathcal{C}^{2}(\bar{\Omega}) \cap D_{0}$ where $\langle\cdot, \cdot\rangle$ denotes the \mathcal{L}^{2}-scalar product

$$
\langle u, v\rangle=\int_{\Omega} u v \mathrm{~d} x \quad\left(u, v \in \mathcal{C}^{2}(\bar{\Omega}) \cap D_{0}\right) .
$$

2. L is positive definite, i.e. $\langle L u, u\rangle>0$ holds for all $u \in \mathcal{C}^{2}(\bar{\Omega}) \cap D_{0} \backslash\{0\}$.
3. Consider a square domain, e.g. $\Omega=(a, b)^{2}$. Can the results above be applied in this situation? Give a reference and cite an appropriate theorem.

Exercise 2

Consider the linear problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+b(x) u^{\prime}(x)+c(x) u(x)=f(x) \text { for all } x \in(0,1), \tag{1}\\
u(0)=\alpha, u(1)=\beta
\end{array}\right.
$$

where b, c, f are continuous functions on $[0,1] \subseteq \mathbb{R}$ with $c>0$ and α, β are real scalars.

1. Discretize (3) using the step size $h=\frac{1}{n+1}, n \in \mathbb{N}$, and central difference approximations for $u^{\prime}(x)$ und $u^{\prime \prime}(x)$:

$$
u^{\prime}(x) \approx \frac{u(x+h)-u(x-h)}{2 h}, \quad u^{\prime \prime}(x) \approx \frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}} .
$$

Present the linear system.
2. Show that the coefficient matrix is strictly row diagonal dominant if the stepsize h is small enough.

What changes if $u^{\prime}(x)$ is approximated as follows:

$$
u^{\prime}(x) \approx \begin{cases}\frac{u(x+h)-u(x)}{h} & \text { if } b(x)<0, \tag{2}\\ \frac{u(x)-u(x-h)}{h} & \text { if } b(x) \geq 0\end{cases}
$$

3. Name an application where the strictly diagonal dominance is important.

Remark: The approximation (2) is called upwind scheme. This kind of discretization is often used in the context of convection dominated equations.

Hint: Recall that a matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called strictly row diagonal dominant if

$$
\sum_{j=1, j \neq i}^{N}\left|a_{i j}\right|<\left|a_{i i}\right| \quad \text { for all } i \in\{1, \ldots, n\} \text {. }
$$

Exercise 3

We consider the following elliptic problem in divergence form:

$$
\begin{equation*}
\left(a(x) v^{\prime}(x)\right)^{\prime}=d(x) \quad \text { for } x \in \Omega=(0,1) \tag{3a}
\end{equation*}
$$

where $a \in \mathcal{C}^{1}(\bar{\Omega})$ with $a(x) \geq \underline{a}>0$ for all $x \in \Omega$ and $d \in \mathcal{C}^{0}(\Omega)$. We state Dirichlet boundary conditions

$$
\begin{equation*}
v(0)=\alpha, \quad v(1)=\beta \tag{3b}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{R}$.
Discretize the interval Ω using the equidistant grid $x_{i}=i h, 0 \leq i \leq n+1$, with the mesh size $h=\frac{1}{n+1}, n \in \mathbb{N}$. The goal is to obtain a symmetric coefficient matrix $A \in \mathbb{R}^{n \times n}$ when discretizing (3) by finite differences.

1. Approximate the outer derivative $(a w)^{\prime}$ at the grid point x_{i} by central difference quotients using the intermediate grid points $x_{i \pm \frac{1}{2}}=x_{i} \pm \frac{h}{2}, i=1, \ldots, n$.
Write $a_{i}=a\left(x_{i}\right), d_{i}=d\left(x_{i}\right)$ for $i=0, \ldots, n+1$ and $a_{i \pm \frac{1}{2}}=a\left(x_{i} \pm \frac{h}{2}\right)$ for $i=1, \ldots, n$. Use the discretization formula

$$
w^{\prime}\left(x_{i}\right) \approx \frac{w_{i+\frac{1}{2}}-w_{i-\frac{1}{2}}}{h}
$$

2. For the inner derivative, replace w by v^{\prime} and discretize $v^{\prime}\left(x_{i \pm \frac{1}{2}}\right)$ by central differences using the grid points x_{i-1}, x_{i}, x_{i+1} themselves.

What are the equations that you derive for the approximation of (3)? Compose the coefficient matrix explicitly.

