Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz
Wintersemester 2011/2012
Ausgabe: 2011/12/16

Abgabe: 2011/12/22

Numerik partieller Differentialgleichungen 2. Übungsblatt

Exercise 4

We consider the discretization of the partial differential equation

$$
\begin{equation*}
(L u)(x, y)=f(x, y) \quad \text { for all }(x, y) \in \Omega=(0,1) \times(0,1) \tag{1a}
\end{equation*}
$$

where

$$
(L u)(x, y)=-\Delta u(x, y)+a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)+c(x, y) u(x, y)
$$

for all (x, y) on the unit square $\Omega=(0,1) \times(0,1)$ with homogeneous Dirichlet boundary conditions

$$
\begin{equation*}
u(x, 0)=u(x, 1)=u(0, y)=u(1, y)=0 \quad \text { for } x, y \in[0,1] . \tag{1b}
\end{equation*}
$$

For general coefficients $a, b, c, f \in C(\bar{\Omega})$ and $c \geq 0$ in Ω, the operator L is not self-adjoint and its discretization is not symmetric.
Discretize (1a) by a five-point centered difference scheme for Δ with n^{2} points and mesh width $h=\frac{1}{n+1}$. and by centered difference schemes for the partial derivatives u_{x} and u_{y}. The unknowns are denoted by

$$
u_{i j} \approx u\left(x_{i}, y_{j}\right)
$$

where $x_{i}=i h$ for $i=1, \ldots, n$.
Compute the coefficient matrix $A \in \mathbb{R}^{n^{2} \times n^{2}}$ and the right-hand side $b \in \mathbb{R}^{n^{2}}$ so that the discretization of (1) can be formulated as a linear system of the form

$$
A u=b .
$$

Formulate conditions such that is the matrix A is an L_{0}-matrix, i.e. $a_{k l} \leq 0$ for all $k \neq l$.
Remark: The L_{0} condition is important in the stability analysis for numerical solution methods.

Exercise 5

Consider the interval (a, b) and $f \in \mathcal{C}^{4}((a, b), \mathbb{R})$. Let $n \in \mathbb{N}, h=\frac{b-a}{n-1}$ and $x_{i}=a+(i-1) h$ for $i=1, \ldots, n$.
Show that for the discretization formulae

$$
\begin{align*}
D_{x}^{+} f\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h} ; & D_{x}^{0} f\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h} ; \\
D_{x}^{-} f\left(x_{i}\right) & =\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{h} ; & D_{x x} f\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{h^{2}} \tag{2}
\end{align*}
$$

one has $D_{x}^{+} f-f^{\prime}=\mathcal{O}(h), D_{x}^{-} f-f^{\prime}=\mathcal{O}(h), D_{x}^{0} f-f^{\prime}=\mathcal{O}\left(h^{2}\right)$ and $D_{x x} f-f^{\prime \prime}=\mathcal{O}\left(h^{2}\right)$.

Exercise 6

Let A be a block-tridiagonal matrix of the form

$$
A=\left(\begin{array}{ccccc}
A_{1} & C_{1} & 0 & \ldots & 0 \\
B_{2} & A_{2} & C_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & B_{n-1} & A_{n-1} & C_{n-1} \\
0 & \ldots & 0 & B_{n} & A_{n}
\end{array}\right),
$$

where the $A_{l \mathrm{~s}}(1 \leq l \leq n)$ are quadratic matrices of the size m_{l}. Further, $B_{l} \in \mathbb{R}^{m_{l} \times m_{l-1}}$ for $l=2, \ldots, n$ and $C_{l} \in \mathbb{R}^{m_{l} \times m_{l+1}}$ for $l=1, \ldots, n-1$ hold.

- Derive an algorithm which realizes the factorization

$$
A=\left(\begin{array}{ccccc}
D_{1} & 0 & 0 & \ldots & 0 \\
B_{2} & D_{2} & & & \\
& \ddots & \ddots & & \\
& & B_{n-1} & D_{n-1} & 0 \\
0 & \ldots & 0 & B_{n} & D_{n}
\end{array}\right)\left(\begin{array}{ccccc}
E_{1} & F_{1} & 0 & \ldots & 0 \\
0 & E_{2} & F_{2} & & \\
& & \ddots & \ddots & \\
& & & E_{n-1} & F_{n-1} \\
0 & \ldots & 0 & 0 & E_{n}
\end{array}\right)=: L U
$$

where $E_{l} \in \mathbb{R}^{m_{l} \times m_{l}}$ denote identity matrices.
If it is necessary, suppose the invertibility of certain matrices.

- Assume that the matrices

$$
A^{(l)}=\left(\begin{array}{ccccc}
A_{1} & C_{1} & 0 & \ldots & 0 \\
B_{2} & A_{2} & C_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & B_{l-1} & A_{l-1} & C_{l-1} \\
0 & \ldots & 0 & B_{l} & A_{l}
\end{array}\right), \quad l=1, \ldots, n-1,
$$

are non-singular. Show that D_{l}^{-1} exist for $l=1, \ldots, n-1$.
Remark: The LU-block decomposition is useful for the iterative solution of $A u=b$.

