
��AA��AA
��AA

QQ QQ
Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz
Wintersemester 2011/2012

Ausgabe: 2011/12/22
Abgabe: 2012/01/13

Numerik partieller Differentialgleichungen
3. Übungsblatt

Exercise 7 (4 Points)

Let A ∈ RM2×M2 be the matrix obtained by the classical finite difference method for
solving the boundary value problem

−∆u = g in Ω = (0, 1)× (0, 1), (1a)
u = γ on ∂Ω (1b)

with stepsize h = 1
M+1

.

Show that the vectors ukl ∈ RM2 , (ukl)ij = sin
(
ikπ
M+1

)
sin

(
jlπ
M+1

)
, are the eigenvectors of

A. What are the corresponding eigenvalues λkl?

Exercise 8 (4 Points)

Let Ω ⊂ R2 a bounded domain with piecewise smooth boundary. Consider the problem

−∆v = λv in Ω, (2a)
v = 0 on ∂Ω (2b)

A solution v ∈ C2(Ω) ∩ C0(Ω̄), v 6= 0, is called an eigenfunction to the eigenvalue λ.

1. Show that all eigenvalues λ of (2a) are positive.

2. Let v1, v2 be eigenfunctions to the corresponding eigenvalues λ1, λ2 with λ1 6= λ2.

Show that v1, v2 are orthogonal with respect to the L2-scalar product.

3. Let Ω = (0, 1) × (0, 1). Show that the eigenvalues of (2a) are λkl = π2(k2 + l2).
Compare the corresponding eigenfunctions with those of Exercise 7.

4. Show that the differences between the eigenvalues in Exercise 7 and the corresponding
eigenvalues in Exercise 8 are of the order O(h2).



Exercise 9 (4 Points)

Consider the elliptic differential equation with Neumann condition on the boundary

∆u(x, y) = f(x, y) in Ω, (3a)
∂u

∂~n
= g(x, y) on Γ = ∂Ω (3b)

where Ω is a rectangle domain (0, a)×(0, b). To simplify matters, we consider a uniformly
equidistant grid, i.e. we choose grid points (ih, jh) for i = 0, 1, ...,M and j = 0, 1, ..., N
such that Mh = a and Nh = b.

We have to distinguish between four different types of grid points: inner points (xi, yj)
where i, j ∈ I × J = (1, ...,M − 1)× (1, ..., N − 1), boundary points (xi, yj) where either
i ∈ I and j ∈ {0, N} or i ∈ {0,M} and j ∈ J , corner points (xi, yj) where i ∈ {0,M}
and j ∈ {0, N}, and so-called ghost points (xi, yj) where either i ∈ I and j ∈ {−1, N+1}
or i ∈ {−1,M + 1} and j ∈ J .

Remark: Ghost points are no “real” grid points, but they appear in the formulation of
the finite differences. They can be compensated by plugging in the boundary informa-
tion.

1. Formulate difference equations for the problem by using the five-point stencil

∆u(x, y) ≈ u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)− 4u(x, y)

h2

for all grid points (ih, jh), i = 0, 1, ...,M and j = 0, 1, ..., N . Here the ghost points
will be needed. Note the tacit assumption that the right-hand side f is also defined
on Γ.

For this formulation, approximate the Neumann condition ∂u
∂~n

on boundary points by
central differences:

ux(x, y) ≈ u(x+ h, y)− u(x− h, y)

2h
, uy(x, y) ≈ u(x, y + h)− u(x, y − h)

2h
.

At the corner points, where ~n is undefined, approximate the “normal derivative” by
the average of the two derivatives along the two outer normals to the sides meeting
at the corner (use also central differences).

2. Formulate explicitly the system matrix for M = N = 2 and g ≡ 0. Here, of course,
the ghost points have to be eliminated.

3. Assume again g ≡ 0. Show that solutions to the problem cannot be unique. Further-
more, show that this matches with the fact of the non-invertibility of the discretization
matrix.

Merry Christmas and a happy new year!


