Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Martin Gubisch, Roberta Mancini, Stefan Trenz Wintersemester 2011/2012

Ausgabe: 2012/01/20 **Abgabe:** 2012/01/27

Numerik partieller Differentialgleichungen 5. Übungsblatt

Exercise 13 (Quadratic ansatz functions)

Let $\Omega = (a, b) \subseteq \mathbb{R}$ and $x_0, ..., x_{n+1} \in \overline{\Omega}$ with $x_0 = a, x_{n+1} = b, x_i < x_{i+1}$.

1. Define piecewise quadratic ansatz functions ϕ_i , i = 1, ..., n, and $\phi_{i+\frac{1}{2}}$, i = 0, ..., n, in $C^0(\bar{\Omega})$ such that

$$\phi_i(x_j) = \delta_{ij} \qquad \& \qquad \phi_i(x_{j+\frac{1}{2}}) = 0,$$

$$\phi_{i+\frac{1}{2}}(x_j) = 0 \qquad \& \qquad \phi_{i+\frac{1}{2}}(x_{j+\frac{1}{2}}) = \delta_{ij}$$

Hint: A quadratic function is determined uniquely by its values on three interpolation points.

- 2. Calculate the derivatives $\phi_i, \phi_{i+\frac{1}{2}}$.
- 3. Draw $\phi_i, \phi_{i+\frac{1}{2}}, \phi'_i, \phi'_{i+\frac{1}{2}}$ for one fixed *i* in different colours in one **large** plot. Don't forget to label your axes.
- 4. Consider the ansatz

$$y(x) = \sum_{i=1}^{n} \alpha_i \phi_i(x) + \sum_{i=0}^{n} \alpha_{i+\frac{1}{2}} \phi_{i+\frac{1}{2}}(x)$$

for arbitrary coefficients $\alpha_i, \alpha_{i+\frac{1}{2}} \in \mathbb{R}$. Explain why y in general is just of \mathcal{H}^1 -regularity (you don't need to prove this).

Exercise 14 (Weak derivatives)

Let $\Omega = (-1, 1)$.

1. Let $u \in \mathcal{L}^2(\Omega)$ Define: $v \in \mathcal{L}^2(\Omega)$ is the weak derivative of u.

(4 Points)

(4 Points)

2. u(x) = abs(x). Show that the weak derivative $v = u' \in \mathcal{L}^2(\Omega)$ of u is given by

$$u'(x) = \begin{cases} -1 & x \in [-1,0] \\ 1 & x \in [0,1] \end{cases}.$$

3. Prove that u' is not weakly differentiable in $\mathcal{L}^2(\Omega)$.

Exercise 15 (Ansatz functions in two dimensions)

(4 Points)

Let $\Omega = (-1, 1) \times (-1, 1)$. Consider the following triangulation of Ω :

- 1. Define the function $S: \overline{\Omega} \to \mathbb{R}$ describing the canonical simplex on Ω , i.e. $S_i = S|_{\overline{\Omega}_i}$ is a plain with $S_i(0,0) = 1$ and $S_i(x,y) = 0$ for all other grid points $(x,y) \in \overline{\Omega}$.
- 2. Draw the graph of S.
- 3. Assume that Ω is triangulized by n^2 inner grid points x_i, y_j now. Let $f \in \mathcal{C}^0(\overline{\Omega})$, $f_{ij} = f(x_i, y_j)$ and

$$F(x,y) = \sum_{i,j=1}^{n} f_{ij}\phi_{ij}(x,y)$$

where ϕ_{ij} is the simplex with centre (x_i, y_j) .

Describe the graph of F.

4. Is F a good approximation for f?