Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Martin Gubisch, Roberta Mancini, Stefan Trenz
Wintersemester 2011/2012
Ausgabe: 2012/01/20

Abgabe: 2012/01/27

Numerik partieller Differentialgleichungen 5. Übungsblatt

Exercise 13 (Quadratic ansatz functions)
(4 Points)
Let $\Omega=(a, b) \subseteq \mathbb{R}$ and $x_{0}, \ldots, x_{n+1} \in \bar{\Omega}$ with $x_{0}=a, x_{n+1}=b, x_{i}<x_{i+1}$.

1. Define piecewise quadratic ansatz functions $\phi_{i}, i=1, \ldots, n$, and $\phi_{i+\frac{1}{2}}, i=0, \ldots, n$, in $\mathcal{C}^{0}(\bar{\Omega})$ such that

$$
\begin{array}{rll}
\phi_{i}\left(x_{j}\right)=\delta_{i j} & \& & \phi_{i}\left(x_{j+\frac{1}{2}}\right)=0, \\
\phi_{i+\frac{1}{2}}\left(x_{j}\right)=0 & \& & \phi_{i+\frac{1}{2}}\left(x_{j+\frac{1}{2}}\right)=\delta_{i j}
\end{array}
$$

Hint: A quadratic function is determined uniquely by its values on three interpolation points.
2. Calculate the derivatives $\phi_{i}, \phi_{i+\frac{1}{2}}$.
3. Draw $\phi_{i}, \phi_{i+\frac{1}{2}}, \phi_{i}^{\prime}, \phi_{i+\frac{1}{2}}^{\prime}$ for one fixed i in different colours in one large plot. Don't forget to label your axes.
4. Consider the ansatz

$$
y(x)=\sum_{i=1}^{n} \alpha_{i} \phi_{i}(x)+\sum_{i=0}^{n} \alpha_{i+\frac{1}{2}} \phi_{i+\frac{1}{2}}(x)
$$

for arbitrary coefficients $\alpha_{i}, \alpha_{i+\frac{1}{2}} \in \mathbb{R}$. Explain why y in general is just of \mathcal{H}^{1} regularity (you don't need to prove this).

Exercise 14 (Weak derivatives)
Let $\Omega=(-1,1)$.

1. Let $u \in \mathcal{L}^{2}(\Omega)$ Define: $v \in \mathcal{L}^{2}(\Omega)$ is the weak derivative of u.
2. $u(x)=\operatorname{abs}(x)$. Show that the weak derivative $v=u^{\prime} \in \mathcal{L}^{2}(\Omega)$ of u is given by

$$
u^{\prime}(x)=\left\{\begin{array}{cl}
-1 & x \in[-1,0] \\
1 & x \in[0,1]
\end{array} .\right.
$$

3. Prove that u^{\prime} is not weakly differentiable in $\mathcal{L}^{2}(\Omega)$.

Exercise 15 (Ansatz functions in two dimensions)
Let $\Omega=(-1,1) \times(-1,1)$. Consider the following triangulation of Ω :

1. Define the function $S: \bar{\Omega} \rightarrow \mathbb{R}$ describing the canonical simplex on Ω, i.e. $S_{i}=\left.S\right|_{\bar{\Omega}_{i}}$ is a plain with $S_{i}(0,0)=1$ and $S_{i}(x, y)=0$ for all other grid points $(x, y) \in \bar{\Omega}$.
2. Draw the graph of S.
3. Assume that Ω is triangulized by n^{2} inner grid points x_{i}, y_{j} now. Let $f \in \mathcal{C}^{0}(\bar{\Omega})$, $f_{i j}=f\left(x_{i}, y_{j}\right)$ and

$$
F(x, y)=\sum_{i, j=1}^{n} f_{i j} \phi_{i j}(x, y)
$$

where $\phi_{i j}$ is the simplex with centre $\left(x_{i}, y_{j}\right)$.
Describe the graph of F.
4. Is F a good approximation for f ?

