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The Finite-Volume-Particle Method for

Conservation Laws

D. Hietel∗ M. Junk† R. Keck∗ D. Teleaga‡

Abstract

In the Finite-Volume-Particle Method (FVPM), the weak formulation
of a hyperbolic conservation law is discretized by restricting it to a dis-
crete set of test functions. In contrast to the usual Finite-Volume ap-
proach, the test functions are not taken as characteristic functions of the
control volumes in a spatial grid, but are chosen from a partition of unity
with smooth and overlapping partition functions (the particles), which
can even move along prescribed velocity fields. The information exchange
between particles is based on standard numerical flux functions. Geo-
metrical information, similar to the surface area of the cell faces in the
Finite-Volume Method and the corresponding normal directions are given
as integral quantities of the partition functions.

After a brief derivation of the Finite-Volume-Particle Method, this work
focuses on the role of the geometric coefficients in the scheme.

1 Introduction

The Finite-Volume-Particle Method (FVPM) is a new mesh-less method for the
discretization of conservation laws. The motivation for developing a new method
is to unify advantages of particle methods and Finite-Volume Methods (FVM) in
one scheme.

On the one hand, particle methods are very flexible because they are mesh-
free. The need for mesh-less methods typically arises if problems with time
dependent or very complicated geometries are under consideration because then
the handling of mesh discretizations becomes technically complicated or very time
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consuming. Fluid flow with structural interaction or fast moving boundaries like
an inflating air-bag are of that kind for instance.

In gas and fluid dynamics, the SPH method [Mon92] has been successfully
applied to problems with free boundaries. Recent developments in the area of
mesh-less methods include the Finite-Mass Method (FMM) [Yse97, GLY] and
the partition of unity method (PUM) [GS00].

The basic idea in the FVPM is to incorporate elements of the FVM into a
particle method. Specifically, one wants to adopt the treatment of boundary
conditions and the FVM concept of numerical flux functions in order to avoid
numerical fit-parameters as in the artificial viscosity terms of SPH.

The brief derivation of the Finite-Volume-Particle Method in the following
section shows that the scheme is essentially determined by the numerical flux
function and a set of geometrical coefficients which play the role of normal di-
rections and surface areas of cell faces in the Finite-Volume Method. For one-
dimensional, scalar conservation laws, a Lax-Wendroff type consistency analysis
and stability requirements lead to a set of conditions on the coefficients. For
example, a CFL-type condition assures monotonicity of the scheme if the under-
lying numerical flux function is monotone. Numerical examples are presented to
show the behavior of the scheme in the case of Burgers’ equation. The extension
to two-dimensional cases is demonstrated for the system of Euler equations. For
certain 2D shock tube problems, it is shown how the identification of the geo-
metric coefficients with their Finite-Volume counterparts (i.e. normal directions
and length of cell faces) allows the implementation of boundary conditions.

2 Derivation of the scheme

In the following, we will briefly summarize the derivation of FVPM which was
developed in [HSS]. As already mentioned above, FVPM is a numerical method
for solving conservation laws of the type

∂

∂t
Φ(t,x) + ∇ · F (Φ(t,x)) = 0, ∀x ∈ Ω ⊂ R

d, t ∈ R
+ (1)

with accompanying boundary and initial conditions Φ(0,x) = Φ(0)(x). Here, Φ

denotes the vector of conservative variables, F is the flux function of the conser-
vation law, d is the spatial dimension, and Ω is the domain under consideration.

A natural approach to discretize conservation laws is to evaluate the weak
formulation with a discrete set of test functions ψi, i = 1, .., N . In classical
Finite-Volume Methods, the test functions are taken as characteristic functions
ψi(x) := 1Iνi

(x) of the control volumes νi in a spatial grid. Note that the test
functions form a partition of unity , i.e.

∑N

i=1 ψi(x) ≡ 1, ∀x ∈ Ω.
In contrast to that, smooth test functions ψi (called particles) are employed

in the FVPM. More precisely, at the particle positions xi(t), the construction of
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ψi is based on a compactly supported smoothing kernel W (x), as it is used, for
example, in the SPH method. The functions Wi(x) = W (x − xi(t)) are then
re-normalized by the particle-density σ(x), according to Shepard’s method

ψi(t,x) :=
W (x − xi(t))

σ(t,x)
, where σ(t,x) :=

N
∑

j=1

W (x − xj(t)).

For an illustration of the construction of the test functions ψi see Figures 1 to
3. Due to Shepard’s re-normalization, the particles form a partition of unity
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Figure 1: Irregular particle positions xi and functions Wi(x) = W (x− xi)
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Figure 2: The function σ(x) =
∑

iWi(x) corresponding to Fig. 1
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Figure 3: The resulting partition of unity ψi(x) = Wi(x)/σ(x)

similar to the characteristic functions of the control-volumes in the FVM. In
Figure 3, one can see that the resulting test functions are scaled according to the
particle-density, i.e. in regions where the particle-density is high the corresponding
test functions are small which means small local weights of the corresponding
particles.

In the FVPM, the particles generically move through the domain, following
the ‘arbitrary’ velocity vectors ui, i.e. ẋi = ui. For u = 0, one obtains fixed
particles and for u being, for example, the fluid velocity in the case of Euler
equations, one obtains a Lagrangian scheme.
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To each particle, one associates a volume Vi and a discrete quantity Φi which
is the integral mean value with respect to the test function

Φi(t,x) :=
1

Vi

∫

Ω

Φ(t,x)ψi(t,x) dx where Vi(t) :=

∫

Ω

ψi(t,x) dx.

Using the test functions and quantities defined above, one obtains the following
evolution equations for the discrete quantities from the weak formulation of the
Cauchy problem (1) (see [HSS] for details):

d

dt
(ViΦi) = −

N
∑

j=1

|βij|F̃

(

Φi,Φj;
βij

|βij|

)

+
N

∑

j=1

(

γij · ẋjΦi − γji · ẋiΦj

)

, (2)

together with

d

dt
Vi =

N
∑

j=1

(

γij · ẋj − γji · ẋi

)

,
d

dt
xi = ui.

The coefficients γij and βij are defined as

βij := γij − γji, γij :=

∫

ψi

∇Wj

σ
dx. (3)

The right hand side of the evolution equation (2) consists of two parts. The first
part is the flux term, where a standard numerical flux function F̃ may be used,
and the second term corresponds to the movement of the particles.

We remark that the formulation (2) may suffer from instabilities as can be
seen by applying the discretization to the trivial scalar conservation law

∂Φ

∂t
= 0, Φ(0, x) = H(x), x ∈ R

where H is the Heaviside function. We use the numerical flux F̃ ≡ 0 and equidis-
tant particles at xi = ih, i ∈ Z which move with a common speed ẋi = −1. The
hat function W (x) = (1− |x/h|)+ then gives rise to ψi(t, x) = W (x− xi(t)) since
σ ≡ 1. With these choices, the scheme (2) reduces to

dΦi

dt
+

Φi+1 − Φi−1

2h
= 0

which leads to the unconditionally unstable central scheme if the time derivative
is discretized with a forward Euler method. Note that the central difference has
its origin in the second sum in (2) which reflects corrections due to the movement
of the particles.
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A more stable discretization has been proposed in [JS00] where the movement
terms are incorporated into the flux function, leading to a scheme of the form

d

dt
(ViΦi) = −

N
∑

j=1

|βij|Gij (4)

where Gij is a numerical flux function which corresponds to the modified flux
G(t,x,Φ) = F (Φ)−Φ⊗u. Selecting for example a flux function based on upwind
ideas, we conclude that the example F ≡ 0 no longer leads to instabilities since
the movement terms are now treated properly.

3 The coefficients of the scheme

3.1 Formal aspects of the coefficients

The behavior of the FVPM is significantly influenced by the coefficients γ ij and
βij defined in (3). In order to analyze the effect of the coefficients, we consider
the scheme (4) for scalar valued equations in Ω = R. Proofs for the results can
be found in [HSS, JS00, Tel00].

A symmetry condition of the form

βij = −βji (5)

ensures that the scheme is conservative, i.e. that d
dt

(
∑

i ViΦi) = 0. Monotonicity
of the scheme follows under a CFL-like condition on the time-step if a monotone
numerical flux function is used

L
∆t

miniVi

<
1

maxi

∑

j |βij|
. (6)

Here, L is the Lipschitz constant for the numerical flux function which is related
to the maximal characteristic speed in the problem. Furthermore, monotonicity
and a summation condition of the form

∑

j∈Z

βij = 0, ∀i ∈ Z, (7)

give L
∞-stability for finite times 0 ≤ t ≤ T

‖
∑

i

Φi(t)ψi‖L∞ ≤ eCT ‖
∑

i

Φi(0)ψi‖L∞. (8)

If the coefficients additionally satisfy a summation condition of the form
∑

i≥i0

∑

j≥i0

βij = 1 (9)
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the scheme is consistent in the sense of Lax-Wendroff, i.e. if the approximate
solutions converge in a suitable sense, they converge to a weak solution.

An estimate for the total variation is in preparation and seems to be achievable
under the conditions (6) and (7). To finally get convergence of the scheme to the
entropy-solution, an entropy inequality is required.

We remark that conditions (7) and (9) are difficult to ensure if the inte-
grals in (3) are evaluated numerically and that violation of these conditions may
lead to instabilities of the method. To illustrate, for example, the effect of the
summation-condition (7) on the scheme we consider a standard Riemann prob-
lem for Burgers’ equation. In the left plot of Figure 4, the summation condition
(7) is not fulfilled, which leads to unphysical oscillations in the constant part
of the solution. In the right plot, the condition is satisfied and the oscillations
vanish (see [Tel00] for the proof). Since highly accurate numerical integration is

PSfrag replacements PSfrag replacements

Figure 4: The effect of the summation condition (7) on the solution.

very time consuming, the determination of the coefficients turns out to be the
most expensive part of the scheme. To alleviate this problem, a method has been
proposed in [Tel00] which is based on a coarse evaluation of the integrals and a
subsequent correction procedure in order to ensure (5), (7), and (9). However,
this method is still at an experimental stage.

3.2 Heuristic interpretation of the coefficients

According to the definition (3), the coefficients βij are averaged, weighted, and
symmetrized gradients of the smoothing kernels. This interpretation is illustrated
in Figure 5. A formal comparison with standard Finite-Volume Methods (see (10)
and (11)) indicates that the coefficients |βij| and βij/|βij| can be interpreted as
generalized surface area |Sij| of cell faces in the FVM and the corresponding

6



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

PSfrag replacements

∇Wj
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Figure 5: The gradient of the smoothing kernel: ∇Wj.

normal directions ν ij:

d

dt
(ViΦi) = −

∑

j

|βij|F̃

(

Φi,Φj,
βij

|βij|

)

FVPM (ẋi = 0), (10)

d

dt
(ViΦi) = −

∑

j

|Sij|F̃ (Φi,Φj,νij) FVM. (11)

These considerations indicate that the Finite-Volume-Particle Method is in some
sense a ‘generalization’ of the standard Finite-Volume Method. In fact, the use
of smooth and overlapping test functions (in contrast to the characteristic func-
tions in the FVM) can be interpreted as a generalization of FVM to overlapping,
smoothed, and moving control volumes.

4 Numerical results

The validation of the scheme is done by solving a standard and a modified 2D
shock tube problem for the Euler equations of gas dynamics with free-slip bound-
ary conditions.

4.1 Boundary treatment

The boundary treatment of the FVPM consists of two parts: Firstly, the bound-
ary interacts with a particle by cutting off the support of the test function in
definition (3) of the coefficients γij. Secondly, free-slip boundary-conditions are
implemented using boundary-fluxes similar to the FVM.

The boundary-fluxes are computed using the normal ni and the tangential
vector ti of the boundary at the corresponding particle xi and the numerical flux
function F̃ (Φi,Φj; ni) which is used in the scheme. The auxiliary state Φj is
computed so that the boundary conditions are satisfied:

ui · ni = −uj · ni, ui · ti = uj · ti.
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4.2 Quasi-1D shock tube problem

As initial condition, a density and pressure ratio of 1/10 across an initial shock
at x = 0.55 in the domain [0, 1]× [0, 0.1] has been chosen. The shock front travels
towards the right wall where it is reflected. The calculation is based on 1 000
particles (100 in x-direction and 10 in y-direction).

In Figure 6 a cut through the domain is shown. The density of the particles
is plotted over the x-component of the position at time t = 0.2 and t = 0.6 in the
left and right plot, respectively. Reflection of the shock wave at the right wall
has already taken place in the right plot.

The simulation shows that the implementation of the boundary conditions
works very satisfactory. No boundary effects are visible because all cuts through
the domain give the same result.

In order to avoid holes in the computational domain by the movement of the
particles, the radius of the particle support is chosen as h = 1.8∆x, where ∆x
denotes the initial distance between particle positions in x-direction.

Comparing FVPM and FVM based on the same flux function (Roe’s flux),
we find that despite the considerable overlap of the particles, the FVPM-solution
turns out to be almost as accurate as the FVM-solution on a fixed 100 × 10
grid (spacing ∆x) and it is notably better than the FVM-solution on a grid with
spacing 2h.
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Figure 6: Solution of the standard shock-tube problem (density). Left: Before
the shock front reaches the right wall at t = 0.2. Right: After reflection at the
right wall at t = 0.6. The solid line is a FVM-solution on a 100 × 10 grid.

4.3 Modified shock tube problem

In the modified problem a quadratic domain is considered and the discontinuity
in the initial data is located along the diagonal of the domain x = y. The shock
front travels towards the upper left corner where it is reflected. Figure 7 shows
the density and the velocity field shortly after reflection. The computation was
performed on a domain [0, 20] × [0, 20] with 10 000 particles.
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Figure 7: Solution of the shock problem after reflection in the upper left corner.

9



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

References

[GLY] C. Gauger, P. Leinen, and H. Yserentant. The finite mass method. To

appear in SIAM Journal on Numerical Analysis.

[GS00] M. Griebel and M. A. Schweitzer. A particle-partition of unity method
for the solution of elliptic, parabolic and hyperbolic pdes. SIAM Journal

on Scientific Computing, 2000.

[HSS] D. Hietel, K. Steiner, and J. Struckmeier. A finite-volume particle
method for compressible flows. To appear in Mathematical Models and

Methods in Applied Science.

[JS00] M. Junk and J. Struckmeier. Consistency analysis of mesh-free methods
for conservation laws. Berichte der AG Technomathematik, Universität

Kaiserslautern, 226, 2000.

[Mon92] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of

Astronomy and Astrophysics, 30:543–574, 1992.

[Tel00] D. Teleaga. Numerical Studies of a Finite-Volume Particle Method for

Conservation Laws. Master Thesis, Department of Mathematics, Uni-
versität Kaiserslautern, 2000.

[Yse97] H. Yserentant. A particle method of compressible fluids. Numerische

Mathematik, 76:111–142, 1997.

10


