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In this article we analyze the lattice Boltzmann equation (LBE) by us-

ing the asymptotic expansion technique. We first relate the LBE to the

finite discrete-velocity model (FDVM) of the Boltzmann equation with the

diffusive scaling. The analysis of this model directly leads to the incom-

pressible Navier-Stokes equations, as opposed to the compressible Navier-

Stokes equations obtained by the Chapman-Enskog analysis with convec-

tive scaling. We also apply the asymptotic analysis directly to the fully

discrete LBE, as opposed to the usual practice of analyzing a continuous

equation obtained through the Taylor-expansion of the LBE. This leads

to a consistency analysis which provides order-by-order information about

the numerical solution of the LBE. The asymptotic technique enables us

to analyze the structure of the leading order errors and the accuracy of

numerically derived quantities, such as vorticity. It also justifies the use

of Richardson’s extrapolation method. As an example, a two-dimensional

Taylor-vortex flow is used to validate our analysis. The numerical results

agree very well with our analytic predictions.

Key Words: lattice Boltzmann equation; discrete velocity model; diffusive scaling; linear

collision operator; asymptotic analysis; incompressible Navier-Stokes equation

1. INTRODUCTION

Historically the lattice Boltzmann equation (LBE) is originated from the lattice

gas cellular automata (LGCA) [13, 12]. The lattice gas cellular automata represent

an innovative and yet highly unconventional methodology to simulate physical sys-

tems which can or cannot be represented by partial differential equations (PDEs).

The LGCA methodology is deemed appropriate in those areas where PDE is not

an adequate description, e.g., artificial life or language theory (cf. [22]). However,
1
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in computational fluid dynamics (CFD), a well-established area in which the solu-

tions of a set of PDEs — the Navier-Stokes equations — are the primary objective,

the novel and unconventional LGCA methodology has met with severe criticisms

because, not only is the method unconventional, but also it has not been system-

atically subjected to the rigorous (numerical) analysis like other conventional CFD

methods based on discretizations of the Navier-Stokes equations. Apparently, the

historic connection to LGCA is a factor hampering a wider acceptance of the lattice

Boltzmann method (LBM), in spite of the evidence accumulated so far has shown

that the method is not only valid, but also competitive in some circumstances

(such as complex fluid flows through porous media (cf. [37]) and non-spherical

particulate suspensions in fluid flows [40, 38, 39]). Nevertheless, similar to LGCA,

questions concerning the consistency, stability, and convergence of LBM have been

unanswered or answered unsatisfactorily.

In this article we intend to fill gaps the mathematical analysis of the lattice

Boltzmann equation in the following two aspects. The first is to establish the direct

connection between the lattice Boltzmann equation and the classical kinetic theory

(without referring to LGCA). It can be demonstrated that the lattice Boltzmann

equation is in fact a finite difference form of the finite discrete-velocity model of

the Boltzmann equation in a particular scaling. And the second is to provide an

asymptotic analysis of the lattice Boltzmann equation so that the mathematical

properties (consistency) of the lattice Boltzmann method can be well illustrated.

An asymptotic expansion is a well established method in the theory of ordi-

nary differential equations and is also frequently used for PDEs in connection with

Richardson’s extrapolation or deferred correction methods (cf. review in [26]). We

shall demonstrate that the lattice Boltzmann method is by no means special as far

as its analysis is concerned: it can be analyzed in the same fashion as other tra-

ditional numerical schemes, such as the schemes for the Laplace or heat equations

[26]. In particular, we can obtain the spatial and temporal accuracy of the lattice

Boltzmann equation, analyze the accuracy of quantities like vorticity which are not

directly available as velocity moments, justify the use of extrapolation techniques,

and gain accurate and quantitative information about the structure of the leading

order error.

Classically, the Chapman-Enskog (CE) expansion is employed to analyze the con-

sistency of LBE. Starting point for the CE analysis is the usual (convective) scaling,

i.e., ∆x ∼ ∆t, which is subsequently combined with a two-timescale expansion to

derive the hydrodynamic equations. The resulting macroscopic equations describe

compressible flows in the faster time scale and diffusive effects in the slower one.

Eventually, the equations can be related to the compressible Navier-Stokes system

from which the incompressible equations are obtained in another limiting process

[12, 2, 6, 7, 18, 19, 47].

In contrast to this traditional approach, we advocate the diffusive scaling as a

mathematical alternative to analyze the lattice Boltzmann equation. The diffusive

scaling, developed by Sone (cf. [43]), is well known in kinetic theory and has been

used to establish a direct connection between the Boltzmann equation and the

incompressible Navier-Stokes equations [9, 1, 29, 14, 15]. In particular, the diffusive

scaling is the natural choice if the LBE is viewed purely as a numerical method to

solve the incompressible Navier-Stokes equation. In this case, compressibility effects
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are considered as numerical effects and it suffices to consider the slower (diffusive)

time scale in the analysis. Thus the technical advantages of the advocated method

are twofold. First, only a single time scale expansion is necessary and it is simpler

than a two-scale expansion because the expansion coefficients and the corresponding

equations depend on one variable fewer. Second, the expansion coefficients depend

directly on the aspired solution of the incompressible Navier-Stokes problem and

not on the solution of a different problem (the compressible equation). Having this

direct dependence, it is straight forward to relate the numerical solution to the

exact solution, for example, to obtain error estimates.

An obvious difference between the classical Chapman-Enskog analysis and our

approach here is the relation ∆t ∼ ∆x2 for the time step. This assumption is

natural if we restrict ourselves to flows which are slow compared to the particle

velocity defined in the LBE and which are interpreted in the slow (diffusive) time

scale. Note, however, that the assumption does not alter the lattice Boltzmann

algorithm. It is merely a different scaling which simplifies the analysis of the un-

derlying LBE scheme. In order to make this point more precise, let us think of a

flow through a channel of length L with typical velocity U . In the classical scaling

(where ∆t ∼ ∆x), U has to be a small quantity (of the order of ∆x) which reflects

the low Mach number assumption. In particular, the time required for a volume of

fluid to traverse the channel is proportional to L/U = O(1/∆x) and thus diverges

for ∆x → 0. With a time step ∆t ∼ ∆x in the simulation, a typical number of

time steps required for this fluid displacement is O(1/∆x2). In contrast to the

classical scaling where flow speed and simulation time converge to zero and infinity,

respectively, for ∆x → 0, we avoid technical difficulties by using a scaling in which

the flow velocity U is of order one so that the macroscopic time L/U is also of order

one. Due to the relation ∆t ∼ ∆x2, however, the required number of time steps is

again of order O(1/∆x2) reflecting the fact that the underlying lattice Boltzmann

algorithm is unchanged.

With the exception of [23], the diffusive scaling has not been applied to analyze

the lattice Boltzmann equation. However, it is important to emphasize that the our

analysis differs from that in [23] because we do not approximate the discrete lattice

Boltzmann equation with a continuous equation through Taylor expansion, as in

[23]. In fact, the expansion used here implicitly assumes that the discrete solution

can be obtained by restricting a smooth function to the grid which breaks down if

the numerical solution exhibits initial or boundary layers. In the modified equation

analysis, the same assumption is used and it has been shown, for example in [16, 5],

that it lacks mathematical justification. Since our goal is to develop a method

which will enable us to analyze the lattice Boltzmann method in combination with

boundary conditions [25], coupling conditions for different meshes [42] and in the

presence of initial layers [4], we circumvent this technical problem and apply an

asymptotic expansion directly to the discrete lattice Boltzmann equation itself, in

the spirit of [45, 46, 33].

We conclude the introduction with an outline of the article. In Sec. 2 we provide

a concise account of the kinetic origin of the lattice Boltzmann equation. In Sec. 3

we introduce a coordinate-free notation and the assumptions on the structures of

the discrete velocity set and the collision operator. We consider a very general

situation including the models in two or three dimensions with multiple-relaxation-
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time (MRT) collision operators [10], of which the Bhatnagar-Gross-Krook (BGK)

[3] collision operator is merely a special case. In Sec. 4 we discuss the asymptotic

analysis of the finite-discrete velocity model (with continuous space x and time

t), which facilitates the analysis of the lattice Boltzmann equation. Details of

the derivations are deferred to Appendix A. In Sec. 5, we present the asymptotic

analysis of the lattice Boltzmann equation. We show that the lattice Boltzmann

approximation to the incompressible Navier-Stokes equations is at least second-

order accurate in space and first-order accurate in time. In Sec. 6 we consider in

detail a rotating flow in two dimensions as a test case to verify our analysis. Finally,

in Sec. 7 we summarize our results and conclude the paper. The Appendices contain

the technical details of the asymptotic analysis and provides examples for lattice

Boltzmann models which satisfy the assumptions of our general approach in Sec. 3.

2. KINETIC ORIGIN OF THE LATTICE BOLTZMANN

EQUATION

We consider the finite discrete-velocity model (FDVM) of the Boltzmann equa-

tion with the finite discrete velocity set V = {c0, . . . , cN}:

∂tfi + ci · ∇fi = Ji, i = 0, . . . , N, (1)

where the function fi(t, x) = f(t, x, ci) is the single particle (mass) density dis-

tribution function at time t ∈ [0, T ] and position x ∈ Ω. While the left hand side

of Eq. (1) describes the transport of a particle, the right hand side describes the

change of fi due to collisional interactions among the particles. With the diffusive

scaling x → x/ε and t → t/ε2, we concentrate on macroscopic processes (large

space scale) over very long time intervals (slow time scale). Eq. (1) becomes

ε2∂tfi + εci · ∇fi = Ji, i = 0, . . . , N. (2)

Dividing Eq. (2) by ε2 and integrating it along characteristics, we obtain

fi(t + ∆t, x + ci∆t/ε) = fi(t, x) +
1

ε2

∫ ∆t

0

Ji(t + s, x + cis/ε) ds.

By using the space and time step size according to the diffusive scaling ∆t = ε2 and

∆x = ε, and approximating the integral by the rectangle rule with the integrand

evaluated at the left point of the interval, we arrive at

fi(t + ∆t, x + ci∆x) ≈ fi(t, x) + Ji(t, x). (3)

We can transform Eq. (3) into a simple algorithm on a spatial lattice X which is

invariant under ci-translations, i.e.,

ci + X = X, i = 0, . . . , N.

If we use f̂i(k, j), with k ∈ N0 := {0, 1, 2, . . .} and j ∈ X, to approximate the

value fi(k∆t, j∆x), then we obtain the lattice Boltzmann evolution using Eq. (3)

[18, 19]:

f̂i(k + 1, j + ci) = f̂i(k, j) + Ĵi(k, j). (4)
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Of course, one could derive variants of the lattice Boltzmann equation by using

different discretizations of Eq. (2) than those described above, but this is not our

objective here. The point of this brief derivation is to demonstrates the explicit

connection between the lattice Boltzmann equation (4) and the finite discrete-

velocity model equation (1) with the diffusive scaling. Moreover, it already indicates

a fundamental difficulty in the analysis: since the lattice Boltzmann equation (4)

can be viewed as a discretization of the singularly perturbed FDVM equation (2)

with coupled parameters ∆t = ∆x2 = ε2, it is clear that, in the limit of ε → 0,

Eq. (4) does not approximate the kinetic equation (1) from which it has been

derived, because the structure of this equation changes qualitatively in the limit (in

lowest order it reduces to an algebraic equation Ji = 0). Therefore, the analysis of

the lattice Boltzmann equation (4) is inevitably related to the asymptotic analysis

of Eq. (1) with appropriate scalings.

Usually, the Chapman-Enskog analysis combined with a Taylor expansion is used

to analyze the lattice Boltzmann equation (4) and it is well known that the averaged

particle velocity approximates solutions of the incompressible Navier-Stokes equa-

tion in a limit of low Mach number. In this article we would like to demonstrate

that this result can also be obtained with a straightforward asymptotic expansion

of Eq. (4). Similar expansions have been widely applied to numerical schemes for

solving ordinary and partial differential equations, for example, to derive and im-

prove the order of consistency. In particular, the asymptotic analysis also allows

us to study an algorithm with boundary or coupling conditions, or initial layers.

By embedding the analysis into a framework which is generally applicable to finite

difference schemes, we hope to clarify and improve the numerical analysis of lattice

Boltzmann method.

3. STRUCTURAL ASSUMPTIONS

3.1. Coordinate free notation

For the sake of concreteness and simplicity, we shall consider collision operators

with a particular structure which may not contain all possible realizations of lattice

Boltzmann models. Nevertheless, the techniques described here are fairly general.

We should restrict ourselves to athermal LBE models (without energy conserva-

tion). We also stress that the notation to be used in what follows is coordinate

free for velocity-dependent functions. If V = {c0, . . . , cN} ⊂ R
d is the set of d-

dimensional discrete velocities, we introduce the Euclidean vector space F of real

valued functions f : V → R. Most of the lattice Boltzmann literature relies on

the choice of a canonical basis in F given by the Kronecker functions δci
∈ F ,

δci
(cj) = δij . In this basis, a function f ∈ F has the representation

f(v) =

N
∑

i=0

f(ci)δci
(v)

with coordinates fi = f(ci). Obviously, the formulation of the lattice Boltzmann

equation (4) and its continuous counterpart (1) is based on these coordinates.
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Another useful basis is given by polynomials {φ0, . . . , φN} ⊂ F which are, for

example, orthogonal with respect to the standard scalar product on F

〈f, g〉 =

N
∑

i=0

f(ci)g(ci), f, g ∈ F .

In this basis, a function f has the representation

f(v) =
N
∑

i=0

〈f, φi〉φi(v).

Now the coordinates are (velocity) moments of f . For example, φ0(v) = 1 and

φ1(v) = vx, then

ρ = 〈f, φ0〉 =

N
∑

i=0

f(ci) and jx = 〈f, φ1〉 =

N
∑

i=0

f(ci)cix

are averaged mass density and x-momentum, respectively. Consequently, if the lat-

tice Boltzmann evolution is formulated in a polynomial basis, one obtains equations

for velocity moments — so called moment systems [10, 24]. However, to avoid an a

priori choice for a particular basis, we use as much as possible a coordinate-free no-

tation which has several advantages. First, coordinate-free notations emphasize the

essentials. Second, this notation is so general that it is model-independent, thus the

analysis clearly carries over to all models. And finally, the notation is compatible

with continuous velocity sets V so that the connection to well established results in

classic kinetic theory is immediate (only the scalar product 〈·, ·〉 has to be replaced

by the L
2 scalar product).

To cast Eq. (2) in a coordinate-free notation, we introduce the velocity multi-

plication operators Vα : F → F defined by (Vαf)(v) = vαf(v), where the Greek

subscripts α, β, . . . , are always used to denote the Cartesian coordinates 1, . . . , d

as opposed to the Roman subscripts i, j, . . . , labeling discrete velocities. Note that

Vα1 is the function v 7→ vα. For abbreviation, we consider {Vα|α = 1, 2, . . . , d}
as components of a vector operator V = (V1, . . . , Vd)

T, where the superscript T

indicates the transpose operation. Equation (2) can be concisely written as an

equation for the function f : R
+
0 × Ω × V → R defined by f(t, x, ci) := fi(t, x)

∂tf +
1

ε
V · ∇f =

1

ε2
J(f). (5)

As previously indicated, the above equation differs from the hydrodynamic scaling

of the Boltzmann equation, in which the small parameter (the Knudsen number) ε

only appears inversely in front of the collision term.

3.2. The collision operator and the equilibrium distribution

The collision operator J : F → F in (5) will be chosen of relaxation type

J(f) = A[f (eq)(f) − f ],

where A : F → F is a linear mapping, and f (eq) : F → F is the so called equi-

librium distribution. The idea to use collision operators of relaxation type in the
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lattice Boltzmann equation was proposed in previous works [20, 21, 35, 10]. In the

multiple-relaxation-time (MRT) or generalized lattice Boltzmann equation [10], the

operator A is explicitly constructed with an orthonormal basis in F such that A is

diagonalized in this basis. Obviously the MRT approach is more flexible in tun-

ing some physical parameters (e.g., Prandtl number Pr), and has been shown to

be numerically more stable [28] than the popular lattice BGK collision operator

[41, 6], of which A is a multiple of the identity operator. In what follows, we

shall use the multiple-relaxation-time (linear) collision operator A which is essen-

tially determined by certain algebraic properties reflecting the conservation laws

and associated symmetries. To avoid restriction to any particular model, we shall

prescribe the criteria on f (eq) and A which are necessary for the subsequent analy-

sis. Examples for lattice Boltzmann models satisfying these assumptions are given

in the Appendices.

The first assumption is that the velocity set V is symmetric, i.e.,

V = −V (6)

which allows us to define even and odd functions (cf. Appendix A.1). We call a

function even, if f(−ci) = f(ci) and odd if f(−ci) = −f(ci). Second, we assume

the existence of an even function f∗ ∈ F for which the lowest order moments have

the same isotropy structure as the classical Maxwellian

M(v) =
1

(2πθ)
d

2

exp

(

− v2

2c2
s

)

, v ∈ R
d,

where θ = c2
s is the scaled temperature, and the parameter cs =

√
θ is the sound

speed in a gas close to equilibrium described by M(v). Specifically, we assume

〈1, f∗〉 = 1, (7a)

〈1, VαVβf∗〉 = c2
sδαβ , (7b)

〈1, VαVβVγVδf
∗〉 = κc4

s(δαβδγδ + δαγδβδ + δαδδβγ), (7c)

where κ 6= d/(d + 2) [see Eq. (10)]. The condition on κ excludes the D2Q61 model

on a two-dimensional (2D) triangular lattice (without zero velocity) from our con-

siderations for which it is known that the Navier-Stokes equation is obtained only

after redefining the pressure. For the D2Q7 model on a 2D triangular lattice, the

D2Q9 model on a 2D square lattice and the D3Q15 model on a three-dimensional

(3D) cubic lattice, we find κ = 1 in accordance with the values of the Maxwellian

fourth order moments. For the D2Q8 model on a 2D square lattice (without zero

velocity), we find κ = 5/9. Based on f ∗, we define the equilibrium distribution

f (eq)(f) = F (eq)(〈1, f〉 , 〈1,Vf〉),

which, for the sake of convenience, we split into a linear and a quadratic part:

f (eq)(f) = fL(eq)(f) + fQ(eq)(f, f). (8)

1We use notation DdQq for a q-velocity model in d dimensions.
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The linear part is assumed of the form

fL(eq)(f) = FL(eq)(〈1, f〉 , 〈1,Vf〉), F L(eq)(ρ, u) = (ρ + c−2
s u ·V)f∗

so that f∗ = FL(eq)(1,0) and, using (7a), (7b),

〈

1, FL(eq)(ρ, u)
〉

= ρ, (9a)
〈

1,VFL(eq)(ρ, u)
〉

= u, (9b)
〈

1,V⊗VFL(eq)(ρ, u)
〉

= c2
sρ I. (9c)

Here and in the following, I denotes the identity operator. To define the quadratic

part, we first introduce the notations for the symmetric tensor product among two

vectors a and b:

(a ⊗ b)αβ =
1

2
(aαbβ + aβbα),

and the :-product between two matrices A and B

A : B =
d
∑

α,β=1

AαβBαβ .

This allows us to write

fQ(eq)(f, g) = FQ(eq)(〈1,Vf〉 , 〈1,Vg〉), F Q(eq)(u, w) = (u ⊗ w) : Σf∗

where

Σαβ =
1

2κc4
s

[

VαVβ − c2
sδαβ +

κ − 1

(d + 2)κ − d
(|V|2 − dc2

s)δαβ

]

. (10)

Note that the denominator [(d + 2)κ− d] leads to the constraint on the parameter

κ 6= d/(d + 2). The structure of Σ combined with (7b), (7c) yields

〈

1, FQ(eq)(u, w)
〉

= 0, (11a)
〈

1,VFQ(eq)(u, w)
〉

= 0, (11b)
〈

1,V⊗VFQ(eq)(u, w)
〉

= u ⊗ w. (11c)

Next, we list the conditions on the linear operator A : F → F .

(i) 〈Af, g〉 = 〈f, Ag〉, ∀ f, g ∈ F ;

(ii) A is positive semi-definite;

(iii) the even and odd functions form invariant subspaces of A

(iv) {1, v1, . . . , vd} generates the kernel of A;

(v) A(Λf∗) =
κc2

s

ν
Λf∗; where Λ = V ⊗V − 1

d
|V|2I.

To give a specific example, we denote with Q the orthogonal projection onto the

kernel of A and with P := I − Q the projection on the complement. Then A = 1
τ
P
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with τ = ν/(κc2
s) is a particular choice which satisfies all conditions (i) to (v). Since

f (eq)(f)− f is orthogonal to the kernel of A, which is easily checked by computing

the scalar products with the elements of the kernel and observing (9) and (11), we

have for any τ > 0,

1

τ
P[f (eq)(f) − f ] =

1

τ
(Q + P) [f (eq)(f) − f ] =

1

τ
[f (eq)(f) − f ].

Consequently, A = 1
τ
P is equivalent to the so called BGK collision operator J(f) =

1
τ
[f (eq)(f) − f ], which is the most popular LBE model [41, 6, 7, 47] and is only a

special case considered here.

4. ASYMPTOTIC ANALYSIS OF FDVM WITH DIFFUSIVE

SCALING

We shall demonstrate the use of the diffusive scaling to recover the incompressible

Navier-Stokes equations as a limiting system. We begin with

ε2∂tfε + εV · ∇fε = A[f (eq)(fε) − fε] (12)

on a spatially periodic domain Ω. (Note that fε indicates the dependence of f

on the perturbative parameter ε which is a continuous variable. It should not be

confused with fi in which the subscript i is an integer index for discrete velocities.)

Because we only consider the incompressible regime, we specify the following initial

values:

fε|t=0 = F (eq)(1, εū), ∇· ū = 0. (13)

The above initial conditions guarantee that, initially, the density 〈1, fε|t=0〉 = 1

is a constant and that the velocity εū(x) = 〈1,Vfε|t=0〉 is small compared to the

particle speed in the Boltzmann equation which is O(1) as ε → 0.

To investigate the asymptotic behavior of the initial value problem (12) with

initial conditions (13) in the limit of ε → 0, we introduce a regular expansion

fε = f (0) + εf (1) + ε2f (2) + . . .

with f (0) = f∗ = F (eq)(1,0). Note that the initial values for the expansion coeffi-

cients f (k) are

f (1)|t=0 = FL(eq)(0, ū), (14a)

f (2)|t=0 = FQ(eq)(ū, ū), (14b)

f (k)|t=0 = 0, k ≥ 3. (14c)

Substituting the expansion of fε into (12) and setting f (k) = 0 for k < 0, we obtain

in order εk+2, k ≥ −2, the following equation

∂tf
(k) + V · ∇f (k+1) = A

[

fL(eq)(f (k+2)) − f (k+2)

+
∑

n+m=k+2

fQ(eq)(f (n), f (m))

]

. (15)
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By induction, we can determine the expansion coefficients f (1), f (2), . . . from the

above relations. More precisely, Eq. (15) determines f (k+2) in terms of the lower

order coefficients f (l), l ≤ k + 1 which have been obtained in previous steps. The

procedure starts with k = −1, f (−1) = 0 and f (0) = f∗ to obtain f (1). The general

procedure can be explained as follows.

We note that Eq. (15) is of the general form

Az = b, (16)

where the right hand side, b, contains the lower order coefficients:

b = ∂tf
(k) + V · ∇f (k+1) − A

∑

n+m=k+2

fQ(eq)(f (n), f (m)), (17)

and the unknown quantity z is the sum of terms involving f (k+2)

z = fL(eq)(f (k+2)) − f (k+2).

Since the vector space F is finite dimensional, Eq. (16) is a finite linear system and

the solvability theory only involves basic linear algebra. Keeping in mind that A

has a non-trivial kernel, we conclude that the image of A is not the whole space

F . In particular, Eq. (16) can only be solvable under certain restrictions on b. To

formulate these restrictions, we note that if z solves Eq. (16) and if y is any element

of the kernel, then

0 = 〈Ay, z〉 = 〈y, Az〉 = 〈y, b〉

so that b has to be orthogonal to the kernel. In view of Eq. (17), the orthogonality

conditions lead to a constraint on the moments ρ(k) =
〈

1, f (k)
〉

, u(k) =
〈

1,Vf (k)
〉

,

and p(k) =
〈

1,V⊗Vf (k)
〉

:

∂tρ
(k) + ∇· u(k+1) = 0, (18a)

∂tu
(k) + ∇· p(k+1) = 0. (18b)

If these conditions are satisfied, and since b is in the orthogonal complement of the

kernel which is equal to the image of A, we can uniquely determine the solution z of

the system (16) which is orthogonal to the kernel. For notational convenience, we

denote the inverse defined on the image of A by A†, so that z = A†b, or explicitly

f (k+2) = fL(eq)(f (k+2))

+
∑

n+m=k+2

fQ(eq)(f (n), f (m)) − A†
[

∂tf
(k) + V · ∇f (k+1)

]

. (19)

Note that (19) does not specify f (k+2) completely because f (k+2) also appears on the

right hand side as argument of fL(eq). Due to the structure of fL(eq), the remaining

degrees of freedom are ρ(k+2) and u(k+2) which can be fixed using conditions (18a)

and (18b).
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In Appendix A.2 we exploit relations (18a), (18b) and (19) to determine the

leading order coefficients of the expansion. For example,

f (1) = c−2
s u(1) · Vf∗,

f (2) = ρ(2)f∗ + FQ(eq)(u(1), u(1)) − 1

2κc4
s

ν(∇u(1) + [∇u(1)]T) : Λf∗.
(20)

where u(1) and p(2) = c2
sρ

(2) satisfy the incompressible Navier-Stokes equations:

∇·u(1) = 0,

∂tu
(1) + ∇· (u(1) ⊗ u(1)) + ∇p(2) = ν∇

2u(1), (21)

u(1)|t=0 = ū.

with ν resulting from property (v) of the collision operator A. In contrast to

the Chapman-Enskog expansion, the coefficients f (1) and f (2) are obviously given

directly in terms of the solution to the target problem (21).

We remark that the structure of the distribution function f (2) is not compatible

with the initial value (14b) unless ū = 0. Similarly, incompatibilities with the initial

values for the coefficients f (k) with k ≥ 3 are observed if initial time derivatives

of the Navier-Stokes solution do not vanish. This means that a regular expansion

cannot accurately describe the initial evolution, or in other words, we expect an

initial layer if the condition (13) is used (a phenomenon which is well known). This

behavior can be carefully investigated using an initial layer expansion in the time

scale t/ε. It is also possible to avoid the initial layer by modifying the initialization

(13) in such a way that it is compatible with the expansion. A detailed discussion

of this phenomenon is deferred elsewhere [4].

For the higher order coefficients f (3), f (4), . . . we show in Appendix A.2 that

f (k)/f∗ is an even (odd) polynomial with respect to the velocity variable provided

k is even (odd). As a consequence, u(2n) = 0 and ρ(2n+1) = 0 for all n so that the

density and velocity moments of the solution fε of (12) have the following forms:

uε = εu(1) + ε3u(3) + ε5u(5) + . . .

ρε = 1 + ε2ρ(2) + ε4ρ(4) + ε6ρ(6) + . . . .
(22)

The higher order moments u(k+1) and p(k+2) = c2
sρ

(k+2) with indices k = 2n, n ≥ 1

are the solutions of linear Oseen-type equations

∇·u(k+1) = −∂tρ
(k),

∂tu
(k+1) + 2∇· (u(1) ⊗ u(k+1)) + ∇p(k+2) = ν∇

2u(k+1) + B(k),

u(k+1)|t=0 = 0, ρ(k+2)|t=0 = 0,

where the source term B(k) is obtained from lower order moments. We note that

Eq. (22) can be rewritten as:

1

ε
uε − u(1) = ε2u(3) + . . . ,

1

ε2
c2
s(ρε − 1) − p(2) = ε2c2

sρ
(4) + . . . .



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

12 JUNK, KLAR & LUO

This observation can be used as a rigorous argument to show that the rescaled

lattice Boltzmann moments uε/ε and c2
s(ρε − 1)/ε2 converge to the solutions u(1)

and p(2) of the incompressible Navier-Stokes equations [27].

5. ASYMPTOTIC ANALYSIS OF THE LBE

Before we proceed to the analysis of the lattice Boltzmann equation, let us briefly

outline the general framework which is applicable to any finite difference scheme

for differential equations. To formulate the prerequisites of the analysis let us as-

sume that the finite difference equations are implemented in the form of a computer

program. The program should depend on a parameter ε (grid spacing) which deter-

mines the total number N(ε) of equations for the unknown values ŵ1, . . . , ŵN(ε).

The parameter N(ε) may explicitly appear in the equations. To incorporate data

like boundary conditions or source terms and to display the results, the program

includes a certain scaling which relates unknowns ŵi and data values d̂i to points

yi(ε) in the interested domain. In particular, for decreasing ε, the points yi(ε) and

the discrete solution consisting of all pairs (yi(ε), ŵi) become increasingly dense. If

this numerical solution appears to be smooth, then it is then natural to assume that

ŵi can be described by a smooth function, for example, in the form of a regular

expansion

ŵi = w(0)(yi(ε)) + εw(1)(yi(ε)) + ε2w(2)(yi(ε)) + . . . (23)

with smooth functions {w(k)}. This brief introduction already summarizes all the

requirements (the difference equations and the scaling) as well as a first approach on

how to analyze the result, namely by a regular expansion. Note that no knowledge

of the origin of the discrete equations is required. If we substitute the expansion

(23) into the difference equations, which define the algorithm, and Taylor-expand

the difference equations, we can derive differential equations for the expansion co-

efficients {w(k)}. If this is accomplished, one can conclude that, in the leading

order, the discrete values ŵi approximate point values of the solution w(0) to the

leading order differential equation. The accuracy of the approximation can be ob-

tained by investigating the equations for the higher order coefficients w(1), w(2),

. . . . If the equation satisfied by w(1) has non-trivial general solutions, the approx-

imation is only first order accurate, but if w(1) can be shown to be zero, then the

approximation is at least of second order in ε. In general if the leading n terms

{w(k), k = 1, 2, . . . , n} vanish, then then approximation is at least of (n + 1)-th

order. Since the first non-zero higher order coefficient is the leading order error

contribution, an analysis of the equation for this coefficient provides an indication

of the size of the error and its dependence on the solution w(0).

If the result of the finite difference scheme shows irregular behavior like inte-

rior or boundary layers (e.g., [8]), grid oscillations or other phenomena which vary

significantly on the grid scale, then the assumption of a regular expansion is inad-

equate and will result in a contradiction with the assumed smoothness of one of

the coefficients, thus predicting phenomena on the grid scale up to a certain order.

In this case, one can either use irregular expansions to analyze the non-smooth

phenomenon in detail (e.g., [26]), or identify the inconsistencies and then modify

the scheme to remove them.



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

ASYMPTOTIC ANALYSIS OF LBE 13

After this introductory overture, we now apply this approach to our particular

case, the lattice Boltzmann equation. The data of the problem are given by a

smooth, divergence free initial velocity field ū : R
d → R

d which is periodic, and

a source term g : R
+
0 × R

d × V → R which is also smooth, periodic in space x,

and with odd symmetry in the third argument. The odd symmetry assures that

g leads to a momentum flux but not to an immediate mass flux. The unknowns

in the lattice Boltzmann equation are labeled by (n, j, v) ∈ N0 × X × V where n

indicates the time step, j ∈ X ⊂ R
d a lattice point and v ∈ V a discrete velocity.

Using these notations, we introduce the following scaling

(n, j, v) → (tn(ε), xj(ε), v) = (ε2n, εj, v) ∈ R
+
0 × R

d × V, ε > 0

which associates time-space-velocity points to the grid labels. Note that this scaling

incorporates the relation ∆t = ε2 = ∆x2 between space and time increments which

reflects the diffusive scaling and leads to a physically interesting limiting behavior

in the case of the finite discrete-velocity model, as discussed in Sec. 4.

The lattice Boltzmann equation we consider, has the form

f̂(n + 1, j + v, v) − f̂(n, j, v) = A[f (eq)(f̂) − f̂ ](n, j, v)

+ λĝ(n, j, v) + (1 − λ)ĝ(n + 1, j + v, v) (24)

with the initialization

f̂(0, j, ·) = F (eq)

(

1, εū(xj(ε))

)

(25)

and the discrete source term

ĝ(n, j, v) = ε3g(tn(ε), xj(ε), v). (26)

The parameter λ in (24) should satisfy 0 ≤ λ ≤ 1. We remark that the low Mach

number assumption is built into (25) because we initialize with a velocity εū of

order ε and because we make sure that the increase of velocity during each time

step is of the order ε∆t = ε3 by scaling the force term g with an appropriate factor.

Similar to our considerations in Sec. 4, we assume a regular expansion of the

following form

f̂(n, j, v) = f∗(v) + εf (1)(tn(ε), xj(ε), v) + ε2f (2)(tn(ε), xj(ε), v) + . . . (27)

with smooth coefficient functions f (m) which are periodic in the second argument.

Note that the moments

ρ(m) =
〈

1, f (m)
〉

, u(m) =
〈

1,Vf (m)
〉

, p(m) =
〈

1,V⊗Vf (m)
〉

inherit the periodicity and smoothness from the coefficients f (m).

From hereafter, the analysis is straightforward: the expansion is inserted into

Eq. (24) and Taylor expansion is employed to transform difference expressions into

differential operators.
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We start by substituting Eq. (27) into the left hand side of (24). This leads to

expressions of the following form:

f (m)(tn + ε2, xj + εv, v) − f (m)(tn, xj , v) = ε(v · ∇)f (m)

+ ε2(∂t + (v · ∇)2/2)f (m) + ε3(v · ∇)(∂t + (v · ∇)2/6)f (m) + . . .

where the right hand side is evaluated at (tn, xj , v) and the argument ε of tn and

xj is suppressed for brevity. Generalizing this expansion to arbitrary orders, we

formally obtain an infinite series:

f (m)(tn + ε2, xj + εv, v) − f (m)(tn, xj , v) =

∞
∑

r=0

εrDr(∂t, v · ∇)f (m)(tn, xj , v),

where Dr(τ, σ) are polynomials, specifically,

D0(τ, σ) = 0, D1(τ, σ) = σ, D2(τ, σ) = τ + σ2/2, D3(τ, σ) = σ(τ + σ2/6),

or more generally

Dr(τ, σ) =
∑

2a+b=r

τaσb

a!b!
, r ≥ 1.

The important observation is that, if r is even, Dr(τ, σ) is an even polynomial in σ

because (2a + b) can be even only if b is even. Conversely, Dr(τ, σ) is odd in σ if r

is odd.

With definition (26), an expansion of the source term on the right hand side of

Eq. (24) yields similarly

λĝ(n, j, v) + (1 − λ)ĝ(n + 1, j + v, v) =

∞
∑

m=0

εmg(m)(tn, xj , v)

with

g(0) = g(1) = g(2) = 0, g(3) = g, g(3+r) = (1 − λ)Dr(∂t,V · ∇)g, r ≥ 1.

Note that, as a function of v, g(m) is odd (even) if m is odd (even) because g is

assumed to be odd and Dr(∂t,V ·∇) is an odd (even) polynomial in V for an odd

(even) r.

Since the collision operator acts locally in time and space, no further Taylor

expansion is required and only a shuffling of orders appears because of the quadratic

nonlinearity. Consequently, we obtain in order εk+2 for k ≥ −2 (cf. Sec. 4 for the

choice of k):

∑

m+r=k+2

Dr(∂t,V · ∇)f (m) − g(k+2)

= A

[

fL(eq)(f (k+2)) − f (k+2) +
∑

m+r=k+2

fQ(eq)(f (r), f (m))

]

. (28)
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We have omitted some technical details in deriving (28), i.e., the fact that all Taylor

expansions above are carried out around the discrete points (tn(ε), xj(ε), v) which

are ε-dependent. In order to obtain the leading order equation (28) at an arbitrary

point (t, x, v), we have to choose a grid sequence based on (εm)m∈N with εm → 0

and a sequence of labels (nm, jm, v) such that

(tnm
(εm), xj

m
(εm), v) −−−−→

m→∞
(t, x, v).

Once the leading order condition is obtained, it can be removed from the expansion

and after division by ε, the next condition (28) can be constructed in the same way.

For further details, we refer to [26].

To work out the similarities of (28) to the expression (15), we note that

∑

m+r=k+2

Dr(∂t,V · ∇)f (m) = (V · ∇)f (k+1) + ∂tf
(k) +

1

2
(V · ∇)2f (k) + . . .

Introducing the term

L(k+2) = g(k+2) −
∑

m+r=k+2
m<k

Dr(∂t,V · ∇)f (m) (29)

we thus have

∑

m+r=k+2

Dr(∂t,V · ∇)f (m) − g(k+2) = ∂tf
(k) + (V · ∇)f (k+1)

+
1

2
(V · ∇)2f (k) − L(k+2).

so that the left hand side of (28) differs from the one of (15) only in the terms

(V · ∇)2f (k)/2 and L(k+2). In particular, we can use the same analysis as for the

FDVM case and mainly have to track the influence of the additional terms. For

example, the solvability conditions (18a) and (18b) are now of the form

∂tρ
(k) + ∇· u(k+1) +

1

2
∇ ⊗ ∇ : p(k) =

〈

1, L(k+2)
〉

, (30a)

∂tu
(k) + ∇· p(k+1) +

1

2

〈

1,V(V · ∇)2f (k)
〉

=
〈

1,VL(k+2)
〉

, (30b)

and A† applied to (28) yields the analog of (19)

f (k+2) = fL(eq)(f (k+2)) +
∑

m+r=k+2

fQ(eq)(f (r), f (m))

− A†
[

∂tf
(k) + V · ∇f (k+1) +

1

2
(V · ∇)2f (k)

]

+ A†L(k+2). (31)

The details of the analysis are given in Appendix A.3. For the expansion coefficients

f (1) and f (2) we find the same structure (20) as in the case of the FDVM. However,

the moments u(1) and p(2) = c2
sρ

(2) now satisfy the incompressible Navier-Stokes
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equation with an additional force field G = 〈1,Vg〉 and the well known viscosity

modification

∇·u(1) = 0,

∂tu
(1) + ∇· (u(1) ⊗ u(1)) + ∇p(2) = (ν − 1

2
κc2

s)∇
2u(1) + G,

u(1)|t=0 = ū.

So far, the analysis shows that the discrete density and velocity values

ρ̂(n, j) =
〈

1, f̂(n, j, ·)
〉

, û(n, j) =
〈

1,Vf̂(n, j, ·)
〉

are, in leading order, given by a solution of the Navier-Stokes equation

ρ̂(n, j) = 1 + ε2c−2
s p(2)(tn(ε), xj(ε)) + . . . ,

û(n, j) = εu(1)(tn(ε), xj(ε)) + . . . .

The order of accuracy follows from the investigation of higher order terms. As in

the case of the FDVM, the coefficients f (m) are odd (even) if the index m is odd

(even) so that the moments u(2n) and ρ(2n+1) vanish for all n. The remaining fields

u(k+1) and ρ(k+2) with even k ≥ 2 are solutions to Oseen-type problems (in analogy

to the FDVM case)

∇·u(k+1) =
〈

1, L(k+2)
〉

− ∂tρ
(k) − 1

2
∇ ⊗ ∇ : p(k),

∂tu
(k+1) + 2∇· (u(1) ⊗ u(k+1)) + ∇p(k+2) =

(

ν − 1

2
κc2

s

)

∇
2u(k+1) + C(k),

u(k+1)|t=0 = 0, ρ(k+2)|t=0 = 0,

where C(k) depends on lower order coefficients and is, in general, non-zero. Hence

ρ(4) and u(3) will typically not vanish. In terms of consistency, this result implies

that the numerical values ρ̂(n, j) and û(n, j) yield at least second order accurate

approximations of the Navier-Stokes solution because

1

ε2
c2
s(ρ̂ − 1) − p(2) = ε2c2

sp
(4) + . . . ,

1

ε
û − u(1) = ε2u(3) + . . . .

In these relations, the discrete quantities are evaluated at (n, j) and the continuous

coefficients at the corresponding nodes (tn(ε), xj(ε)). Note that, in view of the

scaling rule ∆t = ∆x2 = ε2, second order accuracy with respect to ε means only

first order accuracy in time because the time step is ε2. However, the accuracy in

space is second order.

We conclude with a comment on the choice of g. If a prescribed field G(t, x)

should appear as force term in the Navier-Stokes equation, one can choose

g(t, x, v) = c−2
s v · G(t, x)f∗(v) (32)
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because in this case

〈1,Vg〉 = c−2
s 〈1,V⊗Vf∗〉G = G.

We also note that the convex combination parameter λ in Eq. (24) plays no role

in leading order. Its effects on the error will be discussed in the following section.

An expression somewhat different from Eq. (32) has been introduced in [30, 31, 34]

where a forcing term is derived based on a Grad-expansion

ĝ(n, j, v) =
ε3

c2
s

(

G(tn, xj) · (v − û(n, j)) + (G(tn, xj) · v)(û(n, j) · v))

)

f∗(v).

Note that this function does not have the odd symmetry required in our analysis.

However, since û is only of order ε, the even contributions start in order ε4

ĝ =
ε3

c2
s

G · Vf∗ +
ε4

c2
s

(G · u(1) + (G · V)(u(1) ·V))f∗ + O(ε5)

which is just sufficient to show that u(1) and ρ(2) are given by a Navier-Stokes

solution and that u(2) = 0 and ρ(3) = 0. Hence, this force term also leads to a

second order scheme.

6. 2D TAYLOR-VORTEX FLOW: A TEST CASE

As we have shown in the previous section, the asymptotic analysis can be used

to verify consistency of a finite difference scheme and to predict the consistency

order. In this section, we would like to show that it also yields correct information

about the leading order error term. Such information is valuable if one intends to

improve the order of the method by removing the leading order error. The need for

improvements is obvious in flow problems on non-periodic domains where boundary

conditions like the bounce-back conditions typically reduce the consistency of the

pressure to first or even zero order in lattice BGK scheme (cf. [25]). In contrast, the

situation on periodic domains is rather academical. Nevertheless, the example is

useful to show that the leading order error is correctly predicted by the asymptotic

analysis and this is our main motivation here.

We only remark in passing that a higher order method for the periodic problem

can be obtained using the classical method of Richardson extrapolation. If the

numerical solution û(n, j)/ε, p̂(n, j) = c2
s(ρ̂(n, j)− 1)/ε2 can be expressed in terms

of regular expansions with ε-independent coefficients

p̂(n, j) = p(2)(tn, xj) + ε2p(4)(tn, xj) + ε4p(6)(tn, xj) + . . . ,

1

ε
û(n, j) = u(1)(tn, xj) + ε2u(3)(tn, xj) + ε4u(5)(tn, xj) + . . . ,

then u(3) and p(4) can be removed by combining the solutions obtained on two

different grids. Taking, for example, the solution based on grid-size ε with weight

−1 and the solution for the finer grid ε/2 with factor 4, the leading error terms drops

out upon addition and subsequent division of the result by 3 yields the Navier-Stokes

solution up to fourth order. To numerically support this consideration, we consider
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the 2D Taylor-vortex flow in a periodic domain as a test case:

ū1(t, x) = −1

a
cos(ax1) sin(bx2) exp(−ν̃(a2 + b2)t),

ū2(t, x) =
1

b
sin(ax1) cos(bx2) exp(−ν̃(a2 + b2)t),

p̄(t, x) = −1

4

[

a−2 cos(2ax1) + b−2 cos(2bx2)
]

exp(−2ν̃(a2 + b2)t),

which a = b = 2π. To avoid initial layers which introduce a temporal oscillation on a

faster time scale and lead to ε-dependent expansion coefficients (thus contradicting

the assumption underlying the Richardson procedure), we use a modification

u(t, x) = α(t)ū(t, x), p(t, x) = α(t)p̄(t, x)

with a smooth function α satisfying α(0) = 0 (to guarantee that initial layers are

suppressed in the ε orders considered here, we choose α(t) = t3). It is easy to check

that these fields satisfy the Navier-Stokes equation with zero initial values, if we

introduce the force term

G = α′ū + (α − 1)α∇· (ū ⊗ ū).

The force term G is incorporated into the lattice Boltzmann evolution using the

form (32) and λ = 1. As collision operator we take the BGK approximation with

relaxation parameter τ = ν/(κc2
s). The corresponding lattice Boltzmann scheme

approximates solutions to the Navier-Stokes equation (A.16) with effective viscosity

ν̃ = ν − κc2
s/2 which we use in the definition of the functions ū and p̄. In what

follows, we set ν̃ = 0.01.

Calculating the solution on 10 × 10, 20 × 20, 40 × 40 and 80 × 80 grids and

plotting the numerical error in pressure and velocity in a log-log plot versus the

grid size ε at t = 0.5, the increase of the order manifests itself in an increased slope

of the Richardson solution, as shown in Fig. 1. Note that the Richardson procedure

requires two grids for a single solution so that only the errors for 20× 20, 40× 40,

and 80 × 80 grids are presented. A second remark concerns the normalization of

the pressure. Since the pressure in the Navier-Stokes equation is only unique up

to constants, we generally face the problem that the pressure of an exact solution

may have a different normalization than the numerical pressure. In our example

above, this could lead to a second order behavior of the pressure error in connection

with the Richardson procedure simply because the difference of the two arbitrary

pressure constants remains at second order. To remove this arbitrary constant, we

subtract the arithmetic grid average from the final pressure approximation instead

of the constant value one and compare with the exact pressure where the grid

average is also subtracted.

Another consequence which follows simply from the existence of the regular ex-

pansion is the accuracy of finite difference derivative approximations of the solution.

Consider, for example, the approximation of the vorticity ω(1) = ∂1u
(1)
2 − ∂2u

(1)
1

which is not available directly as a velocity moment of the kinetic variables. If

we approximate ω(1) by central differences (division by ε2 is needed because û/ε
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FIG. 1. Error behavior of velocity (left) and pressure (right) using the LBE (dashed) and
the LBE with Richardson extrapolation (solid). The least-square slopes are 1.98 and 4.07 for the
velocity and 1.96 and 4.04 for the pressure, respectively.

approximates u(1)):

ω̂(n, j) =
1

2ε2
[û2(n, j + e1) − û2(n, j − e1)] −

1

2ε2
[û1(n, j + e2) − û1(n, j − e2)] ,

the question concerning the accuracy of ω̂ arises. Inserting the expansion for û into

the expression for ω̂ and performing a Taylor expansion, we find, up to terms of

order ε4,

ω̂ = ω(1) +
ε2

6

(

∂3
1u

(1)
2 − ∂3

2u
(1)
1

)

+ ε2ω(3) + O(ε4)

where ω(3) is the vorticity corresponding to the velocity field u(3). We see that

ω̂ −ω(1) = O(ε2), i.e., the finite difference approximation is second order accurate.

The above argument breaks down if the field u(3) is not ε-independent (e.g., if u(3)

varies in order one between two grid points). Then the discrete derivative may

be of order 1/ε which would reduce the accuracy to order one. However, in the

periodic case considered here, this is not the case and thus we observe second order

accuracy. For the test problem above, the numerical vorticity ω̂ is compared with

the exact one ω(1) at t = 0.5 (using λ = 1) in Fig. 2.

While the Richardson procedure and the statement about the accuracy of finite

difference derivative approximations requires only the existence of a regular expan-

sion, we would also like to show that the structure of the coefficients is correctly

given in the expansion. To demonstrate this, we concentrate on the role of the

parameter λ in our LB scheme. As we have seen in the previous section, λ does

not affect the behavior of the scheme in the leading order. However, two numerical

solutions calculated with two different values λ1 and λ2 will not exhibit the same

numerical error. To predict the difference δû of the velocity fields and δρ̂ of the

densities, we consider the equation for the leading order errors u(3) and ρ(4) in

Appendix A.4. It turns out that the difference of the leading error terms is given

by

δu(3) = w − δλG, δρ(4) = q/c2
s



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

20 JUNK, KLAR & LUO

−2 −1.5 −1

−3

−2

−1

PSfrag replacements

lg ε
lg
‖ω̂

−
ω

(1
)
‖

FIG. 2. The vorticity error versus ε. The least-square slope is 1.98.

where δλ = λ1 − λ2 and w and q solve

∇·w = 0,

∂tw + 2∇· (u(1) ⊗ w) + ∇q =

(

ν − 1

2
κc2

s

)

∇
2w + 2δλ∇· (u(1) ⊗ G),

w|t=0 = 0, q|t=0 = 0,

To verify whether this prediction can be numerically recovered, we perform the

following test: we run the LB scheme (24) for the test case presented above (the

modified periodic vortex) with two different values for λ (e.g., λ1 = 0.1 and λ2 =

0.7). The difference of the two velocity fields δû should then be equal to ε3δu(3) in

leading order. If the prediction is correct, the field

δû − ε3ŵ + ε3δλG (33)

should then be of the order ε5. Here, ŵ is any second order accurate solution of

the w problem. We have calculated ŵ using the LB algorithm (24) with a modified

equilibrium distribution where the quadratic part F Q(eq)(u, u) is appropriately re-

placed by FQ(eq)(u(1), w) with the exact solution u(1) of the Navier-Stokes problem.

Similarly, the corrected difference of densities

δρ̂ − ε4q̂/c2
s (34)

should be of order ε6. In Fig. 3, the expressions (33) and (34) computed from

several grids is plotted versus the grid size in log-log scales. The slopes of the least

squares fitted error curve are 4.93 for velocity and 6.65 for pressure which reflects

the prediction of our asymptotic analysis.

7. CONCLUSIONS

In this article we present a general methodology to conduct an order-by-order

consistency analysis of the lattice Boltzmann equation. Our approach is based on
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FIG. 3. Left: ε-dependence of the maximum δu(3) (dashed) and the maximum δw :=
ŵ − δλG (solid). The least-square slopes are 2.84 and 4.93. Right: maximum of δρ(4) (dashed)
and of δρ′(4) := δρ(4)

− ε4q̂ (solid). The least-square slopes are 3.98 and 6.65.

a direct asymptotic analysis of finite difference schemes which is fairly general and

has been widely used in numerical analysis. It turns out that the basic steps in the

asymptotic expansion are parallel to the approach of Sone [43, 44] for the continuous

Boltzmann equation and we highlight this particular relation by explicitly pointing

out the connection between the LBE and a continuous FDVM. We demonstrate that

the asymptotic analysis yields details about the accuracy of the lattice Boltzmann

method and the structure of the error. The methodology presented here can be

readily extended to analyze various boundary conditions, coupling conditions, and

initial layers in the LBE simulations.

We would like to point out that the asymptotic analysis presented here in sev-

eral aspects differs from the traditional Chapman-Enskog (CE) treatment of the

lattice Boltzmann equation, which leads to the compressible Navier-Stokes equa-

tions. First, our approach uses a single time scale as opposed to the two-time-scale

(multiple-time-scale in general) expansion in the CE analysis. Although it is easy

to use two time-scales in the asymptotic analysis by simply setting

f̂(n, j, v) = f (0)(εn, ε2n, εj, v) + εf (1)(εn, ε2n, εj, v) + ε2f (2)(εn, ε2n, εj, v) + . . . ,

we do not do so for the following reason. The lattice Boltzmann equation is in-

tended to solve the incompressible Navier-Stokes equation, therefore the relevant

time scale is the slower one tn = ε2n. Within the context of incompressible Navier-

Stokes equation, effects which occur in the faster time scale εn = tn/ε (such as

sound waves) are merely numerical effects. Were these effects indeed relevant in

the leading orders of the flow velocity and pressure, then the LBE method is no

longer valid for the purpose of simulating the incompressible Navier-Stokes equa-

tions and they are in fact beyond the realm of the incompressible Navier-Stokes

equations. Hence, the validity of an expansion regular in the leading orders for the

LBE solutions is equivalent to the validity of the LBE approximation for the smooth

and incompressible Navier-Stokes solutions. In the same token, we also conclude

that Knudsen-number effects observed in the LBE simulations are merely numerical
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artifacts, because the effective Knudsen number Kn := ε is coupled with the dis-

cretization, i.e., ε2 = ∆x2 = ∆t, so that Knudsen-number effects are only observed

on the grid scale (e.g., [8]). It is therefore incorrect to perceive these numerical

artifacts in the LBE simulations as physical effects (e.g., [32]) because, by its very

nature, the lattice Boltzmann equation cannot capture the Knudsen layer. To ana-

lyze numerical Knudsen-number effects, a singular asymptotic expansion should be

used [25]. We should stress that the ultimate goal of such an analysis is to mitigate

artificial Knudsen-number effects by making them higher order one so to improve

the smoothness of the numerical solution.

The second and significant difference between our approach and the CE analysis

is in the structure of the expansion. In the CE analysis, it is assumed that the

numerical solution can be written as

f̂ = F (eq)(ρ, u) + εg(1) + ε2g(2) + . . . ,

where ρ, u and g(k) are smooth functions which can be evaluated at the space-time

grid points (n, j). Furthermore, the functions g(k), k = 1, 2, . . ., are assumed to

have no contribution to the conserved quantities (ρ and u here). Consequently,

in the CE approach one must assume the existence of smooth functions ρ and u

interpolating the averages ρ̂ and û of the LB solutions at the grid points. (A similar

assumption forms the basis of the modified equation analysis which is criticized

in [16, 5].) There are two undesirable consequences of this assumption. First,

the smoothness assumption is generally not valid because the numerical solution

typically exhibits irregular or non-smooth behavior in some order of ε. In our

analysis this is not crucial because it is only the leading order quantities which are

required to be smooth while higher order quantities may be irregular. And second,

the smoothness assumption relies on the fact that the CE analysis is based on a given

partial differential equation (the Boltzmann equation) for f from which a set of

partial differential equations for the conserved quantities are derived subsequently.

In the LBE method, ρ and u are determined by a difference equation, and there is

no PDE to be satisfied by ρ and u exactly. It is only possible to show that ρ and u

approximately satisfy certain PDEs in which the error terms depending on higher

order derivatives of ρ and u. By directly tackling the discrete lattice Boltzmann

equation, our approach provides an order-by-order information about the structure

of the LBE solution. In particular, the underlying incompressible Navier-Stokes

problem emerges in this description so that it is straightforward to quantify the

deviation from the exact solution of a target problem.

Apart from these conceptual differences, there is nevertheless a close connection

between the asymptotic analysis and CE analysis. If in CE analysis the (hypothet-

ical) functions ρ and u are expanded in terms of ε, one recovers equations for the

expansion coefficients which are precisely those obtained directly with the asymp-

totic analysis. Conversely, a truncated expansion ũ = u0+εu1+· · ·+εmum is given

based on the coefficients constructed from the asymptotic analysis, then ũ differs

from the CE moment u at most in the order εm+1, provided that the function u

exists within the CE analysis.

Finally, we hope that with the new analytical method we can close a gap in

the consistency analysis of the lattice Boltzmann equation. We also realize that
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the method used in here can be applied to analyze other features like boundary

conditions and initial layers in the lattice Boltzmann simulations. These are the

subjects of our future study [4].
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APPENDIX A

ASYMPTOTIC ANALYSIS OF THE LBE

A.1. PRELIMINARY REMARKS

The analysis of both the FDVM and the LBE depends on certain algebraic prop-

erties of the collision operator. We summarize the key properties in a form which

is convenient for the subsequent asymptotic expansion.

As before, we denote the orthogonal projection onto the kernel of A by Q so that

the corresponding projector onto the orthogonal complement is

P := I − Q.

That the mapping A is positive definite on the orthogonal complement of QF allows

us to define its pseudo-inverse

A† : =
(

A|P(F)

)−1
P.

Note that A† : F → F has the property

AA† = P

so that A†b solves the problem Az = b, if Qb = 0. This argument has been used

in Sec. 4. The converse relation A†A = P yields together with Q[Λf∗] = 0 for the

even function f∗, of which the lowest order moments have the same isotropy as the

Maxwellian, and property (v)

A†(Λf∗) =
ν

κc2
s

Λf∗. (A.1)

The assumed symmetry V = −V of the velocity set implies that odd and even

functions are orthogonal to each other. Introducing the odd and even projections

for f ∈ F :

(S+f)(v) =
1

2
[f(v) + f(−v)], (S−f)(v) =

1

2
[f(v) − f(−v)],

we clearly have

〈

S−f, 1
〉

=
1

2

(

∑

c∈V

f(c) −
∑

c∈−V

f(c)

)

= 0
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so that
〈

S−f, S+g
〉

=
〈

S−(fS+g), 1
〉

= 0, ∀f, g ∈ F .

Using the projector S−, the property of a function f to be even can be formulated

as S−f = 0. For example, we have

S−fQ(eq)(f, g) = 0, ∀f, g ∈ F , (A.2)

Also property (iii) of the collision operator can be restated as AS+ = S+A. One

can also verify that Q commutes with S+ so that the same carries over to P. Since

S− = I − S+, all the operators, A, A†, Q and P commute with both the odd and

even projections S− and S+.

A.2. ANALYSIS OF THE FDVM

We exploit relations (18a), (18b) and (19) to determine the leading order coeffi-

cients f (1), f (2) and f (3). Starting with k = −1 and keeping in mind that f (k) = 0

for k < 0, we conclude f (1) = fL(eq)(f (1)) from (19), i.e.,

f (1) =
(

ρ(1) + c−2
s u(1) · V

)

f∗. (A.3)

Equations (18a) and (18b) with k = 0 can further determine the moments ρ(1) and

u(1). Because ρ(0) = 1 and u(0) = 0, and
〈

1,V ⊗Vf (1)
〉

= c2
sρ

(1)I, then

∇·u(1) = 0, ∇ρ(1) = 0. (A.4)

With k = 1, equations (18a) and (18b) will fully determine ρ(1) and u(1) as the

following. Based on equation (18a) and the fact that ρ(1) is x-independent, the

application of the divergence theorem to the integration over the periodic domain

Ω leads to

dρ(1)

dt
=

(
∫

Ω

dx

)−1 ∫

Ω

∇· u(2) dx = 0.

Since ρ(1) = 0 initially [cf. equation (14a)], we conclude that ρ(1) = 0 for all time

t ≥ 0. The final determination of u(1) follows from (18b) with k = 1. However, in

this equation, we need a scalar product involving the second expansion coefficient

f (2) which we obtain again from (19)

f (2) = fL(eq)(f (2)) + fQ(eq)(f (1), f (1)) − A†(V · ∇f (1)). (A.5)

Using (A.3) with ρ1 = 0, we find

A†(V · ∇f (1)) = c−2
s ∇u(1) : A†(V ⊗Vf∗). (A.6)

Since V ⊗ V is a symmetric matrix, we can replace the Jacobian ∇u(1) by its

symmetric part S[u(1)]/2 without changing the :-product, where

S(1) := S[u(1)] := ∇u(1) + [∇u(1)]T.
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Because the trace of S(1) is 2∇ ·u(1), which vanishes due to the incompressibility

condition, V ⊗V can be replaced by its traceless part

Λ := V ⊗V− 1

d
V·V I,

and therefore,

A†(V · ∇f (1)) =
1

2c2
s

S(1) : A†Λf∗.

Property (A.1) now implies that

1

2c2
s

A†Λf∗ =
ν

2c4
sκ

Λf∗.

Thus, (A.5) turns into

f (2) = fL(eq)(f (2)) + fQ(eq)(f (1), f (1)) − 1

2κc4
s

νS(1) : Λf∗. (A.7)

Now we can evaluate the moment p(2) =
〈

1,V⊗Vf (2)
〉

required in (18b) with

k = 1. According to (9) and (11), we have

〈

1,V⊗V[fL(eq)(f (2)) + fQ(eq)(f (1), f (1))]
〉

= u(1) ⊗ u(1) + c2
sρ

(2)I,

and because of (7c)

〈1, VαVβΛγδf
∗〉 = −κc4

s

(

2

d
δαβδγδ − δαγδβδ − δαδδβγ

)

which implies, in connection with tr(S(1)) = 2∇·u(1) = 0,

〈

1, VαVβ

ν

2κc4
s

(Λf∗) : S(1)

〉

= νS
(1)
αβ .

Altogether, the required moment is

p(2) = u(1) ⊗ u(1) + c2
sρ

(2)I − νS(1).

By setting p(2) = c2
sρ

(2) and k = 1 in (18b), we reach the result:

∇·u(1) = 0,

∂tu
(1) + ∇· (u(1) ⊗ u(1)) + ∇p(2) = ν∇

2u(1), (A.8)

u(1)|t=0 = ū.

Hence, the leading order contribution of the velocity

uε = 〈1,Vfε〉 = εu(1) + . . .

satisfies the incompressible Navier-Stokes equation and the first non-trivial order

of the density

ρε = 〈1, fε〉 = 1 + c−2
s ε2p(2) + . . .



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

26 JUNK, KLAR & LUO

is determined as the associated pressure.

In the next step, we show that u(2) = 0 and ρ(3) vanish identically which relies

only on the algebraic behavior of the Boltzmann equation under odd/even projec-

tions. Actually, the observation can be generalized to the statement

u(2m) = 0, ρ(2m+1) = 0, m ≥ 0. (A.9)

We observe that f (0) = f∗ is an even function and that f (1) = c−2
s u(1) · Vf∗ is an

odd function. In an induction argument, we therefore assume that, for k ≥ 0 being

an even index, the coefficient f (k) is an even and f (k+1) an odd function. Applying

the odd projection S− to (19), observing (A.2), and noting that ∂t and A† commute

with S−, and that S−(V · ∇) = (V · ∇)S+, we obtain

S−f (k+2) = S−fL(eq)(f (k+2)) − A†(∂tS
−f (k) + V · ∇S+f (k+1)).

Due to the induction assumption, S−f (k) = S+f (k+1) = 0. Taking the structure of

fL(eq) into account, we arrive at

S−f (k+2) = c−2
s u(k+2) · Vf∗.

Similarly, an application of S+ to (19) with k replaced by k + 1 leads to a drastic

simplification. Now, the quadratic terms vanish because the summation condition

n + m = k + 3 implies that exactly one of the two indexes has to be even, and the

distribution function with an even index has a vanishing average velocity. Only for

the even index k + 2 we do not know yet whether u(k+2) = 0. Hence,

S+f (k+3) = ρ(k+3)f∗ + 2fQ(eq)(f (1), f (k+2)) − A†(V · ∇)S−f (k+2). (A.10)

To fix the unknown coefficients u(k+2) and ρ(k+3), we use again relations (18a)

and (18b). Since ρ(k+1) = 0, equation (18a) with k replaced by k + 1 yields the

incompressibility condition

∇· u(k+2) = 0.

Next, we use equation (18b) with k replaced by k + 2. The required tensor

p(k+3) =
〈

1,V⊗Vf (k+3)
〉

=
〈

1,V⊗VS+f (k+3)
〉

has essentially the same structure as p(2) because S+f (k+3) in (A.10) is structurally

similar to f (2) in (A.5). Using similar arguments as in connection with p(2), we

thus obtain

p(k+3) = 2u(1) ⊗ u(k+2) + c2
sρ

(k+3)I − νS(k+2)

where S(k+2) = [∇u(k+2)] + [∇u(k+2)]T. Setting p(k+3) = c2
sρ

(k+3), we find a

homogeneous Oseen problem

∇·u(k+2) = 0,

∂tu
(k+2) + 2∇· (u(1) ⊗ u(k+2)) + ∇p(k+3) = ν∇

2u(k+2),

u(k+2)|t=0 = 0, ρ(k+3)|t=0 = 0,
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which only has the zero solution so that (A.9) follows.

Finally, we would like to discuss the structure of the equations for the non-trivial

coefficients u(k+1) and ρ(k+2) with even index k ≥ 2. The first observation is that

u(k+1) is generally not an incompressible field because (18a) implies

∇· u(k+1) = −∂tρ
(k). (A.11)

(For example, the divergence of u(3) is given by the temporal variation of the

Navier-Stokes pressure p(2) = c2
sρ

(2) in (A.8) which usually depends on space and

time.) The time evolution of u(k+1) is governed by (18b) with k replaced by k + 1,

for which we need p(k+2) =
〈

1,V⊗Vf (k+2)
〉

. The explicit structure of p(k+2) is

increasingly complicated for increasing k because it involves derivatives of the co-

efficients u(1), . . . , u(k−1), and ρ(2), . . . , ρ(k), as well as multiple applications of A†

which we cannot simplify in our general approach where we minimized our assump-

tions on A (to simplify the appearing expressions, the action of A on functions of

the form Rf∗, where R is a polynomial in v, should be specified which is, of course,

possible for a given collision operator). In the following, we will therefore combine

all terms in a function b(k) which are independent of u(k+1) and ρ(k+2) in (19). In

particular, the only contribution of A†(V · ∇f (k+1)) which is not absorbed in b(k)

is the term c−2
s ∇u(k+1) : A†(V ⊗ Vf∗). Applying the same simplifications as in

the case of equation (A.6), we arrive at

1

c2
s

∇u(k+1) : A†(V⊗Vf∗) =
ν

2κc4
s

S(k+1) : Λf∗ +
1

dc2
s

∇·u(k+1)A†(|V|2f∗), (A.12)

where S(k+1) = [∇u(k+1)] + [∇u(k+1)]T. Note that ∇ · u(k+1) generally does not

vanish, but this fact will not change the nature of the resulting equation because,

Eq. (A.11) shows that ∇·u(k+1) is a known quantity depending on the lower order

coefficient ∂tρ
(k). In particular, we can absorb the second term on the right hand

side of (A.12) into the function b(k) and thus have

f (k+2) = ρ(k+2)f∗ + 2fQ(eq)(f (1), f (k+1)) − ν

2κc4
s

S(k+1) : Λf∗ + b(k).

To obtain the evolution equation of u(k+1), we need the V⊗V moment of f (k+2).

Using the same calculations as for p(2), observing that ∇·u(k+1) = −∂tρ
(k), we find

p(k+2) = 2u(1) ⊗ u(k+1) + c2
sρ

(k+2)I − νS(k+1) +
2ν

d
∂tρ

(k)I +
〈

1,V⊗Vb(k)
〉

.

If we introduce B(k) as the divergence of the last two terms which only involve lower

order coefficients, we finally arrive at the Oseen type equation for the coefficients

u(k+1) and p(k+2) =: c2
sρ

(k+2) with even indexes k ≥ 2

∇·u(k+1) = −∂tρ
(k),

∂tu
(k+1) + 2∇· (u(1) ⊗ u(k+1)) + ∇p(k+2) = ν∇

2u(k+1) + B(k), (A.13)

u(k+1)|t=0 = 0, ρ(k+2)|t=0 = 0.

Note that for the determination of u(k+1) and p(k+2), the function B(k) can be

regarded as a given source term because it is derived from the coefficient functions

which are already determined in the previous order of the expansion.
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In summary, we have a complete picture of the asymptotic behavior: the density

and velocity moments of the solution fε of (12) have the form

uε = εu(1) + ε3u(3) + ε5u(5) + . . .

ρε = 1 + ε2ρ(2) + ε4ρ(4) + ε6ρ(6) + . . . .

where u(1) and c2
sρ

(2) solve the Navier-Stokes equations and u(k+1) and ρ(k+2), with

k = 2n ≥ 2, solve systems of type (A.13).

A.3. ANALYSIS OF THE LBE

For k = −1 and k = 0, equations (30a), (30b) and (31) coincide with the counter-

parts in Sec. 4 because all space and time derivatives of f (0) = f∗ vanish, f (−1) = 0,

and L(0) = L(1) = 0. We thus conclude

f (1) =
(

ρ(1) + c−2
s u(1) ·V

)

f∗ (A.14)

with

∇ρ(1) = 0, ∇ · u(1) = 0.

To show that even ρ(1) = 0, we need (30a) with k = 1. Noting that p(1) = c2
sρ

(1)I

and L(3) = g, we find

∂tρ
(1) + ∇· u(2) +

1

2
c2
s∇

2ρ(1) = 〈1, g〉 .

Since ∇ρ(1) = 0, the Laplacian ∇
2ρ(1) also vanishes. Moreover, 〈1, g〉 = 0 because

g is an odd function in v. Therefore, in the case k = 1, (30a) coincides with (18a)

and we conclude as in Sec. A.2 that ρ(1) = 0 and

f (2) = fL(eq)(f (2)) + fQ(eq)(f (1), f (1)) − ν

2κc4
s

S(1) : Λf∗. (A.15)

with the associated second moment

p(2) = u(1) ⊗ u(1) + c2
sρ

(2)I − νS(1)

which is needed in (30b) with k = 1 to derive the evolution equation for u(1). Now,

the right hand side G = 〈1,Vg〉 can be non-zero and acts as a force field in the

equation for u(1). The remaining term involving the second derivative of f (1) is

anti-diffusive in nature. We have with (A.14) and ρ(1) = 0

〈

1, Vα(V · ∇)2f (1)
〉

= c−2
s 〈1, VαVβVγVδf

∗〉 ∂γ∂δu
(1)
β .

Using (7c), we obtain

〈

1, Vα(V · ∇)2f (1)
〉

= κc2
s(∇

2u(1)
α + 2∂α∇ · u(1)) = κc2

s∇
2u(1).
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Combining these calculations, we see that u(1) and p(2) = c2
sρ

(2) satisfy an incom-

pressible Navier-Stokes problem with the well known viscosity correction

∇·u(1) = 0,

∂tu
(1) + ∇· (u(1) ⊗ u(1)) + ∇p(2) = (ν − 1

2
κc2

s)∇
2u(1) + G, (A.16)

u(1)|t=0 = ū.

To determine the higher order terms, we proceed as in Appendix. A.2 and show

that f (m) is odd (even) if the index m is odd (even). In fact, the induction proof

can essentially be taken over because of the odd/even symmetries of the additional

terms 1
2 (V · ∇)2f (k) + L(k+2). Let us adopt the induction assumption that, for k

even, f (0), f (2), . . . , f (k) are even and f (1), f (3), . . . , f (k+1) are odd. Then

L(k+2) = g(k+2) −
∑

m+r=k+2
m<k

Dr(∂t,V · ∇)f (m)

is even because m + r = k + 2 can only be even if both m and r are even and

since Dr(∂t,V · ∇) is an even polynomial in V, each term Drf
(m) in the sum is

even. Combined with the even symmetry of g(k+2), we conclude S−L(k+2) = 0.

Similarly, we have S+L(k+3) = 0 = S−L(k+4) and, of course, S−(V ·∇)2f (k) = 0 =

S+(V · ∇)2f (k+1). With the same argument presented in Sec. A.2, we can show

that u(k+2) and p(k+3) = c2
sρ

(k+3) satisfy the homogeneous Oseen problem

∇·u(k+2) = 0,

∂tu
(k+2) + 2∇· (u(1) ⊗ u(k+2)) + ∇p(k+3) = (ν − 1

2
κc2

s)∇
2u(k+2),

u(k+2)|t=0 = 0, ρ(k+3)|t=0 = 0,

where the modified viscosity appears because of
〈

1,V(V · ∇)2f (k+2)
〉

/2 in (30b)

with k replaced by k + 2. Since the homogeneous Oseen problem has only the

trivial solution u(k+2) = 0 and p(k+3) = 0, we have S−f (k+2) = 0 = S+f (k+3)

which concludes the induction proof.

To complete the analysis, we also derive the equations for the non-trivial fields

u(k+1) and ρ(k+2) with even k ≥ 2. Now the divergence condition has additional

source terms. From (30a), we find

∇ · u(k+1) =
〈

1, L(k+2)
〉

− ∂tρ
(k) − 1

2
∇ ⊗ ∇ : p(k).

Finally, the evolution equation for u(k+1) is obtained from (30b) with k replaced

by k + 1. The required tensor p(k+2) can be calculated by taking second moments

of (31) which involves derivatives of lower order coefficients and multiple applica-

tions of A†. If we collect all terms containing expressions with ρ(2), . . . , ρ(k) and

u(1), . . . , u(k−1) as well as the given source g in a function c(k), we find as in Sec. A.2

that

f (k+2) = ρ(k+2)f∗ + 2fQ(eq)(f (1), f (k+1)) − ν

2κc4
s

S(k+1) : Λf∗ + c(k).
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and from (30b), we finally get the Oseen type equation

∇·u(k+1) =
〈

1, L(k+2)
〉

− ∂tρ
(k) − 1

2
∇ ⊗ ∇ : p(k),

∂tu
(k+1) + 2∇· (u(1) ⊗ u(k+1)) + ∇p(k+2) = (ν − 1

2
κc2

s)∇
2u(k+1) + C(k), (A.17)

u(k+1)|t=0 = 0, ρ(k+2)|t=0 = 0.

Here C(k) contains all lower order and force terms which appear when calculating

the required V⊗V moments like
〈

1,V⊗Vc(k)
〉

but also the terms which involving

∇· u(k+1) which depends only on lower order and force terms because of (30a).

A.4. EFFECTS OF THE PARAMETER λ

In this section, we investigate how two numerical solutions differ in leading order

if two different parameters λ1 and λ2 are used in the scheme (24). We denote the

expansion coefficients in the two cases by f (m,λ1), f (m,λ2), and their difference is

defined as

δf (m) = f (m,λ1) − f (m,λ2).

Similar notation is applied to the velocity moments. In light of (A.14) and (A.15),

the first two expansion coefficients are independent of λ, so that

δf (1) = δf (2) = 0 (A.18)

and we can simply refer to f (1) and f (2) instead of f (1,λ) and f (2,λ). Before we

derive δf (3) and δf (4), we consider the terms L(m,λ) defined in (29) up to m = 5.

We have

δL(0) = δL(1) = δL(2) = δL(3) = 0

and since L(4,λ) depends only on f (1) apart from g(4,λ) = (1 − λ)(V · ∇)g,

δL(4) = −δλ(V · ∇)g, δλ = λ1 − λ2. (A.19)

Similarly, L(5,λ) only depends on f (1), f (2) and g(5,λ), so that because of (A.18)

δL(5) = −δλ

(

∂tg +
1

2
(V · ∇)2g

)

(A.20)

Coming back to the coefficients f (m,λ), we observe from (31) with k = 1 that

δf (3) = c−2
s δu(3) · Vf∗ (A.21)

where we have used (A.18) and ρ(3) = 0, δL(3) = 0. Similarly, with k = 2, we find

δf (4) = δρ(4)f∗ + 2fQ(eq)(f (1), δf (3)) − A†(V · ∇)δf (3) + A†δL(4).

The BGK assumption allows to replace A† by (ν/κc2
s)I and in view of (A.19), (32),

and (A.21), we can write more explicitly

δf (4) = δρ(4)f∗ + 2fQ(eq)(f (1), δf (3)) − ν

κc4
s

(V ⊗V)f∗ : ∇w (A.22)



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

ASYMPTOTIC ANALYSIS OF LBE 31

where we introduce

w = δu(3) + δλG. (A.23)

The evolution equation for δu(3), δρ(4) follows from (30a) and (30b) by taking dif-

ferences and observing that δf (2) = 0.

∇· δu(3) =
〈

1, δL(4)
〉

(A.24)

∂tu
(3) + ∇· p(4) +

1

2

〈

1,V(V · ∇)2f (3)
〉

=
〈

1,VL(5)
〉

. (A.25)

Using (A.19) and (32), we find
〈

1, δL(4)
〉

= −δλ∇ · G, so that the first condition

reduces to a divergence-free condition for the field (A.23)

∇· w = 0.

To evaluate (A.25), we first consider the δL(5) term

〈

1,VL(5)
〉

= −δλ

c2
s

〈1,V⊗Vf∗〉 ∂tG − δλ

2c2
s

〈

1,V(V · ∇)2G ·Vf∗〉

which can be combined with the δf (3) term in (A.25)

〈

1,VL(5)
〉

− 1

2

〈

1,V(V · ∇)2f (3)
〉

= −δλ∂tG − 1

2c2
s

〈

1,V(V · ∇)2w · Vf∗〉

and using ∇·w = 0 we calculate with (7c)

〈

1,VL(5)
〉

− 1

2

〈

1,V(V · ∇)2f (3)
〉

= −δλ∂tG − κc2
s

2
∆w

Finally, the δp(4) contribution is calculated from (A.22)

δp(4) = c2
sδρ

(4)I + 2u(1) ⊗ δu(3) − νδS(3) − νS[w].

Altogether, the equation for w = δu(3) + δλG and q = c2
sδρ

(4) reads

∇·w = 0,

∂tw + 2∇· (u(1) ⊗ w) + ∇q = (ν − 1

2
κc2

s)∇
2w + 2δλ∇· (u(1) ⊗ G),

w|t=0 = 0, q|t=0 = 0,

APPENDIX B

THE LBE MODELS

B.1. THE D2Q9 MODEL

In the D2Q9 model, the velocities are V = {c0, c1, . . . , c8} with c0 = 0 and

c1 = ( 1
0 ) c2 = ( 0

1 ) c3 =
(−1

0

)

c4 =
(

0
−1

)

c5 = ( 1
1 ) c6 =

(−1
1

)

c7 =
(−1
−1

)

c8 =
(

1
−1

)
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The function f∗ is defined in terms of the weights

f∗(ci) =















4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8

which implies c2
s = 1/3 in (7b) and κ = 1 in (7c). The construction of the equi-

librium distribution described in Sec. 3.2 then gives rise to the function defined in

[17],

F (eq)(ρ, u; v) =

[

ρ + ρ̄

(

3u · v +
3

2
(u · v)2 − 3

2
|u|2

)]

f∗(v), ρ̄ ≡ 1.

A large class of operators A satisfying the criteria (i) to (v) listed in Sec. 3.2 can

be constructed using an orthonormal basis {ϕ1, . . . , ϕ9} of F given by [10]

ϕ1(v) = 1
3 ,

ϕ2(v) = 1√
6
vx,

ϕ3(v) = 1√
6
vy,

}

ϕ4(v) = 1
2vxvy ,

ϕ5(v) = 1
2 (v2

x − v2
y),

ϕ6(v) = 1
6 (4 − 3v2),







ϕ7(v) =
√

3
6 vx(2 − 3v2

y),

ϕ8(v) =
√

3
6 vy(2 − 3v2

x),

}

ϕ9(v) = 3
2 (v2

xv2
y + 1) − v2.

Using the orthogonal projectors Qif = 〈f, ϕi〉ϕi, we obtain a class of linear opera-

tors

A =
9
∑

i=1

λiQi,

which satisfy the required conditions (i) to (v) under certain conditions on the

eigenvalues λi. For example, condition (ii) can be achieved with λi ≥ 0 while (i)

follows from the fact that each Qi is self-adjoint. Since each ϕi is either odd or

even, the subspaces of odd and even functions are invariant subspaces of A and hence

AS+ = S+A. The condition (iv) on the kernel of A follows with λ1 = λ2 = λ3 = 0

and, in view of the fact that Λf∗ can be expressed in terms of ϕ4, ϕ5, we set

λ4 = λ5 = c2
sν in order to satisfy (v). Altogether, the conditions on A hold with

λ1 = λ2 = λ3 = 0,

λ4 = λ5 = c2
sν,

λ6, . . . , λ9 > 0.
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B.2. THREE-DIMENSIONAL MODELS

For the models D3Q15 and D3Q19, details about velocities ci and weights f∗
i

can be found, for example, in [36]. In each case, we have κ = 1 and c2
s = 1/3 so

that the equilibrium distribution has the same structure as in the previous section.

Using the orthogonal polynomials for these models presented in [11], we can again

set up A using the orthogonal projections. With the numbering of the polynomials

given in [11], we have to set

λ0 = λ3 = λ5 = λ7 = 0,

λ9 = · · · = λ13 = c2
sν,

λ1, λ2, λ4, λ6, λ8, λ14 > 0

for the D3Q15 model, and

λ0 = λ3 = λ5 = λ7 = 0,

λ9 = · · · = λ15 = c2
sν,

λ1, λ2, λ4, λ6, λ8, λ16, λ17, λ18 > 0

in the D3Q19 case.
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