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If we consider a finite difference method simply as a set of equations containing a
small parameter (the grid spacing), it is evident that the tools of asymptotic anal-
ysis can give us useful information about the method. The applicability of this ap-
proach for studying consistency, long time behavior and stability is demonstrated.
As example, we use a simple lattice Boltzmann scheme for the 1D advection equa-
tion with constant advection velocity. Applications of the method to lattice Boltz-
mann schemes for the Navier-Stokes equation can be found in [1, 2, 3, 5, 6, 7]. It
should be stressed that the results are not restricted to lattice Boltzmann methods
but can readily be applied to any other finite difference scheme (see [4] for various
examples and a short review of asymptotic methods in numerical analysis).

Lattice Boltzmann methods are based on discrete velocity particle models. Con-
cretely, we consider fictitious particles that can move with unit speed in one space
dimension either to the left or to the right. Hence the discrete velocities are given
by § := {—1,1}. The particle distribution is described by a vector-valued function
referred to as the population function. The first component represents the density
of the particles traveling to the left, while the second component is associated with
the other species:

Fi(t,z)
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A compact notation is obtained with the help of the basis vectors

1= ()R s= ()= ()R
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and the componentwise product between vectors, e.g.
1f:f, 52:((_12)2>:1, 53:S.
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Finally, (-,-) denotes the standard scalar product.

The algorithm we are going to investigate has the standard lattice Boltzmann form
(1) Fe(t + h,x + sph) = Fi(t,z) + [JF(t, z)],, k=1,2

where the discretization parameter h = 1/N, N € N determines the space-time
grid. More precisely, ¢ can take the values ¢, = nh with n € Ny and x ranges in
x; = ih with ¢ € Z. The collision operator J on the right hand side of (1) models
the particle interaction. Here, we choose the simple BGK form

JF=w(E-I)F
with relaxation parameter w and projection matrix
l—-a 1-a
=1
2) E'_2(1+a 1+a>

1



To keep things simple, we assume 1-periodic initial data which give rise to 1-
periodic population functions so that no boundary data have to be prescribed.

In order to understand the behavior of the lattice Boltzmann solution F(¢, ), we
try to approximate it in the form of a regular h-expansion

(3) F(t,z) ~ flol(t,2) = fO (¢, 2) + hfD (¢, ) + ... + hof (L, z)

with ¢ = t, = nh and x = z; = jh, n € N,j € Z. We refer to flol as prediction
function. The asymptotic order functions f® with 0 < 8 < « are supposed to
be h-independent, smooth in ¢ and x and 1-periodic in x. The order functions
are determined by inserting (3) into the update rule (1), performing a Taylor
expansion and equating orders. Specifically, we find with D = 0; + s0,.

(I—EfO = ¢
(I-E)f® = —1pf® _ Lp20

Since I — E is not invertible (the range of I — E is generated by the vector s
which is orthogonal to 1), we encounter solvability conditions. In fact, the right
hand sides of the equations (4) must be orthogonal to 1 which eventually can be
cast into conditions on the so called mass moments u(® = (f®) 1) of the order
functions. With the abbreviations

p= (2 —1(1-a?, A= 2a(w—12—%+%)(1—a2).
they are
9ul® + ad, u(o) =0
(5) du + ad,u = pd2u®
Btu@) + a(?wu@) = u(’“)iu(l) + A@i’u(o)

and the precise form of the leading order coefficients is:

fO = 1(1+ as)u®
6) O =11+as)u® - L(1-a)sd,u®
2 = L1+ as>u<2> — a5 (1= a®)sdul) — (L — 3)(1 — a)astful®

If the algorithm is initialized compatibly to (6), i.e.
F(0,2) = 2(1 4 as)vo(x) — hat (1 — a®)sdpvo(z) — h* 5= (L — 1) (1 — a®)asd2vo (z)
with a 1-periodic function vy, we deduce initial conditions for the mass moments

w90, z) = vo(z) and u™M(0,z) = u?(0,2) = 0 which completely determine the
order functions in view of (5) and (6).

Assuming that f?! correctly captures the h-behavior of F up to the expanded order,
i.e. F(t,x) — f2l(t,2) = O(h®) we find for the mass moment at every grid point

(7) U(t,z) = u O, z) + hu® (t,2) + h2uP (t,2) + O(h®).
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In particular, U coincides with the solution u(?) of the advection equation (see (5))
up to an error which is at least proportional to h. In this sense, our lattice Boltz-
mann algorithm is consistent to the advection equation. The order of consistency
can also be deduced from (7). If w # 2 and a? # 1 and hence u # 0, the equation
for u(Y) generally involves a non-zero source term. Thus u(!) will be different from
zero and the coincidence of U and u(%) is of first order

Ult,z) —u©(t,z) = huM (¢, 2) + O(h?).

We say that the algorithm is first order consistent to the advection equation in that
case. If, however, w = 2 or a? = 1, the source term in the u(!-equation vanishes
and since (M) (0, ) = 0, the solution u(!) (¢, z) turns out to be zero everywhere. In
this case,

Ut z) —u O, z) = R2u® (t,2) + O(h®)

where u(® is non-zero for non-trivial «(®) and a? ¢ {0,1}. Hence, the lattice
Boltzmann method is second order accurate in the case w = 2.

Summarizing these considerations, we can say that a regular expansion of the
algorithm essentially amounts to a consistency analysis. In contrast to this, in-
formation about the stability of the method can be obtained by investigating the
long-time behavior with the help of a multi-scale expansion.

Starting with an ansatz of the form F(t,z) ~ flel(t, ht, z), where
(8)  flol(ty, ta,x) := FO (b1, ta,2) + WD (ty,t2,2) + ... + B (ty, 10, 2),
we find the following equation for the leading order mass moment

(%lu(o) (t1,t2,2) + adyu® (t1,t2,2) =0

OO (b1, tg, ) — pd2u O (ty, tg,2) =0

with the initial value u(%)(0,0,2) = vo(z). We see that the numerical solution is
governed by the advection equation for short times but that the diffusion equation
dictates the behavior on the long time scale. In particular, an unwanted behavior
of the scheme can be expected for = (1 — 1)(1—a?) < 0 since the analysis leads
to the ill-posed backward heat equation in that case. This reflects the findings
of a detailed stability analysis which reveals that the scheme runs stable only for
0 < w < 2and a? < 1. At the same time, it should be stressed that p > 0 is
possible also in unstable situations (e.g. a = 2 and w = 4) which shows that the
long-time asymptotics cannot capture all the instabilities.
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