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We consider heat transfer processes where radiation in a large number of frequency bands

plays a dominant role. In the simulation of such processes, the radiative transfer equation

has to be solved repeatedly. To obtain an efficient and accurate solution method, we

propose a new hybrid algorithm which combines fast solvers for the radiative transfer

equation in the low and high absorption regime, respectively. A key role is played by an

exact, residual based error formula. The algorithm is applied to a cooling problem of high

quality optical glass.
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1 Introduction

We are concerned with heat transfer processes where the heat flux is strongly influenced

by radiation. The corresponding mathematical model consists of the heat equation cou-

pled with the stationary radiative transfer equation (RTE). The coupling is obtained via

the sources: a temperature field leads to a field of radiation sources and the radiative

energy transport effects the temperature evolution by causing a non-local heat flux. The

numerical simulation of such a process requires a time discretization of the heat equation

and in each time step, the RTE has to be solved with new sources to obtain the radiative

heat flux.

Consequently, the choice of the RTE-solver influences the quality and the overall speed

of the simulation decisively. Classical methods like ray tracing or PN approximations are

too slow to obtain reasonable simulation times. Faster methods, like the Rosseland

approximation, typically perform well only in specific frequency bands.

Since we are dealing with a large number of frequency bands ranging from very small to

very high frequencies, such a single asymptotic approximation is inadequate. We propose
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a new hybrid method which combines two fast algorithms designed for high and low

absorption rates, respectively. The decision which solver is to be used in a frequency

band is based on an error formula for approximate solutions of the RTE: a weighted

integral over the residuum of any approximate solution of the RTE yields an expression

for the distance to the exact solution in a natural norm. For a detailed investigation of

this residual based error formula, we refer to [4].

The resulting algorithm is implemented for an application arising in glass industry in

connection with the production of high quality, optical glass: a too fast cooling of the

glass may lead to internal stresses which degrade the quality or even cause breakage. On

the other hand, slow cooling is time and energy consuming. Hence the cooling process

should be as short as possible but as careful as necessary.

For the design of optimal cooling processes, numerical simulations are very helpful

[1, 8] but since long cooling periods have to be simulated, the speed of the RTE solver

is a very important aspect. With our algorithm, we obtain a speed which is comparable

to the one of the Rosseland approximation (which is widely used for the simulation of

cooling processes). However, the quality of the results is much better with our algorithm

and compares to the precision obtained with a (50 times slower) ray tracing method.

The paper is organized as follows. In section 2 we formulate the model equations. The

widely used ray tracing, the Rosseland and the PN approximation are briefly described

in sections 3.1, 3.2, 3.3. The new hybrid method is developed in section 3.4. Simulation

results for cooling processes are contained in section 3.5. Comparisons of the results with

respective results from standard methods are included.

2 The Model

We consider a non scattering semi transparent medium, e.g. high quality glass, confined

to a bounded domain G ⊆ R
3 with smooth or piecewise smooth boundary (for example,

a cylinder or polygon).

We assume that the temperature T = T (t, x) > 0 at time t > 0 and position x ∈ G in

the medium satisfies

η
∂T

∂t
= κ ∆T − divF , (2.1)

subject to initial conditions

T (0, x) = T0(x) (2.2)

and to homogeneous Neumann boundary conditions

∇T · n = 0, on ∂G, (2.3)

where η > 0 is the product of the medium’s mass density and the specific heat capacity

(for constant volume), κ > 0 is the thermal conductivity, n is the outward unit normal

vector along the boundary ∂G of G. The Neumann boundary conditions of (2.3) refer to

an insulating boundary. Extensions to more general heat transfer models can easily be

performed but are not employed for the sake of simplicity.

In (2.1) the energy flux due to radiation, F = F (t, x), plays a key role. The vector-
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valued function F is given by

F (t, x) =

∫

(0,∞)×S2

ξ · I(t, ξ, x, ν) d(ν, ω(ξ)), (2.4)

where I(t, ξ, x, ν) is the medium’s radiative intensity of frequency ν ∈ (0,∞) in direction

ξ ∈ S2, S2 the unit sphere in R
3, at (t, x), and d(ν, ω(ξ)) denotes integration with respect

to the standard product measure on (0,∞) × S2.

We assume that radiation transport is much faster than the time evolution of the

temperature. As a consequence, the radiative intensities I = I(t, ξ, x, ν) shall satisfy for

each t > 0 the stationary radiative transfer equation [5, 6, 7]

1

σ(ν)
ξ · ∇I + I = n2

mβ(T, ν), for (ξ, x) ∈ S2 × G, ν ∈ (0,∞) (2.5)

where σ(.) is the (positive) absorption coefficient function (depending on the frequency

ν), nm > 0 is the refraction index of the medium and

β : (0,∞) × (0,∞) → (0,∞), β(T, ν) =
4π~ν3

c2
(

exp
(

2π~ν
kBT

)

− 1
) ,

is Planck’s radiation function where ~ is Planck’s constant, c is the speed of light in

vacuum and kB is Boltzmann’s constant. We note that both T and ν enter in (2.5) as

parameters while the directional space derivative ξ · ∇ couples ξ and x dependence.

Equation (2.5) is supplemented with modified Fresnel boundary conditions for the

intensity I = I(t, ξ, ζ, ν) which apply on a subset S− := {(ξ, ζ) ∈ S2×∂G : ξ ·n(ζ) < 0}

of the boundary S2 × ∂G

I = ρ̂I ′′ + (1 − ρ̂) n2
mβ(TF , ν), for (ξ, ζ) ∈ S− (2.6)

where the reflection coefficient function ρ̂ : [0, 1] → [0, 1] is determined by a Fresnel–

type law and is evaluated at |ξ · n(ζ)|, TF is an outer reference temperature chosen

to approximate the outer background radiation (for the sake of simplicity we assume

constant TF ) and I ′′ denotes the intensity I(t, ξ′′, ζ, ν) in the reflected direction

ξ′′ = ξ′′(ξ, n(ζ)) = ξ − 2 (ξ · n(ζ)) n(ζ).

The treatment of the frequency dependence is simplified considerably if the discrete

measurements of the absorption coefficient function σ(ν) are extended to a piecewise

constant function. We assume that there are frequencies 0 = ν0 < ν1 < . . . < νM−1 <

νM = ∞ such that σ(ν) = σk ∈ (0,∞) in the frequency band ν ∈ [νk−1, νk), k =

1, . . . , M . Introducing frequency integrated intensities k = 1, . . . , M ,

Ik : (0,∞) × G × S2 → [0,∞), Ik(t, ξ, x) =

∫ νk

νk−1

I(t, ξ, x, ν) dν, (2.7)

βk : (0,∞) → (0,∞), βk(T ) =

∫ νk

νk−1

n2
mβ(T, ν) dν, (2.8)

as well as the first ξ moment of Ik

F k : (0,∞) × G → R
3, F k(t, x) =

∫

S2

ξ · Ik(t, ξ, x) dω(ξ), (2.9)
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we can re-write the model equation (2.1)

η
∂T

∂t
= κ ∆T −

M
∑

k=1

divF k, on (0,∞) × G, (2.10)

subject to the conditions (2.2) and (2.3). The integrated intensities Ik, k = 1, . . . , M ,

arising in the definition (2.9) of F k satisfy for each t > 0,

1

σk

ξ · ∇Ik + Ik = βk(T ), on S2 × G, (2.11)

Ik − ρ̂I ′′k = (1− ρ̂) βk(TF ), for (ξ, ζ) ∈ S− (2.12)

where, again, ρ̂ = ρ̂(|ξ · n(ζ)|) and I ′′
k (t, ξ, ξ) = Ik(t, ξ′′, ζ).

3 Numerical methods and simulations

For the numerical approximations of (2.11), (2.12), a variety of methods has been pro-

posed (see [5], [6], and [9]). They can be subdivided into three main classes:

• Methods where ξ is reduced to a discrete set of directions, such as the ray tracing

method or the discrete ordinate method SN .

• Methods based on asymptotic analysis, for example the Rosseland approximation.

• Methods where the ξ-dependence is prescribed in form of special functions, such as

the spherical harmonic expansion PN (Galerkin approach).

In connection with a discretization of (2.10), equations (2.11) and (2.12) have to be

solved in each time step. If PN or SN approximations are used, large linear systems have

to be solved repeatedly. Similarly, the ray tracing method is much too expensive to be

used in each step. The Rosseland approximation, on the other hand, is very fast but

rather inaccurate in frequency bands with low absorption and close to the boundaries of

the domain.

Our aim is to construct a new method which is more accurate than the Rosseland

approach and considerably faster than the PN or SN approximation. Before doing this,

we briefly describe the methods which we use for comparison.

3.1 The ray tracing method

Applying the method of characteristics to the radiative transfer equation (2.5), we obtain

the ray tracing method [5] which is also called discrete transfer model [3]. For a given

point x ∈ G and some ξ ∈ S2, we have (with frequency and time dependence suppressed

for simplicity)

I(ξ, x) = I(ξ, x − sξ)e−σs + σn2
m

∫ s

0

β(T (x − τξ))e−στ dτ (3.1)

as long as the ray s 7→ x − sξ is inside Ḡ. If ζ = x − s̄ξ ∈ ∂G, the boundary condition

(2.6) has to be observed. Since ξ · n(ζ) < 0, we have

I(ξ, ζ) = ρI(ξ′′, ζ) + (1 − ρ)n2
mβ(TF ).
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where ρ̂ is evaluated at |ξ ·n(ζ)|. To calculate I(ξ′′, ζ), we continue with (3.1), where we

observe −ξ′′ ·n(ζ) < 0. Since the intensity decreases along the ray with a damping factor

e−σs as well as by a factor ρ̂ in each reflection, the process can practically be stopped

after a certain number m of reflections (the number decreases with increasing σ) giving

rise to an approximation Im(ξ, x).

Our main objective in solving RTE is the calculation of the radiative heat flux (2.4).

Hence, we need to find the first ξ moment of the intensity. In the context of ray tracing

methods, we use quadrature rules

∫

S2

ξI(ξ, x) dω(ξ) ≈
N

∑

i=1

ωN
i ξN

i Im(ξN
i , x).

For a detailed discussion of suitable weights ωN
i and directions ξN

i , we refer to [9].

3.2 The Rosseland approximation

In the case when σ is very large (the optically thick limit), we see from (3.1) that the

intensity at some interior point x ∈ G is essentially determined through near-by sources.

Carrying out a regular expansion in 1/σ → 0, the so called Rosseland approximation

is recovered (see for example [5, 7]), which we use here up to order one:

I(0)(ξ, x) = n2
mβ(T (x)), x ∈ G

I(0)(ξ, ζ) = n2
mρ̂β(T (ζ)) + (1 − ρ̂)n2

mβ(TF ), (ξ, ζ) ∈ S−

(with ρ̂ evaluated at |ξ · n(ζ)|) and

I(1)(ξ, x) = −n2
mξ · ∇β(T (x)), x ∈ G

I(1)(ξ, ζ) = −n2
mρ̂ξ′′ · ∇β(T (ζ)), (ξ, ζ) ∈ S−.

We remark that the intensity is usually discontinuous on the boundary S−.

3.3 A modified PN approximation

In the classical PN approximation, the ξ-dependence of the intensity is expanded in

spherical harmonic functions Ykl(ξ) of degree k ∈ N0, l = −k, . . . , k up to degree N . The

resulting expression for I is plugged into the RTE and relations for the space dependent

coefficients in the expansion are obtained by multiplying the equation with Ykl and

subsequent integration over S2. In this process, L
2-orthogonality relations of the spherical

harmonic functions and recurrence relations are used.

The equations for the different coefficient functions are coupled via the term ξ · ∇I =

div(ξI). The resulting differential equations for the coefficients have to be solved in G.

Boundary conditions are constructed in analogy. The relation satisfied by the intensity

on the subset S− of the boundary S2×∂G turns into conditions for all coefficients on the

whole boundary ∂G. In general, these are too many constraints for the problem to be well

posed and one has to select a suitable subset of boundary conditions which introduces

some arbitrariness.

This problem can be avoided by passing to a weak formulation of the RTE which
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contains the boundary conditions. An expansion of the ξ-dependence into spherical har-

monic functions up to degree N can then be seen as a spectral method. Combining this

spectral approach with a space discretization by finite elements, the set of possible so-

lutions becomes a finite dimensional vector space and, via the weak formulation of the

RTE, a Galerkin method arises.

To estimate the numerical effort of the Galerkin method, we solve the RTE on a

three dimensional unit cube G with sources f = 1, g = 0, absorption rate σ = 4,

and a constant reflection coefficient function ρ̂ = 0.7. The finite element discretization

is based on multi-linear elements on a cubic mesh with M̂ degrees of freedom. The

order N of the spherical harmonic expansion ranges in {1, . . . , 5} which corresponds

to N̂ ∈ {4, 9, 16, 25, 36} degrees of freedom. We remark that in a case of high resolution

N = 5 and N̂M̂ ≈ 20, 000, the stiffness matrix has about seven million non-zero elements.

Solving this large linear system is, of course, time and memory consuming and cannot

be afforded in our problem where RTE solutions are required in each cycle of a heat

equation solver.

3.4 The new hybrid method

Our task is to solve the radiative transfer equation repeatedly on the same geometry

with changing sources. If the (integrated) absorption coefficients (see section 2) σk, k =

1, . . . , M , are of very different orders of magnitude, we will have to consider σk → ∞

(“high absorption regime”) and σk → 0 (“low absorption regime”).

This motivates to use two methods – one being designed for the case of high absorption

rates, the other one for low absorption rates. By construction, the methods are expected

to perform well in cases where σk is either very large or very small. For intermediate

values, it is not clear which method should be preferred.

Remark 1 In simulations one typically finds a “critical value” σcrit. Whenever σ ex-

ceeds σcrit, the high absorption approximation performs better than the low absorption

approximation, and vice versa for σ smaller than σcrit. The value of σcrit, however, de-

pends on the initial- and boundary data, on the given geometry and on the radiation

sources which may vary in time.

Therefore, it is advisable to switch between the methods with a dynamic criterion.

The decision is made by means of the residual based error formula as proposed in [9],

εk(Ĩk) = εk,1(Ĩk) + εk,2(Ĩk), k = 1, . . . , M, (3.2)

where Ĩk is an approximate solution of (2.11), (2.12) in frequency band k, and εk,1(Ĩk)

is the volume integrated residuum of (2.11)

εk,1(Ĩk) : =

∫

S2×G

|Ĩk +
1

σk

ξ · ∇Ĩk − βk(T )|2 d(ω(ξ), x)

and εk,2(Ĩk) is a weighted surface integral over the residuum of (2.12)

εk,2(Ĩk) : =

∫

S2×∂G

1

σk

|ξ · n(ζ)|

1 − ρ̂2
|Ĩk − ρ̂Ĩ ′′k − (1 − ρ̂)βk(TF )|2 d(ω(ξ), s(ζ))
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where ρ̂ is evaluated at |ξ · n(ζ)|.

Remark 2 The proposed residuum based error formula is canonical for the following rea-

son. Assume k ∈ {1, . . . , M} and assume Ĩk is an approximate solution of (2.11), (2.12)

in the sense that that Ĩk satisfies the boundary conditions (2.12) and Ĩk is sufficiently

regular such that Ĩk is in the domain of the (weakly reformulated) differential operator

of (2.11). Then it can be shown (see [4] for a proof) that εk(Ĩk) = ‖Ik − Ĩk‖
2, where Ik

is the unique solution of (2.11), (2.12) and ‖.‖ is the norm canonically associated with

(2.11), (2.12). Thus, for each k ∈ {1, . . . , M}, the residuum based error formula (3.2) is

an excellent measure for the accuracy of the approximation Ĩk.

The combined method with a switch based on the residual based error formula (3.2)

is called hybrid method in the following.

Note that it is also possible to combine the residua εk,1 and εk,2 in different proportions.

In this way, one obtains error formulas which focus, for example, more on boundary

terms than on volume terms. However, we will not investigate this aspect and stick to

the canonical form (3.2).

In the high absorption regime a two-scale analysis of (2.11), (2.12) has been performed

in [9]. As a result, for large values of σk , an approximation of the radiative intensity

corresponding to a given temperature profile T = T (t, x) is given by

Ihigh
k (t, ξ, x) = βk(TF ) + (βk(T (t, x)) − βk(TF )) Ik,0(ξ, x)

+ (∂T βk)(T (t, x))
3

∑

j=1

(∂xj
T )(t, x) (Ik,j(ξ, x) − xjIk,0(ξ, x)) , (3.3)

where Ik,j , j = 0, . . . , 3, are time and data independent solutions of the reference problems

1

σk

ξ · ∇xIk,j + Ik,j =







1 if j = 0

xj if j ∈ {1, 2, 3}







, on G × S2, (3.4)

subject to the boundary conditions

Ik,j(ξ, ζ) − ρ̂(|ξ · n(ζ)|)Ik,j(ξ
′′, ζ) = 0, for (ζ, ξ) ∈ S−. (3.5)

Based on Ihigh
k , we calculate the radiative flux

F
high
k (t, x) =

∫

S2

ξIhigh
k (ξ, x) dω(ξ)

whose divergence is needed on the right hand side of (2.10). Note that F
high
k can be

expressed in terms of the fixed moments of the reference solutions Ikj .

In the low absorption regime, asymptotic expansions are of little help for the construc-

tion of fast methods. In lowest order, the intensity is constant I (0) = n2
mβ(TF ) (see [9])

and equations for higher order corrections are of the same type as the RTE which rules

out the derivation of explicit expressions.

Instead of an asymptotic expansion, we use a heuristic argument: formula (3.1) suggests

that, for small σ, the intensity at a point x ∈ G is essentially given by some averaged
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source term. In particular, small fluctuations in the source seem to be less important in

the case σ → 0 and it might be reasonable to approximate the source with a low order

polynomial. Following [9], we obtain for an approximation with affine polynomials (the

method can easily be extended to higher order approximations),

Iproj
k (t, ξ, x) = (1 − Ik,0(ξ, x))βk(TF ) +

3
∑

j=0

bk,j(t)Ik,j(ξ, x),

where the coefficients bkj(t) are chosen by projecting βk(T ) onto the space of affine

polynomials, i.e. by minimizing the L
2 distance

∫

G

|bk,0(t) +

3
∑

j=1

bk,j(t)xj − βk(T (t, x))|2 dx (3.6)

which leads to a linear 4 × 4 system. Since Iproj
k is an exact solution of the RTE with

a modified source, the divergence of the corresponding radiative flux F
proj
k follows from

the ξ-integrated RTE,

div F
proj
k (t, x) = div

∫

S2

ξIproj
k (ξ, x) dω(ξ)

= 4πσ



bk,0(t) +

3
∑

j=1

bk,j(t)xj



 + σ

∫

S2

Iproj
k (ξ, x) dω(ξ). (3.7)

Here, only the ξ integral over Iproj
k is required. These integrals can be written in terms

of the coefficients bk,j and the ξ integrals over the reference solutions Ik,j .

Practically, the solutions Ik,j are obtained with an accurate method like ray tracing

based on many directions (≥ 100) and many reflections (≥ 10). This large effort has to

be taken only once in a pre-processing step. Moreover, we only store the moments of the

pre-processed solutions Ik,j which reduces the memory consumption and speeds up the

evaluation of the fluxes in each cycle of the heat equation solver.

Let us now turn to the question how to combine the two methods into a single hybrid

method. We use the normed residuum of (3.2) for the kth frequency band. If Iproj
k and

Ihigh
k are the approximations obtained with the two methods in frequency band k, we

compare εk(Iproj
k ) and εk(Ihigh

k ) (evaluated by approximate quadrature rules) to select the

more accurate solution for which the flux divergence for frequency band k is calculated.

For the projection method one can show [9]

εk(Iproj
k ) = 4π

∫

G

|bk,0(t) +

3
∑

j=1

bk,j(t)xj − βk(T (t, x))|2 dx (3.8)

which is, up to a constant, the projection error (3.6). In particular, the explicit knowledge

of Iproj
k (x, ξ) is neither required for the normed residuum nor for the evaluation of the flux

divergence. Thus, one would like to avoid storing the reference solutions corresponding

to polynomial sources. As a consequence, one should try to approximate εk(Ihigh
k ) by

zero and first order ξ moments of Ikj or, using linearity, by

Ehigh
k (x) =

∫

S2

Ihigh
k (x, ξ) dξ, F

high
k (x) =

∫

S2

ξ Ihigh
k (x, ξ) dξ.
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Figure 1. Fresnel–type reflection coefficient function

Following the argument in [9], such an approximation is indeed available,

εk(Ihigh
k ) ≈ εhigh

k = εhigh
k,1 + εhigh

k,2 ,

where εhigh
k,1 is a contribution from volume integrals over the ξ moments

εhigh
k,1 =

∫

G

1

4π

(

Ehigh
k − 4πβk(T )

)2

+
3

4π

∣

∣

∣F
high
k

∣

∣

∣

2

+
1

4πσ2
k

(

div F
high
k

)2

+
1

12πσ2
k

∣

∣

∣
∇Ehigh

k

∣

∣

∣

2

−
2

σk

div F
high
k (βk(T ) − βk(TF )) dx

and εhigh
k,2 a contribution from surface integrals

εhigh
k,2 =

∫

∂G

1

σk

(∫

S2

1
|ξ·n|

1+ρ(ξ·n)
1−ρ(ξ·n) dξ

)−1
(

Ehigh
k − 4πn2

mB(TF )
)2

+
1

σk

(∫

S2

|ξ·n|
1−ρ(ξ·n)
1+ρ(ξ·n) dξ

)−1
(

n · F high
k

)2

dζ.

In order to obtain an impression of the quality of the projection and high absorption

method as well as the approximation εhigh
k of the normed residuum, we consider an

example with slab geometry for a medium of optical density nm = 1.46. As sources, we

consider here the artificial cases B(T (x)) = x2
1, x1 ∈ [−1, 1], x2, x3 ∈ R and B(TF ) = 0.

The reflection function is of Fresnel-type (see fig. 1) with ρ̂(µ) = ρ̄ being almost equal

to one for µ ≤ 1 − 1/n2
m. We remark that the classical Fresnel law includes total

reflection (i.e. ρ̂(µ) = 1 for µ ≤ 1 − 1/n2
m). We exclude the case of total reflection

in the following by assuming ρ̄ < 1. However, numerical experiments indicate that the

error formula works well also in the limit case where total reflection appears on parts

of the boundary, provided that the set {(ξ, x) : ρ̂(|ξ · n(x)|) = 1} is excluded from the

integration domain in εk,2.

The errors in figure 2 are normalized by the error of the zero-intensity function. The

convergence of the high absorption method for large absorption rates σ can clearly be
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observed. On the other hand, the projection method does not converge for σ → 0 but

yields a better approximation for small σ than the other method. In view of (3.8),

convergence is only expected for increasing accuracy in the L
2 approximation. Note,

however, that the intensity average Eproj
k =

∫

Iproj
k dω(ξ) (which is the quantity we

actually use in (3.7)) converges to the correct value for σ → 0 (see [9]).

The approximative error for the high absorption method (denoted by error indicator

in the figure) is acceptable in the region where both methods are of similar quality. It

only overestimates the quality in a region where the high absorption method is anyhow

better. Thus, in order to save memory and computational time, the error indicator can

be used instead of the normed residuum for the high absorption method.

3.5 The cooling problem

We consider a small glass cylinder of height 5cm and radius 10cm. The cylinder has a

constant initial temperature distribution of 1500◦C and is placed in a background medium

of constant reference temperature TF = 20◦C. The reflection coefficient function is shown

in fig. 1 and the remaining material properties have been chosen according to Table 1.

The absorption rate σ(ν) is approximated by a piece-wise constant function (see Fig. 3)

consisting of 20 frequency bands. The last frequency band (ν > 1.5 · 1016Hz) is neglected

because the sources in the RTE practically vanish for these frequencies in connection with

the temperatures considered here, resulting in negligible intensity contributions. In the

first band (ν < 4.2 · 1013Hz), we assume σ = ∞. This case can be treated easily with the

high absorbtion method which has been derived for the limiting case σ → ∞. The required

reference solutions for this frequency band simplify to the zero-order approximations in

the limit σ → ∞. For the remaining frequency bands, we solve equation (2.11) with the
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Specific Heat Capacity cv = 1.2 · 103 J
kg K

Mass Density ρm= 2.5 · 103 kg

m3

Thermal Conductivity κ = 1.7 W

K m

Refraction Index ng = 1.46

Table 1. Properties of the glass
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Figure 3. Absorption rate as function of the frequency

corresponding values for σk where the normed residuum is used to decide which method

is applied.

We remark that the initial temperature difference is artificial as it would lead to a

breaking of the glass. Nevertheless, we choose the example to show that our method is

able to properly resolve strong boundary layers in the temperature profile (see figure 4

for the temperature distribution obtained with the hybrid method after 10s). The heat

equation has been approximated with a finite element discretization using the cylinder

symmetry of the problem (5100 degrees of freedom – 100 in radial and 51 in vertical

direction). The solution of the hybrid method is based on particular solutions obtained

with the ray tracing method where in each node, 120 rays have been traced backwards,

taking into account 10 reflections at the boundaries. To get a quantitative comparison of

different methods, we also plot the temperature distribution on paths along the height,

the radius and the diagonal of the cylinder (see fig. 5). The temperature obtained with

the hybrid method in comparison to a ray tracing solution (which is calculated with only

10 directions and two reflections at the boundaries to get a managable speed) and the

first order Rosseland approximation is given in the figures 6, 7, and 8. Note that a direct

comparison of the radiative intensities based on the normed residuum is complicated by
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the fact that the ray-tracing algorithm yields intensities only at discrete points, so that

the value of the rsiduum norm depends on the chosen interpolation.

The profiles show that the hybrid method approximates well the overall cooling of

the bulk. The difference to the ray tracing solution in the center of the cylinder (P1) is

only 2.9◦C (that is less than 0.2%). The rapid cooling at the boundary is also captured

well by the hybrid method with a difference to the ray tracing method of 3.2◦C at (P2)

and of 4.5◦C at the point (P3). Even the temperature in the edge of the cylinder (P4)

is approximated well with a difference to the ray tracing solution of 10.4◦C. The first

order Rosseland approximation which is commonly applied in industrial applications

fails completely for the chosen initial conditions.

We close with a remark concerning the selection of the methods. Initially, the temper-

ature distribution is constant inside the glass and both methods yield the same solution.

In this case, the high absorption method is used in all frequency bands. Already in the

second time step, the temperature distribution is no longer uniform and the selection

mechanism based on the normed residuum starts to distribute frequency bands also on

the projection method. Eventually, the frequency bands 0 to 11 are treated with the

high absorption method. The remaining frequencies are taken care of by the projection

method. From time to time, the intermediate band number 11 switches from high ab-
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sorption method to projection method. Compared to the (admittedly crude) ray tracing

algorithm, the speed up factor is around 50. The Rosseland approximation is again

faster by a factor 1.5, but its quality is not acceptable.

4 Conclusion

The simulation of cooling processes in glass production requires a fast solver of the radia-

tive transfer equation. We construct an efficient hybrid method using two methods which
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are designed for high and low absorption rates respectively. The core of the scheme is a

residual based error formula for the radiative transfer equation which allows a dynamical

switching between the two methods in each frequency band.

In practical applications, long cooling periods (several minutes) have to be simulated.

Here, the hybrid scheme requires additional tuning. For example, the approximation of

the normed residuum can be simplified further and its evaluation can be restricted to

the critical frequency bands (leading to speed up factors from 100 to 200 compared to

ray tracing). Despite these simplifications, the method remains more accurate than the

Rosseland approximation which is widely used for the applications considered here.

Since the application of standard methods like ray tracing or PN approximations is

completely out of scope for long-time simulations, the hybrid method is a substantial

progress.
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