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We present an exact residual based error formula in natural norms for a class of transport

equations. The derivation of the error formula relies on an abstract formulation in a general

Hilbert space setting. The key role is played by the validity of an inversion formula. Its

verification is for particular radiative transfer equations equivalent to the identification

strong and weak traces. The residual based error formula can be used in the design of

efficient and accurate simulations of the cooling process of high quality glass [5].
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1 Introduction

We are concerned with a residual based error formula for a class of transport equations

representable in the form

u + Au = f, B−u = g, (1.1)

where A and B− are linear operators whose domain is a Hilbert space H and whose

ranges are contained in Hilbert spaces H0 ⊆ H and H∂ , respectively. In applications we

have in mind the operator B− is the “negative part” of a linear operator B : H → H∂ ,

i.e. B has a canonical representation B = B+ − B− where B+ : H → H∂ is linear. The

source function f of (1.1) is in H and the boundary value function g is in H∂ .

The operators A, B− of (1.1) and the inner products of H, H0, H∂ are assumed to

satisfy several compatibility conditions whose precise formulation is postponed for the

moment.

The need for an residual based error formula of (1.1) originates from numerical treat-

ments. If distinct algorithms are applicable, one will wish to decide which of the approxi-

mate solutions is preferable. A most natural strategy to decide is to compare the distances

of the approximate solutions from the (assumed to be unique) solution u of (1.1). Ob-
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viously, this strategy can not be followed in a naive manner: in order to calculate this

distance the solution u has already to be known.

However, we will prove that for a canonical norm - the norm of H indeed - the distance

equals a normed residuum. More precisely, we are heading to a proof of the residual based

error formula

‖u− u‖H = ‖u + Au − f‖H0
+ 2‖B−u − g‖H∂

, u ∈ H. (1.2)

In (1.2) one can calculate the distance of an approximate solution u from u without

referring to u. Only normed residua - one residuum for the operator term, the other one

for the boundary term - have to be evaluated and summed up.

This paper’s investigations originate from simulations used in glass industry. In particu-

lar, the design of cooling processes for high quality glass has to observe two incompatible

aspects and is, thus, a challenging task. If the cooling is too slow, the production will be

time and energy consuming and will thus be too expensive for the glass producer.

In other words, for quality and for economical reasons, the cooling process should be

as short as possible but as careful as necessary.

The design of cooling processes meeting both aspects is nowadays strongly supported

by efficient and reliable numerical simulations, see [1].

To fix ideas let us give a brief description of the mathematical model (further details

can be found in [5]).

The cooling process of high quality glass is described by the spatio-temporal evolution

of the temperature T (t, x), t ∈ R
+, x ∈ G ⊂ R

3, at time t at position x in the glass.

Typically the heat transfer is induced by conduction and radiation. The radiation field

inside the glass is generated by temperature depending sources. Temperature usually

changes on a time scale much slower than radiation transport. Thus, it is appropriate to

employ the stationary radiative transfer equation (RTE) with time depending sources.

As a consequence, the simulation of T consists in solving the heat equation where in

each time step the radiative heat sources are solutions of the RTE.

The basic idea of the hybrid approach developed in [5] is to couple two fast methods

originally designed for high and low absorption rates, respectively. A switching mecha-

nism dynamically selects the more accurate method in each frequency band. The selection

relies on the residual based error formula (1.2) which allows for the calculation of the

distance ‖u− u‖H between an approximative solution u and the exact (but unavailable)

solution u of the RTE, see [2].

Thus, we can assign to uhigh (approximative solution of the RTE in the high absorption

regime) and to ulow (approximative solution of the RTE in the low absorption regime)

the respective distances ‖uhigh−u‖H and ‖ulow−u‖H . The selection mechanism will pick

uhigh if ‖uhigh −u‖H ≤ ‖ulow −u‖H , and the mechanism will pick ulow if ‖ulow −u‖H <

‖uhigh − u‖H .

The paper is organized as follows. In section 2 we present the residual based error formula

for a (integrated) RTE. We formulate the two most important, yet unanswered questions

concerning the validity of the derivation. Then we are concerned with a rigorous justifi-

cation of the residual based error formula and, in particular, with giving answers to the

two open questions.
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It is convenient to give the proof a hierarchical structure. We begin with a very abstract

formulation, perform intermediate steps on a less abstract level and finish the proof

in a final step. On the most abstract level “G-pairs of operators” are introduced and

the verification of the residual based error formula is rather immediate, see section 3.

However, it is a long way to pass from this abstract result to real-life applications. Two

intermediate step in Hilbert space theory (sections 4 and 5) are necessary before we can

perform the proof’s last step (section 6).

In comparison with the previous steps the argumentation of section 6 is rather techni-

cal. It is convenient to illustrate the strategy of the proof at hand of a toy problem.

We consider the operator A◦u = ξ0 · ∇u = ∇ · (ξ◦u), where ξ0 is a fixed unit vector in

R
3 and u ∈ H1(G). Assuming a sufficiently smooth boundary of G, there is a “strong”

trace operator T◦ : H1(G) → L2(∂G) such that

∀φ ∈ C∞(G) :
∫

G

(∇ · (ξ◦u))(x)φ(x)dx +

∫

G

u(x)(ξ◦ · ∇φ)(x)dx

=

∫

∂G

(T◦(u)φ)(ζ) (ξ◦ · n(ζ))ds(ζ), (1.3)

where s(ζ) is the surface measure on ∂G and n(ζ) is the outer unit normal vector at

ζ ∈ ∂G.

The Gauss-like integration by parts formula (1.3) allows to define a “weak” trace of a

function u ∈ H1(Ω): We say that v ∈ L2(Ω) is a “weak trace of u” iff

∀φ ∈ C∞(G) :
∫

G

(∇ · (ξ◦u))(x)φ(x)dx +

∫

G

u(x)(ξ◦ · ∇φ)(x)dx

=

∫

∂G

(vφ)(ζ) (ξ◦ · n(ζ))ds(ζ). (1.4)

What has to be shown in section 6 reads in the present context: If v is a weak trace of

u, then v is the strong trace of u, i.e. v = T◦u.

It is quite clear how to prove this for (1.3) and (1.4): One has to prove that it is possible

to extend any function in C∞
0 (∂+G ∪ ∂−G) to a smooth function defined on G, where

∂±G = {ζ ∈ ∂G : ±ξ◦ · n(ζ) > 0}.

Although the coupling of the (differential) operator A and the boundary operator B− of

(1.1) is in the interesting situations much more complicated - for example, the boundary

operator is ξ-dependent, where ξ ranges in the unit sphere of R
3 - the strategy of the

proof is the same. We specify assumptions on ∂G such that an apropriate extension of

certain, smooth boundary functions is possible and apply Gauss-like integration by parts

formulae then to identify boundary functions with respective strong traces.

2 The Residual Based Error Formula

The hybrid algorithm [5] switches between approximative solutions of RTEs in several

frequency bands. The RTEs are in each frequency band of the form
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1

σ
ξ · ∇u + u = f, on S2 × G, (2.1)

u − ρ̂u′′ = g = (1 − ρ̂) h, for (ξ, ζ) ∈ S− (2.2)

where σ is the positive, constant absorption coefficient, ξ ranges in the unit sphere S2 =

{ξ ∈ R
3 : ξ · ξ = 1} of R

3, u = u(ξ, x) is the unknown (integrated) radiation intensity

in direction ξ at position x ∈ G, where G ⊂ R
3 is the glass’ domain and f is a smooth,

temperature dependent source function. Equation (2.2) is a modified Fresnel boundary

condition for u which applies on the subset S− := {(ξ, ζ) ∈ S2 × ∂G : ξ · n(ζ) < 0}

(where n(ζ) is the outer unit normal vector of G at ζ ∈ ∂G) of the boundary S2 × ∂G.

The reflection coefficient function ρ̂ : [0, 1] → [0, 1] is determined by a Fresnel–type law

and is evaluated at |ξ ·n(ζ)|, h is a smooth temperature dependent source function and

u′′ is the intensity u(ξ′′, ζ) in the reflected direction

ξ′′ = ξ′′(ξ, n(ζ)) = ξ − 2 (ξ · n(ζ)) · n(ζ).

We remark that for the glass cooling application, it is not necessary to take scattering

into account. In cases, where scattering is an important effect, equation (2.1) changes

to 1
σ ξ · ∇u + u − Su = f with a scattering operator S (typically an integral operator

in ξ). With a suitable choice of associated boundary conditions and under appropriate

assumptions on S, a similar development as the one presented here can be carried out.

For the hybrid method [5] approximate solutions u of (2.1), (2.2) are computed. To

decide which of the approximative solutions is closer to the (unique) solution u, the

following residual based error formula is formally derived in [5],

‖u− u‖2 =

∥

∥

∥

∥

u +
1

σ
ξ · ∇u − f

∥

∥

∥

∥

2

L2(S2×G)

+ 2‖B−u − g‖2
∂ , (2.3)

where ‖.‖L2(S2×G) is the standard norm on L
2(S2 × G),

‖u − u‖2 = ‖u− u‖2
L2(S2×G) +

∫

S2×G

|ξ · ∇(u − u)|2 d(ω(ξ), x)

+
1

σ

∫

S2×∂G

|(u − u)(ξ, ζ) − ρ̂(|ξ · n(ζ)|) (u − u)(ξ′′, ζ)|2

1 − ρ̂2(|ξ · n(ζ)|
|ξ · n(ζ)| d(ω(ξ), s(ζ)),

where ω is the standard surface measure on S2, s is the standard surface measure on the

2-manifold ∂G in R
3,

B−u : S2 × ∂G → R,

B−u(ξ, ζ) =







u(ξ, ζ) − ρ̂(|ξ · n(ζ)|) u(ξ′′, ζ) , ξ · n(ζ) < 0

0 , ξ · n(ζ) ≥ 0
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and

‖B−u − g‖2
∂

=
1

σ

∫

S2×∂G

|(B−u − g)(ξ, ζ) − ρ̂(|ξ · n(ζ)|) (B−u − g)(ξ′′, ζ)|2

1 − ρ̂2(|ξ · n(ζ)|

× |ξ · n(ζ)| d(ω(ξ), s(ζ)).

The formal derivation of (2.3) leaves the following questions open.

Q1. For which functions u does (2.3) hold ?

Q2. Some of the integrals of (2.3) involve traces on S2×∂G. Which smoothness require-

ments on ∂G are actually required that such traces exist with reasonable domains and

ranges ?

The answers two both questions are of distinctive importance for the reliability of

the hybrid method. Concerning Q1. it is important to recall that the approximative

solutions u are constructed via formal asymptotic methods. Thus, it is a priori not clear

which minimal regularity properties ensure the validity of (2.3). Concerning Q2. it is

important to recall that in real-life applications the hybrid method must perform well

for very different shapes G of high quality glass. Hence, the existence of reasonable trace

operators for geometries arising in these real-life situations is vital for the reliability of

the hybrid method.

It is the aim of the subsequent sections to derive (2.3) rigorously and, in particular, to

address to the questions Q1. and Q2.

3 G-Pairs of Operators

In this section we prove an auxiliary result which will be needed later on. The point of

view is rather abstract and the connection with the original RTE (2.1), (2.2) is hardly

visible. We give

Definition 1 Let X, Y be Hilbert spaces with respective inner products 〈., .〉X and

〈., .〉Y . Let L1, L2 : X → Y be linear and bounded. The pair (L1, L2) is a “G–pair”,

iff

(a) L1 and L2 are isometries,

(b) there exist closed subspaces Y1, Y2 of Y such that im(L1) ⊆ Y1, im(L2) ⊆ Y2, and

for any pair (y1, y2) ∈ Y1 × Y2, the relation

∀x ∈ X : 〈L1x, y1〉Y = 〈L2x, y2〉Y

implies that there is z ∈ X with L1z = y1 and L2z = y2.

The subspace Y1 (Y2) of (b) is the “G–range of L1 (of L2)”.

Remark 1 The notion “G–pair” is motivated by the fact that, in the case of radiative

transfer problems, properties (a) and (b) in Definition 1 are closely related to a Gauss-like

integration-by-parts formula and its inversion.
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For G–pairs, we have the following result.

Theorem 2 Let X, Y be Hilbert spaces with respective inner products 〈., .〉X and 〈., .〉Y .

Let (L1, L2) be G–pair with respective G–ranges Y1 and Y2. Then

(1) Y1 = im(L1) and Y2 = im(L2).

(2) For each y1 ∈ Y1, the equation L1x = y1 has a unique solution x ∈ X. Moreover,

‖x‖X = ‖y1‖Y and one has the residual based error formula

∀x̄ ∈ X : ‖x − x̄‖X = ‖L1x̄ − y1‖Y .

(3) Respective conclusions apply to the equation L2x = y2, where y2 ∈ Y2.

Proof The proof is carried out for L1 (due to the symmetry in the definition of G–pairs,

the same arguments can be applied to L2). We start by showing that im(L1) is dense in

Y1. Let x ∈ X . If we assume that 〈L1x, y1〉Y = 0 for all x ∈ X we obtain with y2 = 0

∀x ∈ X : 〈L1x, y1〉Y = 〈L2x, y2〉Y .

Thus, there exists z ∈ X such that L1z = y1 and L2z = y2. In particular, L2z = 0

which implies z = 0 because L2 is an isometry and thus injective. We also conclude

y1 = L10 = 0 which shows that the orthogonal complement of im(L1) in Y1 is the zero

space which is equivalent to density of im(L1) in Y1. Using the fact that L1 is an isometry,

im(L1) is closed in Y1, so that im(L1) = Y1. Consequently, the problem L1x = y1 has a

solution for any y1 ∈ Y1 which is unique since L1 is one-to-one. Using again that L1 is

an isometry, we get ‖y1‖Y = ‖L1x‖Y = ‖x‖X and

‖L1x̄ − y1‖
2
Y = ‖L1(x̄ − x)‖2

Y = ‖x̄ − x‖2
X .

4 An Abstract Operator Equation

In this section we reconsider (2.1), (2.2) from a “medium” abstract point of view. The

core of the approach is Hilbert space theory. In particular, we assume

H1 (H, 〈·, ·〉) and (H0, 〈·, ·〉0) and (H∂ , 〈·, ·〉∂) are Hilbert spaces.

H2 A : H → H0 and B+ : H → H∂ and B− : H → H∂ are bounded linear operators.

H3 H∂
− := B−(H) and H∂

+ := B+(H) are closed subspaces of H∂ .

For given f ∈ H0 and g ∈ H∂
− let us consider the prototype operator equation emerging

from (2.1), (2.2),

u + Au = f, B−u = g, (4.1)

with unknown u ∈ H . We are concerned with the question of unique solvability of (4.1)

and the derivation of a residual based error formula. It turns out that, whenever the

operators A, B± and the Hilbert spaces H, H0, H∂ satisfy certain compatibility conditions

(see G0, G1, G2 below), a rather complete analysis follows from Theorem 2. The main

result is
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Theorem 3 Assume H1, H2, H3. Let f ∈ H0 and g ∈ H−
∂ . Furthermore assume

G0 H ⊆ H0 and for all u, v ∈ H,

〈u, v〉 = 〈u, v〉0 + 〈Au, Av〉0 +
〈

B−u, B−v
〉

∂
+

〈

B+u, B+v
〉

∂
. (4.2)

G1 For all u, v ∈ H,

〈u, Av〉0 + 〈Au, v〉0 +
〈

B−u, B−v
〉

∂
−

〈

B+u, B+v
〉

∂
= 0. (4.3)

G2 For all u, ū ∈ H0, u+ ∈ H+
∂ , and u− ∈ H−

∂ : If

∀v ∈ H : 〈u, Av〉0 + 〈ū, v〉0 +
〈

u−, B−v
〉

∂
−

〈

u+, B+v
〉

∂
= 0, (4.4)

then u ∈ H, ū = Au, and u+ = B+u, u− = B−u.

Then

(1) Problem (4.1) has a unique solution u ∈ H,

(2) ‖u‖2 = ‖f‖2
0 + 2‖g‖2

∂.

(3) For all ū ∈ H one has the residual based error formula

‖u− ū‖2 = ‖ū + Aū − f‖2
0 + 2‖B−ū − g‖2

∂ .

(4) The solution u is characterized by

∀v ∈ H : 〈u + Au, v + Av〉 + 2
〈

B−u, B−v
〉

∂
= 〈f, v + Av〉 + 2

〈

g, B−v
〉

∂
.

Proof In order to relate (4.1) to the general result for G-pairs of operators, we set

X : = H, Y : = H0 × H∂ ,

where we equip Y with the scalar product

〈y, z〉Y : = 〈y, z〉0 + 2 〈y∂ , z∂〉∂ , y = (y, y∂) ∈ Y, z = (z, z∂) ∈ Y.

We combine the equations u + Au = f and B−u = g into a single equation via

L1 : =

(

I + A

B−

)

: X → Y.

Note that im(L1) ⊂ H0 ×H− =: Y1, which is a closed subspace of Y . Now, (4.1) has the

simple form: given y1 ∈ Y1 find x ∈ X such that L1x = y1.

The mapping L1 : X → Y is an isometry, because for all x, x̄ ∈ X we have

〈L1x, L1x̄〉Y = 〈(I + A)x, (I + A)x̄〉0 + 2
〈

B−x, B−x̄
〉

∂

= 〈x, x̄〉0 + 〈Ax, Ax̄〉0 + 〈Ax, x̄〉0 + 〈x, Ax̄〉0 + 2
〈

B−x, B−x̄
〉

∂

such that by (4.3), (4.2) the scalar product in X = H is recovered. In the next step, we

show that (L1, L2) is a G–pair, where L2 is the operator complementary to L1,

L2 : =

(

I − A

B+

)

which maps X into the closed subspace Y2 = H0 × H+ of Y . With a similar argument

as above, one verifies that L2 is an isometry.
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While (4.3) is necessary to show this isometry property, the converse relation (4.4) is

required to obtain the second condition for G–pairs. To see this, let y1 = (y1, y1∂)T ∈ Y1,

y2 = (y2, y2∂)T ∈ Y2, and assume that

∀x ∈ X : 〈L1x, y1〉Y = 〈L2x, y2〉Y .

Then, for all x ∈ X

〈x, y1 − y2〉0 + 〈Ax, y1 + y2〉0 +
〈

B−x, 2y1∂

〉

∂
−

〈

B+x, 2y2∂

〉

∂
= 0

from which we deduce with (4.4) that

z =
1

2
(y1 + y2) ∈ X, y1 − y2 = 2Az, y1∂ = B−z, y2∂ = B+z.

We note z+Az = y1 and z−Az = y2 so that y1 = L1z and y2 = L2z. Having checked the

properties of (L1, L2) being a G–pair, an application of Theorem 2 yields statements 1,

2, and 3. For the last statement, we just note that the solution u is clearly the minimizer

of the quadratic functional ū 7→ ‖u − ū‖2. The necessary and sufficient condition of

vanishing directional derivatives gives rise to the weak formulation.

5 Assumptions H1-H3, G0-G2 Revisited

If one tries to prove the residual based error formula (2.3) by means of theorem (3)

one will immediately realize that the verification of H1-H3, G0-G2 requires more or less

subtle combinations of abstract Hilbert space theory and data-dependent arguments (like

integrations by parts formulae and trace operators).

In order to separate these different aspects (and, thus, to improve readability) we have

to reformulate assumptions H1-H3, G0-G2 in such a way that the new assumptions allow

for a more direct verification in case of the RTE (2.1), (2.2).

The assumptions are as follows.

B0 (H0, 〈., .〉0) is a Hilbert space.

B1 Haux is a linear subspace of H0. A1 : Haux → H0 is a closed linear operator.

Remark 2 a) For the RTE we have H0 = L
2(S2×G) (equipped with the canonical inner

product) and A1u = 1
σ ξ · ∇u.

b) We shall put A = A1 � H after having defined H ⊆ H0.

c) For the RTE the space Haux is the set of all u ∈ L
2(S2 ×G) with ξ · ∇u ∈ L

2(S ×G).

d) In B1 the space Haux is equipped with the trace inner product of H0. Later on we will

introduce the “canonical” inner product 〈., .〉aux on Haux via

〈u, v〉aux : = 〈u, v〉0 + 〈A1u, A1v〉0 .

e) Since A1 is a closed operator we can deduce from B0, B1 that (Haux, 〈., .〉aux) is a

Hilbert space (following [3]).

We require a “trace” operator T .

B2 Z is a vector space.
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B3 T : Haux → Z is linear.

Remark 3 For the RTE we have Z = L
1
loc(d|o|), where d|o| is the measure density

|(ξ · n(ζ)| d(ω(ξ), s(ζ)) on the set of all Borel measurable subsets of S2 × ∂G .

We assume

B4 (V, 〈., .〉V ) is a Hilbert space and V ⊆ Z.

Remark 4 For the RTE we will have V = L
2(d|o|).

We introduce the set

H := T−1[V ], (5.1)

and assume

B5 TV : H → V, TV (v) = T (v) is closed.

Remark 5 a) In B5, H is equipped with the trace inner product of Haux. The “canon-

ical” inner product 〈., .〉 will be introduced in (5.3).

b) For the RTE, H is the set of all functions of Haux whose trace in S2 × δG belongs to

L
2(S2 × δG).

c) As we shall see later on, B5 is a rather weak assumption for the RTE. In particular

in B5 it is not required that the trace operator maps Haux continuously into a space

Lp(S2 × δG), p ∈ [1,∞).

The Hilbert space H∂ is introduced by means of the operator D.

B6 D : V → V is linear, self-adjoint with operator norm ‖D : V → V ‖ < 1.

Remark 6 For the RTE, D represents the Fresnel reflection operator of the boundary

conditions (2.2).

In the sequel we make use of the linear, bounded, self adjoint operator

F :=
(

id − D2
)−1/2

,

where id is the identity on V . We put

H∂ : = V, 〈w1, w2〉∂ : = 〈Fw1, Fw2〉V , w1, w2 ∈ H∂ . (5.2)

It is quite obvious that (H∂ , 〈., .〉∂) is a Hilbert space which is isometrically isomorphic

to (V, 〈., .〉V ). We put

〈u, v〉 : = 〈u, v〉aux + 〈(id − D)Tu, (id− D)Tv〉∂ . (5.3)

Now we can prove

Lemma 4 Assume B1,. . . ,B6. Then (H, 〈., .〉) is a Hilbert space.
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Proof 〈., .〉 is obviously an inner product on H . Let (un)n∈N be Cauchy sequence in H

with respect to 〈., .〉. Then (un)n∈N is a Cauchy sequence in Haux as well. Hence there is

u∞ ∈ Haux with limn→∞ ‖u∞ − un‖aux = 0. Furthermore, the mapping id−D : V → V

is invertible with bounded inverse. Thus the sequence (Tun)n∈N is a Cauchy sequence in

V . Therefore, there is w∞ ∈ V with limn→∞ ‖w∞ − Tun‖V = 0. Due to closedness of T

(assumption B5), we have w∞ = Tu∞. Hence limn→∞ ‖Tu∞−Tun‖V = 0. This implies

u∞ ∈ H and

lim
n→∞

‖F (id − D)T (u∞ − un)‖V = 0.

Thus limn→∞ ‖u∞ − un‖ = 0.

Now let us introduce the operators B±. We require

B7 U+ is a closed subspace of V .

Remark 7 For the RTE, U+ will be the set of all functions of V vanishing on the set

{(ξ, ζ) ∈ S2 × ∂G : ξ · n(ζ) ≤ 0}.

Let

P+ : V → U+, P− : = id − P+, (5.4)

be the projection onto U+ and onto the orthogonal complement U− of U+, respectively.

We assume the commutation relation

B8 DP+ = P−D.

Remark 8 B8 is equivalent with DP− = P+D.

We note for later reference

Proposition 5 Assume B1,. . . ,B8. Then for all w1, w2 ∈ H∂ ,

〈w1, w2〉∂ =
〈

P+w1, P
+w2

〉

∂
+

〈

P−w1, P
−w2

〉

∂
, (5.5)

and
〈

P+w1, w2

〉

∂
=

〈

P+w1, P
+w2

〉

∂
,

〈

P−w1, w2

〉

∂
=

〈

P−w1, P
−w2

〉

∂
. (5.6)

Proof Due to B8 and due to Remark 8 we have D2P+ = D(DP+) = D(P−D) =

(DP−)D = (P+D)D = P+D2 and D2P− = P−D2. As a consequence, FP + = P+F and

FP− = P−F . Now we deduce from (5.2) since P + + P− = id and P+P− = P−P+ = 0,

the zero operator on V ,

〈w1, w2〉∂ = 〈Fw1, Fw2〉V

=
〈

P+Fw1, P
+Fw2

〉

V
+

〈

P−Fw1, P
−Fw2

〉

V

=
〈

FP+w1, FP+w2

〉

V
+

〈

FP−w1, FP−w2

〉

V

=
〈

P+w1, P
+w2

〉

∂
+

〈

P−w1, P
−w2

〉

∂
.
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The relations in (5.6) follow in analogy.

We set

B+ : = P+(id − D)T, B− : = P−(id − D)T. (5.7)

As in the previous section we put

H+
∂ : = B+(H), H−

∂ : = B−(H).

Finally, we require an integration-by-parts formula of Gauss’ type and its inversion.

B9 For all u, v ∈ H ,

〈u, Av〉0 + 〈Av, u〉0 =
〈

P+Tu, Tv
〉

V
−

〈

P−Tu, Tv
〉

V
.

B10 For all u, ū ∈ H0, u+ ∈ H+, and u− ∈ H−: If

〈u, Av〉0 + 〈ū, v〉0 +
〈

u−, B−v
〉

∂
−

〈

u+, B+v
〉

∂
= 0 ∀v ∈ H, (5.8)

then u ∈ H , ū = Au, and u± = B±u.

Having revisited assumptions G0, G1, G2 we can formulate the main result of this section.

Theorem 6 Assume B0,. . . ,B10 and let A = A1 � H. Furthermore, let f ∈ H0 and

g ∈ H−. Then

(1) Problem (4.1) has a unique solution u ∈ H,

(2) ‖u‖2 = ‖f‖2
0 + 2‖g‖2

∂.

(3) For all ū ∈ H one has the residual based error formula

‖u− ū‖2 = ‖ū + Aū − f‖2
0 + 2‖B−ū − g‖2

∂ .

(4) The solution u ∈ H is characterized by the weak formulation

〈u + Au, v + Av〉 + 2
〈

B−u, B−v
〉

∂
= 〈v + Av, f〉 + 2

〈

B−v, g
〉

∂
∀v ∈ H.

Proof We have to check H0, H1, H2 and G0, G1, G2.

H1: (H0, 〈., .〉0) is by B0 a Hilbert space. As discussed in the context of (5.2), (H∂ , 〈., .〉∂)

is a Hilbert space, too. (H, 〈., .〉) is a Hilbert space due to Lemma 4.

H2: The operator A1 : Haux → H0 is due to remark 2 e) a linear, bounded operator.

Since the norm of H ⊆ Haux is stronger than the norm of Haux, the operator A = A1 � H

is bounded, too. Since id−D is invertible on V , the norm 〈., .〉 is equivalent to the norm

〈., .〉′ : = 〈., .〉aux + 〈T., T.〉∂ .

With respect to the corresponding norm on H , the operator T : H → V is by B5

continuous. Hence, also in case H is equipped with the inner product 〈., .〉, the operator

T : H → V is continuous. Since id−D and P± are continuous mappings of V into V and

since the norm on V is equivalent to the norm ‖.‖∂ , the operators B± = P±(id − D)T :

H → H∂ are linear and bounded.

H3: Since id− D is invertible, we have (id −D)TH = H∂ = V . Hence B±(H∂) = U±,



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

12 M. Junk et al.

which are closed subspaces of V . Since the norms ‖.‖V and ‖.‖∂ are equivalent, U± are

closed subspaces of H∂ as well.

G0: Since V ⊆ Z (due to B4) and since T : Haux → Z, we have H = T−1[V ] ⊆ Haux.

Furthermore, due to B1, we have Haux ⊆ H0. Thus H ⊆ H0 and it remains to verify

(4.2). According to the definition of 〈., .〉, see (5.3), due to the definition of 〈., .〉aux in

remark 2, and due to A = A1 � H , it suffices to prove:

〈(id − D)Tu, (id− D)Tv〉∂ =
〈

B−u, B−v
〉

∂
+

〈

B+u, B+v
〉

∂
, ∀u, v ∈ H. (5.9)

We recall B± = P±(id − D)T , see (5.7), in particular B+ + B− = (id − D)T and

〈B+u, B−v〉∂ = 0 for all u, v ∈ H . This proves (5.9).

G1: We have to verify (4.3) for all u, v ∈ H . Comparing (4.3) with B9, it suffices to

prove
〈

P+Tu, Tv
〉

V
−

〈

P−Tu, Tv
〉

V
=

〈

B+u, B+v
〉

∂
−

〈

B−u, B−v
〉

∂
. (5.10)

Setting ū = Tu, v̄ = Tv and employing (5.2) and the self-adjointness of F−1 (which

follows from B6), we calculate

〈

P+ū, v̄
〉

V
−

〈

P−ū, v̄
〉

V
=

〈

(P+ − P−)ū, v̄
〉

V

=
〈

F−1(P+ − P−)ū, F−1v̄
〉

∂
=

〈

F−2(P+ − P−)ū, v̄
〉

∂
.

Using the identity id − D2 = (id − D)(id + D) and the self-adjointness of id − D (which

again follows from B6), we obtain

〈

F−2(P+ − P−)ū, v̄
〉

∂
=

〈

(id − D2)(P+ − P−)ū, v̄
〉

∂

=
〈

(id − D)(id + D)(P + − P−)ū, v̄
〉

∂
=

〈

(id + D)(P+ − P−)ū, (id − D)v̄
〉

∂
.

Finally, the identity (id + D)(P + − P−) = (P+ − P−)(id − D) (which follows from B8)

yields in connection with proposition 5

〈

(id + D)(P+ − P−)ū, (id − D)v̄
〉

∂
=

〈

(P+ − P−)(id − D)ū, (id − D)v̄
〉

∂

=
〈

(P+(id − D)ū, (id − D)v̄
〉

∂
−

〈

(P−(id − D)ū, (id − D)v̄
〉

∂

=
〈

P+(id − D)ū, P+(id − D)v̄
〉

∂
−

〈

(P−(id − D)ū, P−(id − D)v̄
〉

∂

=
〈

B+u, B+v
〉

∂
−

〈

B−u, B−v
〉

∂
.

G2: Follows from B10.

6 The Rigorous Global Error Estimator

In this section we give a rigorous proof for the residual based error formula (2.3). The

argumentation is settled on the verification of assumptions B0,. . . ,B10 of theorem 6 in

terms of the following geometrical assumptions.

A.1 G ⊆ R
3 is a bounded, non-void domain.

A.2 ∂G = Γsing ∪ δG, where Γsing ∩ δG = ∅ and δG = Γ1 ∪ . . . ∪ ΓN , N ∈ N, where

Γ1, . . . , ΓN are relatively open in ∂G, pairwise disjoint and nonempty.
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A.3 There are for each j ∈ {1, . . . , N} mappings pj : Oj → Γj , nj : Oj → S2,

Oj ⊆ R
d−1 is a non-void, bounded domain, such that

(a) nj , pj ∈ Ck(Oj), for all k ∈ N0.

(b) pj is a homeomorphism whose partial derivatives are linearly independent

at each (t1, . . . , td−1) ∈ Oj .

(c) For all (t1, . . . , td−1) ∈ Oj and for all κ ∈ {1, . . . , d − 1}, the unit vector

nj(t1, . . . , td−1) is orthogonal to (∂κpj)(t1, . . . , td−1).

(d) There is for each compact set K ⊆ Oj a positive number ε(K; j) with
{(

pj − τnj

)

(t1, . . . , td−1) : (t1, . . . , td−1) ∈ K, τ ∈ (0, ε(K; j))
}

⊆ G.

A.4 There is for each j ∈ {1, . . . , N}, for each compact K ⊂ Γj and for each ε ∈ R
+ a

real number mj(K; ε) ∈ R
+ such that for all ξ ∈ S2,

(Γj ∩ D+
ε (K, ξ)) − (0, mj ]ξ ⊆ G, (Γj ∩ D−

ε (K, ξ)) + (0, mj ]ξ ⊆ G,

where D±
ε (K, ξ) := {ζ ∈ K : ±ξ · n(ζ) ≥ ε}.

Remark 9 a) In A.2 only local smoothness properties of G are required, that is, A.2

does not apply to Γsing representing the “singular” parts (edges, corners, boundaries of

smooth parameterizations) of ∂G.

b) The singular part Γsing of ∂G will play no explicit role in the sequel. Nevertheless Γsing

is important: The set δG = ∂G \Γsing has to be “almost all of ∂G” in the sense that the

Gauss integration formula holds for δG replacing ∂G, see assumption A.6 below.

c) Loosely speaking, assumption A.3 expresses the fact that Γj , j ∈ {1, . . . , N}, is a

regular, uniformly smooth part of ∂G, parameterized by pj , equipped with a uniformly

smooth outer normal vector field nj such that G lies locally at one side of Γj .

d) For the sake of a simplified notation it is convenient to introduce the outer normal

vector field along δG with ζ as independent variable,

n : δG → S2, n(ζ) = nj(p
−1
j (ζ)), if ζ ∈ Γj .

e) Assumption A.4 will be needed to define extensions of certain functions with domain

in δG.

f ) Assumption A.4 is trivially satisfied for smooth boundaries ∂G. However, domains G

whose boundary exhibits certain singularities - e.g., cusps - are also allowed.

Henceforth the variable x ranges in G, the variable ζ ranges in δG and the variable

ξ ranges in S2. Integration with respect to the standard measure on S2 is denoted by

“dω(ξ)”.

Aside from geometrical assumptions on G we shall only be concerned with smooth

reflection coefficient functions ρ̂ which exclude total reflections at the boundary, i.e. we

assume that ρ̂ is uniformly bounded away from 1.

A.5 ρ̂ : [0, 1] → [0, 1] is infinitely many times differentiable and there is ρ such that

ρ̂(µ) ≤ ρ < 1 for all µ ∈ [0, 1].
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Remark 10 The treatment of total reflection requires a more involved analysis (see

e.g. (6.3)) which goes beyond the scope of this paper.

In addition to assumptions A.1 - A.5 an integration-by-parts formula is required. Several

auxiliary notations have to be introduced.

We set H0 := L
2(S2 × G), and we identify the inner product 〈., .〉0 with the standard

inner product of L
2(S2 × G). Now, we introduce on the family of all Borel subsets of

S2 × δG the signed measure

o(B) =
1

σ

∫

B

ξ · n(ζ) d(ω(ξ), s(ζ)), (6.1)

where “s(ζ)” is the standard surface measure on δG. By M we denote the set of all Borel

measurable mappings from S2 × δG to R. We introduce the equivalence relation

∀w1, w2 ∈ M : w1 ∼ w2 iff |o| ({w1(ξ, ζ) 6= w2(ξ, ζ)}) = 0.

Let M(o) be the set of all equivalence classes with respect to ∼. We set

L
1
loc(d|o|)

: =

{

w ∈ M(o) : for all compact K ⊆ S2 × δG:

∫

K

|w| d|o|(ξ, ζ) < ∞

}

, (6.2)

where d|o|(ξ, ζ) = 1
σ |ξ · n(ζ)| d(ω(ξ), s(ζ)).

In a similar (standard) way we introduce the Hilbert space (L2(d|o|), 〈., .〉
L2(d|o|)) where

〈w1, w2〉L2(d|o|) : =

∫

S2×δG

w1 w2 d|o|(ξ, ζ), w1, w2 ∈ L
2(d|o|).

Now we define another inner product on L
2(d|o|) via

〈w1, w2〉∂ : =

∫

S2×δG

w1 w2

1 − ρ̂2(|ξ · n(ζ)|)
d|o|(ξ, ζ), w1, w2 ∈ L

2(d|o|). (6.3)

Furthermore, let

Caux :=
{

u ∈ C(S2 × G) : ξ · ∇u ∈ C(S2 × G)
}

,

and we equip

Haux : =
{

u ∈ L
2(S2 × G) : ξ · ∇u ∈ L

2(S2 × G)
}

(6.4)

with the inner product

〈u1, u2〉aux : = 〈u1, u2〉L2(S2×G) +

∫

S2×G

(ξ · ∇u1) (ξ · ∇u2) d(ω(ξ), x). (6.5)

We refer to [4] for

Theorem 7 Assume A.1, A.2, A.3. Then there is a continuous, linear trace operator

T : Haux → L
1
loc(d|o|) such that

∀u ∈ Caux : Tu = u � S2 × δG.

Now we are in the position to formulate
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A.6 For all u1, u2 ∈ H := {u ∈ Haux : Tu ∈ L
2(d|o|)}, we have the integration-by-parts

formula

1

σ

∫

S2×G

(ξ · ∇u1) u2 d(ω(ξ), x) +
1

σ

∫

S2×G

(ξ · ∇u2) u1 d(ω(ξ), x)

=

∫

S2×δG

Tu1 Tu2 do(ξ, ζ).

In order to present the residual based error formula in a compact form, it is convenient

to introduce several operators.

Let “id” be the identity operator on M(o). We introduce for v ∈ M(o),

ρ(v) : S2 × δG → R, ρ(v)(ξ, ζ) = ρ̂(|ξ · n(ζ)|)v(ξ, ζ),

where we trivially have ρ(v) ∈ M(o). Now the operator ρ is defined as

ρ : M(o) → M(o), v 7→ ρ(v). (6.6)

Furthermore, let

Ξrefl : S2 × δG → S2, Ξrefl(ξ, ζ) = ξ − 2(n(ζ) · ξ)n(ζ),

where it is easy to see that Ξrefl(ξ, ζ) · n(ζ) = −ξ · n(ζ) and thus

∀(ξ, ζ) ∈ S2 × δG : |Ξrefl(ξ, ζ) · n(ζ)| = |ξ · n(ζ)|. (6.7)

We introduce the mapping

Vrefl : S2 × δG → S2 × δG, Vrefl(ξ, ζ) = (Ξrefl(ξ, ζ), ζ) .

The function Vrefl is due to the assumed smoothness of n : δG → S2 Lipschitz-

continuous. Thus, Vrefl maps |o|-null sets onto |o|-null sets and therefore the mapping

R : M(o) → M(o), R(w) = w ◦ Vrefl (6.8)

is well-defined. We write for w ∈ M(o) and (ξ, ζ) ∈ S2 × δG,

R(w)(ξ, ζ) = w(Ξrefl(ξ, ζ), ζ) = w(ξ − 2(n(ζ) · ξ)n(ζ), ζ).

We introduce projection operators P± : L
2(d|o|) → L

2(d|o|) as follows: since {(ξ, ζ) ∈

S2 ×δG : ξ ·n(ζ) = 0} is an |o|-null set we can define P±(v) ∈ L
2(d|o|) with v ∈ L

2(d|o|)

for (ξ, ζ) ∈ S2 × δG via

P+(v)(ξ, ζ) =







v(ξ, ζ) if ξ · n(ζ) > 0

0 if ξ · n(ζ) ≤ 0
,

P−(v)(ξ, ζ) =







0 if ξ · n(ζ) ≥ 0

v(ξ, ζ) if ξ · n(ζ) < 0

such that by functional abstraction,

P± : L
2(d|o|) → L

2(d|o|), v 7→ P±(v). (6.9)
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Remark 11 The operators P± are, in fact, orthogonal projections, because due to A.1,

A.2, A.3 the sets U± : = P±[L2(d|o|)] are closed subspaces of L
2(d|o|) and P+ + P− =

idL2(d|o|), P+P− = P−P+ = 0L2(d|o|) and P+P+ = P+, P−P− = P−, where idL2(d|o|) is

the identity operator on L
2(d|o|) and 0L2(d|o|) is the zero mapping on L

2(d|o|).

We set

B := (id − ρR)T, B± := P±(id − ρR)T.

Now, using (6.5) and (6.3), we introduce an inner product on H (see A.6),

〈u1, u2〉 : = 〈u1, u2〉aux + 〈Bu1, Bu2〉∂ .

Now we are in the position to formulate the main result.

Theorem 8 Assume A.1 - A.6. Then, for each f ∈ L
2(S2 × G) and for each g ∈

P−
[

L
2(S2 × δG)

]

, the equation

u + Au = f,

where Au = 1
σ ξ · ∇u, subject to the boundary condition

B−u = g,

has a unique solution u in H, characterized by the weak formulation

〈u + Au, v + Av〉 + 2
〈

B−u, B−v
〉

∂
= 〈v + Av, f〉 + 2

〈

B−v, g
〉

∂
∀v ∈ H.

Furthermore, one has

‖u‖2 = ‖f‖2
L2(S2×G) + 2‖g‖2

∂ ,

and the global error estimate ‖u− u‖2 = ε(u) with

ε(u) = ‖u + Au − f‖2
L2(S2×G) + 2‖B−u − g‖2

∂ , ∀u ∈ H.

Proof of Theorem 8 We shall verify assumptions B0,. . . ,B10 of theorem 6.

B0 We set H0 : = L
2(S2 × G), equipped with the canonical inner product

〈., .〉
L2(S2×G). Thus, (H0, 〈., .〉0) is a Hilbert space.

B1 We define Haux as in (6.4) and we put

A1 : Haux → H0, A1u =
1

σ
ξ · ∇u.

Haux is a linear subspace of H0. Closedness of A1 (with respect to the norm ‖.‖0) follows

from standard properties of generalized derivatives.

B2 Clearly, Z : = L
1
loc(d|o|), see (6.2), is a linear vector space.

B3 The trace operator T : Haux → Z of Theorem 7 is linear.

B4 We set V := L
2(d|o|), equipped with the canonical inner product 〈., .〉

L2(d|o|). Thus,

(V, 〈., .〉V ) is a Hilbert space. Clearly, V ⊆ Z.

B5 Let H as in A.6, i.e. H = {u ∈ Haux : Tu ∈ L
2(d|o|)}. We equip for the moment

H with the trace inner product of Haux. We have to prove that TV : H → L
2(d|o|),

TV u = Tu, is closed. Let us consider a sequence (un)n∈N in H such that

lim
n→∞

‖u∞ − un‖aux + ‖w∞ − Tun‖V = 0
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for some u∞ ∈ H and w∞ ∈ L
2(d|o|). It has to be shown: Tu∞ = w∞. Due to Theorem

7, the mapping T : Haux → L
1
loc(d|o|) is continuous. Hence Tun → Tu∞ in L

1
loc(d|o|).

On the other hand we have Tun → w∞ in L
2(d|o|). Since the topology of L

2(d|o|) is finer

than the topology of L
1
loc(d|o|) (in particular: compatible), we can identify the limits,

thus w∞ = Tu∞.

B6 Let ρ and R be as in (6.6) and (6.8), respectively. We immediately obtain

∀w ∈ M(o) : R2w = w. (6.10)

from A.1, A.2, A.3 and from (6.7), i.e. R is a reflection. Furthermore, we readily deduce

from A.1, A.2, A.3, A.5 and from (6.7) the commutativity of R and ρ, i.e.

∀w ∈ M(o) : (Rρ)(w) = (ρR)(w). (6.11)

Now we are in the position to introduce

D : V → V, Du = (ρR)u, (6.12)

and to prove

Proposition 9 Assume A.1, A.2, A.3, A.5 and let D as in (6.12). Then

(1) D is linear.

(2) D is self-adjoint.

(3) ‖D : V → V ‖ ≤ ρ < 1.

Proof of Proposition 6.12 The linearity of D is obvious. Concerning self-adjointness

it suffices due to (6.11) to prove that ρ and R are self-adjoint. The self-adjointness of

the multiplication-type operator ρ is clear. The self-adjointness of R follows from the

fact that (ξ, ζ) 7→ Vrefl(ξ, ζ) is a (measurable) differentiable bijection on S2 × ∂G with

determinant one. By a similar argument, we prove ‖R : V → V ‖ = 1. On the other hand,

due to A.5, we have ‖ρ : V → V ‖ ≤ ρ. Thus, ‖D : V → V ‖ = ‖ρR : V → V ‖ ≤ ‖ρ :

V → V ‖ ‖R : V → V ‖ ≤ ρ.

B7 We introduce the operators P± as (6.9) and set U+ := P+[V ]. One can argue as

in remark 11 to deduce that U+ is a closed subspace of V .

B8 It is easy to deduce RP + = P−R from (6.7). Furthermore, since ρ is a mul-

tiplication operator with factor function ρ̂(|ξ · n(ζ)|), we have ρP ± = P±ρ. Hence

DP+ = (ρR)P+ = ρ(RP+) = ρ(P−R) = (ρP−)R = (P−ρ)R = P−(ρR) = P−D.

B9 Making use of the definitions of T, P±, B± and of the definitions of the inner

products 〈., .〉V , 〈., .〉∂ we deduce B9 (via A.1 - A.5) from A.6.

B10 We have to prove the “inversion formula” (5.8). The core of the proof is the

validity of the following extension result.

Lemma 10 Assume A.1 - A.4. Furthermore, let w ∈ Cc(S
2 × δG) such that supp(w) ⊆

{(ξ, ζ) ∈ S2 × δG : |ξ ·n(ζ)| > 0}. Then, there is a function wE ∈ Caux with TwE = w.
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Proof of Lemma 10 Due to the linearity of T it suffices to consider supp(w) ⊆ S2 ×Γj

for some j ∈ {1, . . . , N}. Since the support supp(w) of w is a compact subset of {(ξ, ζ) ∈

S2 × Γj : |ξ · n(ζ)| > 0}, there is ε ∈ R
+ such that supp(w) ⊆ {(ξ, ζ) ∈ S2 × Γj :

|ξ · n(ζ)| ≥ ε}. Due to the linearity of T it suffices to consider the cases supp(w) ⊆

{(ξ, ζ) ∈ S2 × Γj : ξ · n(ζ) ≥ ε} or supp(w) ⊆ {(ξ, ζ) ∈ S2 × Γj : ξ · n(ζ) ≤ −ε}. We

consider only the first case here (the second one can be treated in analogy). Let K be

the ξ-projection of supp(w) onto δG. K is a compact subset of Γj . By assumption A.4

there is mj ∈ R
+ such that for all ξ ∈ S2,

L(ξ) = {ζ ∈ δG : (ξ, ζ) ∈ supp(w)} − [0, mj ]ξ

= {ζ ∈ K : (ξ, ζ) ∈ supp(w)} − [0, mj ]ξ ⊆ K ∪ G.

We observe: There is for each ξ ∈ S2 and x ∈ L(ξ) a unique pair (ζ(ξ, x), s(ξ, x)) ∈ Γj ×

[0, mj ] with x = ζ(ξ, x)− s(ξ, x)ξ. Now let us take Φ ∈ C∞
c (R) with supp(Φ) ⊆ [−1, mj ]

and Φ(0) = 1. For fixed ξ ∈ S2 and x ∈ G we define

wE(ξ, x) =







w(ξ, ζ(ξ, x)).Φ(s(ξ, x)) if x ∈ L(ξ)

0 else
.

Then the function wE : S2 × G → R, (ξ, x) 7→ wE(ξ, x) belongs to Caux (we note:

ξ · ∇wE(ξ, x) = w(ξ, ζ(ξ, x))Φ′(s(ξ, x)) if x ∈ L(ξ) and 0 else) with wE � S2 × δG = w.

With the aid of Lemma 10 we can prove B10, i.e. in our context

Theorem 11 Assume A.1 - A.6. Then for all u, v ∈ L
2(S2×G), for all w− ∈ H−

∂ , w+ ∈

H+
∂ : If

∫

S2×G

φ v d(ω(ξ), x) +
1

σ

∫

S2×G

(ξ · ∇φ) u d(ω(ξ), x)

= 〈B+(φ), w+〉H∂
− 〈B−(φ), w−〉H∂

,

for all φ ∈ H, then u ∈ H, v = Au, w+ = B+u, w− = B−u.

Proof Let φ ∈ C∞
c (S2 × G). Then by Theorem 7, Tφ = 0, hence B+φ = B−φ = 0 and

therefore
∫

S2×G

φ v d(ω(ξ), x) +
1

σ

∫

S2×G

(ξ · ∇φ) u d(ω(ξ), x) = 0,

i.e. v = 1
σ ξ · ∇u = A1u, in particular u ∈ Haux. On the other hand we deduce from

Gauss’ integration formula A.6,
∫

S2×G

φ v d(ω(ξ), x) +
1

σ

∫

S2×G

(ξ · ∇φ) u d(ω(ξ), x)

=
〈

B+φ, B+u
〉

∂
−

〈

B−φ, B−u
〉

∂
,

for all φ ∈ H , hence

∀φ ∈ H :
〈

B+φ, B+u − w+
〉

∂
−

〈

B−φ, B−u − w−
〉

∂
= 0.
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We take Ψ ∈ C1
c (S2 × δG) whose support is contained in {ξ · n(ζ) > 0}. Then

Ψ′ = (id + D)(id − D2)−1Ψ ∈ C1
c (S2 × δG).

By Theorem 10 there is φ ∈ H with Tφ = Ψ′. We certainly have (id−D)Tφ = Ψ = B+φ,

B−φ = 0. Hence

∀Ψ ∈ C1
c (S2 × δG) : If supp(Ψ) ⊆ {ξ · n(ζ) > 0}, then

〈

Ψ, B+u − w+
〉

∂
= 0. (6.13)

Since the set of all Ψ satisfying the premise of (6.13) is dense in V , we deduce B+u = w+

from (6.13). The identity B−u = w− follows in analogy. Finally we have (id − D)Tu =

B+u + B−u = w+ + w− ∈ V , from which we readily deduce u ∈ H , thus A1u = Au.

Identifying the operators and norms of Theorem 6 as throughout this subsection, we

obtain the statements of Theorem 8.

Remark 12 The statements of theorem (8) answer the questions Q1. and Q2. in the

following sense. Concerning Q1. we deduce u ∈ H is sufficient to guarantee the validity

of (2.3) (naturally, provided A.1 - A.6 hold). The answer to the “geometric” question

Q2. is less direct, because one has to check for a given geometry whether assumptions

A.1 - A.6 hold. This is seemingly not very inspiring. On the other hand, there are quite

a few “classical” sets G for which assumptions A.1 - A.6 are certainly valid: Polygons,

smooth domains, cylinders, cones, to mention a few. This class of domains certainly

covers real-life needs. On the other hand, it is an open problem whether (2.3) also holds

for domains whose boundary contains cusps. The proof given here cannot be extended to

such geometries because an extension result like (10) is lacking.

7 Conclusion

A recently proposed hybrid method [5] to simulate cooling processes of high quality glass

relies on a residual based error formula for RTEs. We gave a rigorous proof for this error

formula by means of Hilbert space methods and trace arguments. In particular, we showed

that the residual based error formula is reliable for (de facto all) real-life geometries and

therefore rigorously increased the credibility of the proposed hybrid method.
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