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Summary. We consider a mathematical model for polymeric liquids which requires
the solution of high-dimensional Fokker-Planck equations related to stochastic differ-
ential equations. While Monte-Carlo (MC) methods are classically used to construct
approximate solutions in this context, we consider an approach based on Quasi-
Monte-Carlo (QMC) approximations. Although QMC has proved to be superior to
MC in certain integration problems, the advantages are not as pronounced when
dealing with stochastic differential equations. In this article, we illustrate the basic
difficulty which is related to the construction of QMC product measures.
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1 A polymer model

In order to understand the non-Newtonian behavior of polymeric liquids (see
[1] for a list of phenomena), various polymer models have been investigated
in the literature. Here, we consider the so called Rouse chain model [2], in
which sub-strings of the polymer molecules are represented by beads (see
figure 1) and interactions are indicated by connecting springs (even though a
more complicated interaction potential is employed, as specified below). The
geometrical configuration of such a chain is described by specifying all the
connector vectors Qi:=ri+1 − ri, i = 1, . . . , n − 1, where rν , ν = 1, . . . , n
are the position vectors of the beads. Since each of the vectors Qi has three
components, the configuration space is R

s with s = 3(n− 1). For example, a
chain with n = 30 beads requires s = 87 numbers to describe its geometrical
configuration. We assume that many such bead-spring chains are immersed
into a solvent liquid which undergoes a linear flow, for example a shear flow
with velocity field
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Figure 1. Rouse model of a bead-spring chain.
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where β is the constant shear rate. The solvent is considered to exert a drag
force, and a random Brownian force on the chain, and the chain is considered
to interact with itself through a potential which consists of two contributions,
a quadratic attractive part that prevents the beads of the chain from going
very far apart, and a Gaussian repulsive part called the excluded volume
potential [10], that resists any pair of beads from coming very close to each
other. In the following, we list the momentum increment due to the various
forces.

Potential force

The momentum increase of bead ν due to potential forces is given by

dp(φ)
ν := − ∂φ

∂rν
dt, (1)

where

φ:=
1

2

∑

i

HQi ·Qi + kBT
z

d3

n
∑

µ,ν=1

µ6=ν

exp

(

− H

kBT

r2µν

2d2

)

.

Here, H is the spring constant of the attractive part, T is the solvent tem-
perature, kB is Boltzmann’s constant, rµν is the magnitude of the vector
rµν :=rµ − rν , connecting the pair of beads µ and ν, the parameter d controls
the extent of the repulsive potential, and z describes its strength.

Hydrodynamic drag force

This is the force of resistance the bead experiences as it moves through the
solvent. Under the assumption that the beads are spherical in shape, an ex-
pression for this force can be written using Stokes’ law as

F (h)
ν = −ξ · (ṙν − v(rν)).
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According to this law, the force on bead ν is directly proportional to the dif-
ference between the bead velocity ṙν and the velocity of the solution v(rν) at
bead ν. The parameter ξ is the Stokes’ friction coefficient. The corresponding
momentum increment is

dp(h)
ν :=F (h)

ν dt = −ξ · (drν − v(rν) dt).

Brownian force

Due to the thermal fluctuations of the solvent molecules, the bead experiences
a random force and this force is modeled by a Wiener process. The momentum
changes are thus given by

dp(b)
ν :=

√

2kBTξ dW ν

where W ν are independent three dimensional Wiener processes. The factor√
2kBTξ signifies the fact that the energy of the solvent molecules is due to

the temperature of the solvent, T , and this energy influences the collision with
the beads.

Force balance

In our force balance, we neglect interaction between different chains which
amounts to the implicit assumption of a dilute polymeric solution. Also, the
hydrodynamic interaction between the beads will be neglected, i.e. we assume
that the flow field is given by v, even though the presence of the beads leads
to local perturbations. Finally, we assume that inertia forces play a negligible
role in the process. Altogether, the force balance

dp(φ)
ν + dp(h)

ν + dp(b)
ν = 0

gives rise to a system of first order stochastic differential equations

drν =

[

v(rν) − 1

ξ

∂φ

∂rν

]

dt+

√

2kBT

ξ
dWν , ν = 1. . . . , n.

Using the linear relation between the bead position vectors rν and the con-
nector vectors

Qk =
∑

ν

B̄kνrν , B̄kν = δk+1,ν − δk,ν

the system can be reformulated with A = B̄B̄T (see [12] for details)

dQj =

[

v(Qj)−
1

ξ

∑

k

Ajk
∂φ

∂Qk

]

dt+

√

2kBT

ξ

[

∑

ν

B̄jν dWν

]

, j = 1, . . . , n−1.

Combining all connector vectors to a single R
s-vector Q and introducing ob-

vious abbreviations, the system can be written in the compact form

dQ = a(Q) dt+DdW . (2)
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Associated Fokker-Planck equation

Assuming that the Itô process Q is a solution of (2) such that Q(t) possesses,
for each t ≥ 0, a smooth Lebesgue-density ψ(t, q), we show formally, that
ψ is a solution of a Fokker-Planck equation on R

s. To this end, take any
test function f : [0,∞) × R

s → R. Itô’s formula [5] implies (with summation
convention for the indices i, j, k running from 1 to s)

f(t,Q(t)) = f(0,Q(0)) +

∫ t

0

Dij
∂f

∂qi
(s,Q(s)) dWj(s)

+

∫ t

0

(

∂f

∂t
+ ai

∂f

∂qi
+

1

2
DikDjk

∂2f

∂qi∂qj

)

(s,Q(s)) ds.

Computing the expected value of f(t,Q(t)) using the density of Q(t) and
noting that the expected value of the stochastic integral vanishes, we obtain

∫

Rs

f(t, q)ψ(t, q) dq =

∫

Rs

f(0, q)ψ(0, q) dq

+

∫

Rs

∫ t

0

(

∂f

∂t
+ ai

∂f

∂qi
+

1

2
DikDjk

∂2f

∂qi∂qj

)

(s, q)ψ(s, q) ds dq.

Integration by parts allows us to move the derivatives over to the density

∫

Rs

∫ t

0

(

∂ψ

∂t
+

∂

∂qi
(aiψ) − 1

2
DikDjk

∂2ψ

∂qi∂qj

)

(s, q)f(s, q) ds dq = 0

and since f was an arbitrary test function, we see that ψ is a solution of the
Fokker-Planck equation

∂ψ

∂t
+

∂

∂qi
(aiψ) =

1

2
DikDjk

∂2ψ

∂qi∂qj

depending on the high-dimensional variable q = (q1, . . . , qs) ∈ R
s. In our

particular case, the equation has the form

∂ ψ

∂t
= −

n−1
∑

j=1

∂

∂Qj

·
(

κQj −
1

4

n−1
∑

k=1

Ajk
∂φ

∂Qk

)

ψ +
1

4

n−1
∑

j, k=1

Ajk
∂

∂Qj

· ∂ψ

∂Qk

where, ∂/∂Qj · denotes divergence with respect to Qj and ∂ψ/∂Qk the Qk

gradient.

The target quantity

The quantity we are ultimately interested in is the stress tensor τ s + τ p

which characterizes the flow behavior of polymeric liquids. It consists of two
contributions namely, one from the solvent τ s, and the other from the polymer
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τ p. The rheological properties of the polymer solution can be obtained by
calculating the polymer contribution to the stress tensor, which is given by
Kramers expression [2],

τ p:=

∫

Rs

Γ (q)ψ∞(q) dq, Γ (q):= −
n−1
∑

j=1

qj ⊗
∂φ

∂qj

(q). (3)

where ψ∞ is the stationary solution of the Fokker-Planck equation.

Mathematical problem

In view of the above, the mathematical task can be summarized as follows.
We have to solve a system of s stochastic differential equations

dQ = a(Q) dt+DdW , Q(0) = Q0 (4)

and compute the expected value E(Γ (Q(t))) for t→ ∞. Equivalently, we can
solve the Fokker-Planck initial value problem on R

s

∂ψ

∂t
+

∂

∂qi
(aiψ) =

1

2
DikDjk

∂2ψ

∂qi∂qj
, ψ|t=0 = ψ0 (5)

for the density corresponding to Q and compute, for large t,

τ (t) =

∫

Rs

Γ (q)ψ(t, q) dq. (6)

Model problem

To develop ideas, we study an important but simplified version of problem (4)
resp. (5) where the deterministic part a is set to zero. Specifically, we consider
a system of s stochastic differential equations

dzt = dW t, z0 = 0 (7)

with associated Fokker-Planck equation

∂u

∂t
=

1

2
∆u, u|t=0 = δ0 (8)

which is the diffusion equation with Dirac-delta initial value. The target value
is assumed to be of the form

µt = E(g(zt)) =

∫

Rs

g(y)u(t,y) dy (9)

where g is some given function which generalizes Γ in (6).
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2 Meshfree solution methods

Due to the high dimension of the configuration space R
s, traditional methods

like quadrature rules, finite differences or finite elements, are not useful for
the discretization of integral functionals of type (9) or parabolic equations like
(5) or (8). Indeed, the number of node points needed to achieve a prescribed
accuracy with these methods grows exponentially with the dimension which is
referred to as the curse of dimension [9]. The famous approach which breaks
this curse is the Monte Carlo (MC) method. In our context, it is used to
approximately evaluate the integral (9) and to solve (7). Using MC integration,
we obtain

µT = E(g(zT )) ≈ 1

N

N
∑

i=1

g(z̃T (i)) (10)

provided z̃T (1), z̃T (2), . . . are independent pseudo random vectors which are
distributed approximately like the solution zT of (7). Such vectors can be ob-
tained, for example, with the Euler-Maruyama MC method [5]. This straight
forward solution algorithm is based on replacing the differentials d in (7)
with corresponding time differences. Introducing a regular time discretization
tm = mh with m ∈ N0, the Wiener increments W tm+1

− W tm
are nor-

mal distributed with variance equal to the time increment tm+1 − tm = h.
If ỹtm

(1), ỹtm
(2), . . . are independent pseudo random vectors with the same

distribution as the Wiener increments, the Euler-Maruyama method for (7)
reads

z̃tm+1(i) = z̃tm
(i) + ỹtm

(i), z̃0(i) = 0, i = 1, . . . , N. (11)

An alternative to the classical MC methods described above is given by Quasi-
Monte-Carlo (QMC) methods which are in the focus of this article. Partic-
ularly for the integration problem, QMC methods have shown to be supe-
rior to the MC approach under certain assumptions on the integrand. While
the QMC integral approximation also has the form (10), the pseudo random
vectors z̃T (i) are replaced by points ZT (1), . . . ,ZT (N) ∈ R

s with different
properties. To obtain a good approximation by

1

N

N
∑

i=1

g(ZT (i)) ≈ E(g(zT )) =

∫

Rs

g(y)u(T,y) dy,

the points ZT (i) should be constructed in such a way that the associated
point measure

ΠZT
:=

1

N

N
∑

i=1

δZT (i)

is a good approximation of the measure u(t,y) dy. The approximation error
is quantified deterministically in terms of the discrepancy between the two
measures (for details, see [8] and the following section) which is an advantage
compared to MC methods where the quality of the pseudo random vectors is
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checked with less reliable statistical tests. On the other hand, the basic MC
concept of independence is typically not available in the QMC context which
turns out to be a drawback in the construction of the measure approximation
ΠZT

. Following [6, 14], for example, the required points ZT (i) are constructed
from a measure approximation of the solution to (8) which uses the integral
representation in terms of the fundamental solution. The final algorithm has
a form similar to the Euler-Maruyama method (11)

Ztm+1
(i) = Ztm

(i) + Y tm
(P (i)), Z0(i) = 0, i = 1, . . . , N. (12)

In this recursion formula, the vectors Y tm
(1), . . . ,Y tm

(N) should constitute
a point measure approximation ΠY tm

of the measure Gh(y) dy related to the
fundamental solution

Gh(y):=
1

(4πh)
s/2

exp

(

−|y|2
4h

)

, y ∈ R
s (13)

of the diffusion equation at time h > 0. Note that this requirement par-
allels the assumption on the pseudo random vectors ỹtm

(i) in (11) which
must be normal distributed with the same density (13). Also the indepen-

dence of the increments ỹtm
(i) from the states z̃tm

(i) has its parallel in the
QMC algorithm. To explain this point, we recall that independence of ỹtm

(i)
and z̃tm

(i) is equivalent to the condition that the distribution of the pairs
(z̃tm

(i), ỹtm
(i)) ∈ R

2s is the product of the separate distributions. In view of
this, it is not surprising that the permutation P : {1, . . . , N} → {1, . . . , N}
in (12) has to ensure that the pairs (Ztm

(i),Y tm
(P (i))) ∈ R

2s give rise to a
point measure approximation of the product measure ΠZtm

⊗ΠY tm
.

The two requirements on the increments Y tm
(P (1)), . . . ,Y tm

(P (N)) to be
correctly distributed according to (13) and to be suitably independent from
the vectors Ztm

(1), . . . ,Ztm
(N) are essential in the derivation presented in

[6, 14]. Obviously, the main difference to the MC approach is the required
construction of the permutation P to ensure independence, or equivalently, to
ensure the product measure approximation. Unfortunately, this crucial con-
struction is both time consuming (P involves high-dimensional sorting and
quasi-random mixing) and unfavorable for the accuracy of the QMC approach.
In fact, the discrepancy estimate given in [6] indicates a convergence order well
below

√
N in high dimensions, although in practice, the QMC approach is still

somewhat more accurate than the MC version.
A similar observation has been made in [13], and in [14], where the im-

portance of sorting the QMC points before adding the increments Y tm
(i) has

been demonstrated experimentally. Similarly, in [7], the role of sorting the
QMC points is highlighted.

These observations have motivated us to take a closer look at the important
question, how to construct product measures from given QMC point sets.
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3 QMC product measures

In this section, we study the fundamental problem how to construct a point
measure approximation of the Lebesgue measure on the s dimensional unit
cube from two lower dimensional point measure approximations. Our con-
struction is guided by a discrepancy estimate for the resulting product mea-
sure in terms of the two participating measures. The discussion in the previous
section suggests that changing the numbering of the QMC points (using per-
mutations) plays an important role in the construction. This will also become
obvious from the results below.

To introduce the relevant concepts, we first define generalized intervals
[a, b) with a, b ∈ R

s according to

[a, b):=

s
∏

i=1

[ai, bi).

If 0 denotes the zero vector and 1 the vector having a one in each component,
the s-dimensional unit cube Is can be written in the form Is = [0,1). The
set of all sub intervals [0,u), u ∈ Is of the unit interval with 0 as a corner is
denoted R∗

s.
Since we restrict our attention to point measures with equal weights, it

suffices to specify the point locations to uniquely define the measure. Hence,
a point measure on Is is characterized by a mapping X : N → Is on a finite
index set N = {1, . . . , N}. We will employ the usual notation X ∈ J resp.
{X ∈ J} to denote the set of indices {i ∈ N : X(i) ∈ J}. If Cnt is the
counting measure, δX(i) the Dirac measure located at X(i), and B the family
of Borel sets in Is, the point measure associated to X is defined by

ΠX(J):=
1

N

N
∑

i=1

δX(i)(J) =
Cnt(X ∈ J)

Cnt(X ∈ Is)
, J ∈ B.

Notice that ΠX is invariant under permutations, i.e. ΠX = ΠX◦P for every
permutation P : N → N .

The point measure of a set J approximates its s-dimensional Lebesgue
measure λs(J) if the difference

∆(X, J):= |ΠX(J) − λs(J)|

is small. If ∆(X, J) is small for all intervals J ∈ R∗
s , then the point measure

is a good approximation of the Lebesgue measure. The approximation quality
can be measured with the star-discrepancy of X

D∗(X):= sup
J∈R∗

s

∆(X, J).

Since ΠX is invariant under renumbering, we conclude that also the discrep-
ancy satisfies D∗(X) = D∗(X ◦ P ) for every permutation P : N → N .
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The problem we address is the following: Assume X1, X2 are two functions
from N into the unit cubes Is1 respectively Is2 and assume we have some
information about the discrepancies D∗(X1) and D∗(X2). What can we say
about the discrepancy D∗(X) of the measure defined by X = (X1, X2) on the
product cube Is, s = s1 + s2?

The special case X2 = X1 immediately shows that the quality of the
product measure may be arbitrarily bad unless we specify further conditions
on X1 and X2 (in the case X2 = X1 all points will be on the s1-dimensional
diagonal in the 2s1-dimensional product cube, which is far from the Lebesgue
measure, even if X1 has a very small star-discrepancy).

Our assumptions are motivated by the observation that low discrepancy
point sets {X2(1), . . . , X2(N)} can be constructed with a discrepancy estimate
of the form

D∗(X2) ≤
l2(N)

N
, N = Cnt(X2 ∈ Is2) (14)

where l2(N) is of the form c logs(N) with some constant c > 0. However, our
estimates will only use that l2 is a non-negative and non-decreasing function.

Our assumptions on X1 are a generalization of the situation which arises if
we take X1(1), . . . , X1(N) as the first N points of a Faure sequence [3]. This
low discrepancy sequence y1,y2, . . . has the property that any consecutive
subset yk+1,yk+2, . . . ,yk+m gives rise to a point measure with a discrepancy
estimate depending only on the length m of the subset and not on the starting
index k + 1. The estimate is again of the form l1(m)/m with a logarithmic
factor l1. To state our assumptions more precisely, we need

Definition 1. A finite set A ⊂ N is called consecutive if it contains all n ∈ N

between minA and maxA.

Then we assume that

D∗(X1|C) ≤ l1(m)

m
, m = Cnt(C), C ⊂ N consecutive (15)

where l1 is a non-negative and non-decreasing function.
In order to formulate our main discrepancy estimate, we now introduce a

concept which eventually demonstrates why and how the numbering of the
pointsX2(1), . . . , X2(N) affects the quality of the product measure. To explain
the idea, let us take some interval J2 ∈ R∗

s2
and assume that the associated

index set {X2 ∈ J2} has the form

{X2 ∈ J2} = {12, 13, 25, 28, 29, 30}.

This set has several consecutive representations, for example

{12, 13, 25, 28, 29, 30}= {12} ∪ {13} ∪ {25} ∪ {28} ∪ {29, 30},

but only one smallest representation
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{12, 13, 25, 28, 29, 30} = {12, 13} ∪ {25} ∪ {28, 29, 30},

with cc(X2 ∈ J2) = 3 connected components. In this way, we can associate
to each interval J2 the number cc(X2 ∈ J2) of connected components and
the largest number that appears in this process is denoted cc∗(X2). It should
be clear that this value depends on the numbering, i.e. we typically have
cc∗(X2) 6= cc∗(X2 ◦ P ) if P : N → N is a permutation.

In general, it is clear that if A and A′ are consecutive and if A ∩ A′ 6= ∅
then A∪A′ is also consecutive. Using this observation, we can conclude that,
for every finite set A ⊂ N, there exists a unique smallest consecutive repre-
sentation of pairwise disjoint consecutive sets (if the sets were not pairwise
disjoint, one could merge at least two of them violating the minimality; if there
was a different representation with the same number of sets, at least one of
them would intersect two other sets of the original representation which again
violates minimality). This observation allows us to state

Definition 2. The sets of the smallest consecutive representation of a finite

set A ⊂ N are called consecutive components. The number of consecutive

components is denoted cc(A). For X2 : {1, . . . , N} → Is2 with N, s2 ∈ N we

denote

cc∗(X2):= sup
J2∈R∗

s2

cc(X2 ∈ J2).

The proof of the following main result can be found in [4].

Theorem 1. Let Xi : N → Isi , i = 1, 2 be mappings from N = {1, . . . , N}
into the unit cubes Is1 and Is2 with N, s1, s2 ∈ N which satisfy (14) and (15).
Then the star-discrepancy of X = (X1, X2) can be estimated by

D∗(X) ≤ l2(N)

N
+ cc∗(X2)

l1(N)

N
.

Obviously, the discrepancy estimate of Theorem 1 is optimal, if the worst num-
ber of consecutive components cc∗(X2) is as small as possible. Since cc∗(X2)
depends on the numbering of the points, it is also clear that a suitable permu-
tation of the point numbers may improve the quality of the product measure.

3.1 The one-dimensional case

To illustrate the role of sorting in the construction of product measures the
case s2 = 1 is most enlightening.

For example, if X2(1), . . . , X2(N) are the first N members of the Sobol
sequence [11]

0 ,
1

2
,

1

4
,

3

4
,

3

8
,

7

8
,

1

8
,

5

8
,

5

16
,

13

16
, . . .

we find for J2 = [0, 1/2) and N = 10

{X2 ∈ J2} = {1, 3, 5, 7, 9}
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so that the number of consecutive components is cc(X2 ∈ J2) = 5 = N/2.
A similar behavior is observed for larger N in the case J2 = [0, 1/2), i.e. the
number cc(X2 ∈ J2) of consecutive subsets is essentially N/2 which ruins the
estimate of Theorem 1.

However, if we sort the leading N values of the Sobol sequence before
assigning them as values of X2, the situation is much better. In our example
above, the sorted values are

0 ,
1

8
,

1

4
,

5

16
,

3

8
,

1

2
,

5

8
,

3

4
,

13

16
,

7

8

so that
{X2 ∈ J2} = {1, 2, 3, 4, 5}

which is consecutive, i.e. cc(X2 ∈ J2) = 1. More generally, if the points
X2(1), . . . , X2(N) are sorted, or in other words if X2 is a monotone function,
we can find for each J2 = [0, u2) a unique index m such that

{X2 ∈ J2} = {1, . . . ,m}.

and hence cc∗(X2 ∈ J2) = 1. Using Theorem 1, we conclude

Corollary 1. Let X2 be an increasing mapping from N = {1, . . . , N}, N ∈ N

to the unit interval I with a discrepancy estimate of the form (14). Assume fur-

ther that X1 : N → Is1 satisfies (15). Then the discrepancy of X = (X1, X2)
can be estimated by

D∗(X) ≤ l1(N) + l2(N)

N
.

We remark that this result parallels the case mentioned in [14] where the case
s1 = s2 = 1 has been considered with a slightly weaker assumption on the
points X1.

3.2 The general case

We describe the two-dimensional case s2 = 2 to explain the effect of sorting
in higher dimensional situations.

To give a first example, we consider N = 16 points of the two-dimensional
Halton sequence with bases two and three. If we connect consecutive points
with lines, the curve on the left of figure 2 appears. Given an interval of the
form J2 = [0,u2), the consecutive components of {X2 ∈ J2} can then be
visualized in the following way: as before, we connect consecutive points but
now only as long as they are in J2. Whenever a nodeX2(i) ∈ J2 has a successor
outside J2, the curve terminates at X2(i) and a new curve is started at the
smallest index j > i for which again X2(j) ∈ J2. Each snippet obtained in this
way is a connected subset of the original curve and corresponds directly to
a consecutive component of {X2 ∈ J2}. For our example above, the snippets
corresponding to u2 = ( 0.8

0.7 ) are visualized on the right of figure 2.
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Figure 2. Left: the first 16 points of the Halton sequence with bases two and three
connected in the order of appearance. Right: the interval J2 is indicated by the
dashed line and the four consecutive subsets of {X2 ∈ J2} are represented by solid
lines. The snippets of the original curve correspond to the consecutive index sets
{1, . . . , 5}, {7}, {10, 11}, {13, 14}.

From these considerations it should intuitively be clear that a very irreg-
ular curve is generally cut into more snippets by intersection with intervals
than a more regular curve. The idea is therefore to keep the node locations
which assure the required low discrepancy of X2 but to connect them in a
different order, resulting in a more regular curve which leads to less snippets
when cut with an interval. In other words, if X̃2 : N → I2 refers to the orig-
inal node distribution, we try to construct a permutation P : N → N such
that X2 = X̃2 ◦ P gives rise to a better behavior.

Again, this can be achieved by a suitable sorting. To this end, we choose
some m ∈ N, split the unit square into m equal sized columns (m-bins)

Bk:=
[ k

m
,
k + 1

m

)

×
[

0, 1
)

, k = 0, . . . ,m− 1

and sort the points in each bin separately with respect to the last component.
Similarly, in the general case, m-bins are sub-intervals which have side length
1/m in the first s2−1 directions and length 1 in direction s2. Sorting is carried
out in each bin with respect to the last component. Connecting the sorted
subsets according to the bin numbers, we obtain a new global numbering of
the points. In our previous example, the corresponding curve is visualized in
figure 3 for the case m = 4. Of course, there are many other ways to connect
the given nodes with reasonable curves. Some more examples are presented
and analyzed in [4].

Using Theorem 1, we can prove that sorting in m-bins allows to produce
reasonable QMC product measures, by estimating cc∗(X2). In other words,
we have to find an upper bound for the number of consecutive components of
sets {X2 ∈ J} with J = [0,u) and u ∈ Is2 . We develop the idea in the case
s2 = 2 and refer to [4] for a rigorous investigation. The idea of the estimate
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Figure 3. The first 16 points of the Halton sequence with bases two and three con-
nected according to the numbering which follows from sorting the second coordinate
in each bin separately (the bins are indicated by vertical dashed lines).

is the following: if k is the number of the bin which contains u, all the bins
to the left of bin Bk are cut by J . In each of these bins Bi, the intersection
J∩Bi contains not more than one consecutive component. Hence, the number
of consecutive components related to J ∩B with B = ∪k−1

i=1 Bi is bounded by
k ≤ m (respectively by ms2−1 in the general case so that m should not be
too large). In the remaining set J\B we could face the worst case that the
curve connecting the points is zig-zagging around the vertical line through
u1. This would give rise to many single-point components (essentially half the
number of points contained in J\B). Hence, m should be as large as possible
because small bins contain fewer points. A balanced estimate is obtained if

m is chosen of the order of N
1

s2 . For the two-dimensional case, this is easy
to see because each of the m =

√
N bins contains essentially N/m =

√
N

points if the points are uniformly distributed, i.e. if the discrepancy of the
point set is reasonably small. Hence the number of consecutive components
can be estimated by cc∗(X2) ≤ m+N/m = O(

√
N). A careful version of this

argument is given in [4] which proves

Theorem 2. Let Xi : N → Isi , i = 1, 2 be mappings from N = {1, . . . , N}
into the unit cubes Is1 and Is2 with N, s1, s2 ∈ N. Assume further that X1, X2

satisfy (14) and (15) and that that the points X2(i) are sorted in m-bins with

m = ⌊N 1
s2 ⌋ + 1. Then the star-discrepancy of X = (X1, X2) satisfies

D∗(X) ≤ l1(N)(1 + s2)

N
1

s2

+
l2(N)(1 + 2l1(N))

N
.

In summary, we can say that sorting plays an essential role in the construction
of QMC product measures. The obtained discrepancy estimate, however, is
quite poor in high dimensions. Among other things, this is due to the fact
that we estimate the worst case error which may not play a big role in specific
applications. Therefore, numerical investigations are necessary to judge about



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

14 M. Junk and G. Venkiteswaran

the practical usefulness of the QMC approach. In the following section, such
questions are addressed.

4 QMC simulations

4.1 The diffusion equation

In order to construct approximate solutions of the model problem (8), we use
a QMC algorithm of the form

Ztm+1
(i) = Ztm

(i) + Y tm
(P (i)), i = 1, . . . , N.

The increment vectors Y tm
are constructed from a suitable low discrepancy

sequence u1,u2,u3, . . . according to the rule

Y tm
(i) =

√
hH−1(umN+i)

where H(z) = (H(z1), . . . , H(zs)) with H given by

H(x):=
1

2

(

1 + erf

(

x√
2

))

where erf(z) =
2√
π

∫ z

0

e−t2dt.

This construction ensures that the increments are properly distributed ac-
cording to (13) and that the condition (15) can be met with Y tm

in place
of X1 (for example, when (uk) is a Faure sequence). As a consequence, the
points Ztm

play the role of X2, so that a renumbering of these points is
required to ensure a reasonable approximation of the product measure. This
renumbering in the form of a permutation P−1 : {1, . . . , N} → {1, . . . , N} can
be constructed by various sorting and mixing procedures based on the com-
ponents of Ztm

. The resulting pairs (Ztm
(P−1(i)),Y tm

(i)), or equivalently
(Ztm

(i),Y tm
(P (i))) are then used to define Ztm+1

recursively. In [14], a fam-
ily of algorithms (denoted QMC(m, r)) has been introduced which differ only
in the construction of the permutation P . For example, QMC(0, r) is based on
a permutation which is constructed by sorting the components of Ztm

(i) with
respect to a bin-structure in the subspace of the first r coordinates. In the
algorithm QMC(m, 0), the sequence u1,u2, . . . of uniformly distributed quasi
random numbers is taken (s+m)-dimensional instead of s-dimensional, where
the first s components are used to define Y tm

and the last m components are
taken to mix Ztm

(i),Y tm
(i) in a quasi-random way (for details see [14]). Fi-

nally, QMC(m, r) represents the algorithm where both mixing and sorting is
performed. The specific case with maximal values for m, r, i.e. QMC(s, s), is
the algorithm proposed in [6]. The higher the values for m, r, the more ex-
pensive the construction of the permutation. Moreover, high values of m, r
restrict the applicability in high dimensions because of hardware limitations.
Therefore, it is important to check whether the algorithms with small m, r
work satisfactorily.
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For a numerical investigation, we consider the diffusion equation (8) with
initial value u0(z) = π−s/2 exp(−|z|2). The exact solution for this problem is

u(z, t) =
1

(π(1 + 2t))
s/2

exp

(

− |z|2
1 + 2t

)

, z ∈ R
s. (16)

Since the discrepancy between the point measure ΠZtm
associated to the

approximate solution and the exact measure u(tm, z)dz is difficult to compute
exactly, we use the following approximation. Instead of comparing the two
measures on all s-dimensional intervals of the form (−∞,ω), we only choose
a large number (10000) of such intervals where ω is normally distributed with
mean 3 and variance 1. Based on this error measure, we compute numerical
convergence rates. For various methods mentioned above, we calculate the
numerical convergence rate for different dimensions taking 100 time steps with
h = 0.0001. The results are given in table 1. The Method MC refers to the
Euler Maruyama method introduced in section 2 From table 1, we conclude

Table 1. Numerical order of convergence for the various methods. NA refers to non
applicability due to memory restrictions.

Method s = 3 s = 6 s = 9 s = 12 s = 50

MC -0.2698 -0.2538 -0.2862 -0.2765 -0.2946

QMC(1, 1) -0.4517 -0.4162 -0.5299 -0.4757 -0.6106

QMC(0, 1) -0.5662 -0.5407 -0.5783 -0.5542 -0.6070

QMC(1, 0) -0.00002 -0.0002 -0.0001 -0.0001 -0.00008

QMC(s, s) -0.4555 NA NA NA NA

QMC(0, s) -0.2149 NA NA NA NA

QMC(s, 0) -0.1715 NA NA NA NA

QMC(3, 2) -0.1699 -0.4100 -0.2268 -0.4627 NA

that algorithm QMC(0, 1) outperforms the others. One can also observe that
algorithm QMC(1, 1) performs well with the only disadvantage of extra mixing
time. Algorithm QMC(1, 0) does not converge at all implying that sorting is
essential for convergence and is in accordance with [7]. We stress that the
numerical order of convergence is only one indication for the performance
of the algorithm but one should also consider the absolute errors. Typical
error plots corresponding to the results presented in table 1 are shown in
figures 4 and 5. In conclusion, we can say that the methods QMC(0, 1) and
QMC(1, 1) seem to be interesting alternatives for the Monte Carlo approach.
Of course, the construction of the required permutation requires additional
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Figure 4. Even though the methods QMC(s, 0) (stars), QMC(3, 2) (circles) show
a poor convergence order compared to the MC method (plus), the absolute error is
still lower for particle numbers N below 106. The results are shown for dimensions
s = 3 (left) and s = 9 (right). The convergence order is obtained as the slope of the
least squares fit: solid line for QMC(s, 0), dashed line for QMC(3, 2), and dashed
dot line for MC.
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Figure 5. The methods QMC(1, 1) (circles) and QMC(0, 1) (stars) clearly outper-
form the Monte Carlo method both in convergence order and in absolute error. The
left plot refers to dimension s = 9 and the right one to s = 12.

computational time but the increased accuracy allows to use lower particle
numbers which balances this disadvantage.

4.2 The polymer model

Based on the previous considerations, we are able to construct approximate
solutions of the polymer problem (5). The QMC algorithm has the form

Qtm+1
(i) = Qtm

(i) + a(Qtm
)h+DY tm

(P (i)), i = 1, . . . , N.
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where the increments Y tm
are defined as specified in the previous section.

The permutation P is constructed according to the algorithm QMC(1, 1). As
initial configuration distribution ψ0, we compare three different choices

• (SN) ψ0(q) = (2π)
−s/2

exp(−|q|2 /2)
• (DD) ψ0(q) = δ0(q)

• (EQ) ψ0(q) = Neq exp (−φ(q)), with φ as in (1) (refer [2]).

The abbreviations SN, DD and EQ stand for standard normal, Dirac delta
and equilibrium distribution respectively. As a result of the simulation, we
consider a component of the integral functional τ (t) defined in (6), where
we replace the exact measure ψ(tm, q) dq by the approximate point measure
ΠQtm

. A typical time evolution is shown in figure 6. If we focus on the sta-
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Figure 6. One component η of the functional τ (t) for different choices of the initial
condition. Left: the case of two beads s = 3 with z = 0.1, β = 1.0 and d = 0.5.
Right: the case of eight beads s = 21 with the same force parameters. Obviously,
the physically relevant stationary value is not influenced by the choice of the initial
value.

tionary part of the curve which yields the required stationary value τ p defined
in (3), we see that the result is noisy with a variation of the order of a few
percent of the stationary value. The noise clearly reduces if we choose more
particles (see figure 7). Compared to the MC result, the QMC algorithm shows
considerably less oscillations. This can be seen in figure 8 where we compare
the results of the algorithms for large t. It is clear that the QMC trajectory
has less oscillations compared to the MC trajectory, meaning that one has to
average MC over several runs to obtain a similar result. The average values
obtained from the three separate runs of MC is shown in figure 8 (right).
At this stage, we have the following situation: MC and QMC both work for
high dimensions, the former can be implemented in a straightforward manner
whereas the latter requires sorting the particle positions at each time step.
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Figure 7. Variation of the component η of τ (t) for large t decreases with increasing
particle number. We indicate the case s = 3 with z = 0.1, β = 1.0 and d = 0.5.
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Figure 8. Component of τ (t) with a single run of MC (left), QMC(1, 1) (middle)
and the average of three separate MC simulations (right) for the case of five beads
s = 12 using 28561 particles with z = 0.1, β = 1.0 and d = 1.0.

The advantage with QMC is that the results have less noise compared to MC,
but the extra processes required to properly represent the diffusion take up
additional time. For the polymer problem, however, this does not contribute
significantly as the evaluation of the function a(q) dominates the total com-
putational time and this is required in both MC and QMC simulations. For
further comparisons, we refer to [13].
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