Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation

Michael Junk* Wen-An Yong ${ }^{\dagger}$

Abstract

In this article, we rigorously investigate the diffusive limit of a velocitydiscrete Boltzmann equation which is used in the lattice Boltzmann method (LBM) to construct approximate solutions of the incompressible NavierStokes equation. Our results apply to LBM collision operators with multiple collision frequencies (generalized lattice Boltzmann) which include the widely used BGK operators.

Keywords. lattice Boltzmann method, Navier-Stokes equation, multiple collision frequencies, diffusive scaling, stability, incompressible limit
AMS subject classifications. 76P05, 76D05, 35B25, 35L45

1 Introduction

In this article, we are concerned with a velocity-discrete Boltzmann equation in the diffusive scaling

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial t}+\frac{1}{\epsilon} c_{i} \cdot \nabla f_{i}=\frac{1}{\epsilon^{2}} J_{i}(f), \quad i=0, \ldots, N, \tag{1}
\end{equation*}
$$

which arises in connection with a numerical method for the incompressible Navier-Stokes equation, the so-called lattice Boltzmann method (LBM) $[6,8]$. The system (1) describes the evolution of a hypothetical gas or liquid in which the atoms can only travel with velocities from the discrete set $\mathcal{V}=\left\{\boldsymbol{c}_{0}, \ldots, \boldsymbol{c}_{N}\right\}$. The particle densities f_{i} specify how many particles have the velocity $\boldsymbol{c}_{i} \in \mathcal{V}$ at time $t \geq 0$ and position $\boldsymbol{x} \in \Omega$. While the left-hand side in (1) describes the transport of the particles, the right-hand side models interaction of the particles by collisions.
Before we specify details of the structure of \mathcal{V} and J, let us briefly mention how the lattice Boltzmann method is related to (1) (for more details, see [14, 15]). Integrating (1) along characteristics, we find

$$
f_{i}\left(t+\Delta t, \boldsymbol{x}+\boldsymbol{c}_{i} \Delta t / \epsilon\right)=f_{i}(t, \boldsymbol{x})+\int_{0}^{\Delta t} \frac{1}{\epsilon^{2}} J_{i}(f)\left(t+s, \boldsymbol{x}+\boldsymbol{c}_{i} s / \epsilon\right) d s .
$$

[^0]Setting $\epsilon=\Delta x, \Delta t=\epsilon \Delta x$, and approximating the integral by the simple rectangle rule with evaluation at the left point of the interval, we obtain

$$
\begin{equation*}
f_{i}\left(t+\Delta t, \boldsymbol{x}+\boldsymbol{c}_{i} \Delta x\right)=f_{i}(t, \boldsymbol{x})+J_{i}(f)(t, \boldsymbol{x}), \tag{2}
\end{equation*}
$$

which is exactly the lattice Boltzmann evolution. If the discrete velocity set \mathcal{V} is chosen in such a way that the set of all integer linear combinations forms a regular lattice $\mathcal{X}=\left\{\sum_{i} n_{i} \boldsymbol{c}_{i}: n_{i} \in \mathbb{Z}\right\}$, then (1) is already completely discretized if \boldsymbol{x} is restricted to $\Delta x \mathcal{X}$. Under suitable conditions on the initial values for (1), it turns out that the average $\boldsymbol{u}=\sum_{i} \boldsymbol{c}_{i} f_{i} / \epsilon$ is an approximate solution of the incompressible Navier-Stokes equation

$$
\begin{equation*}
\operatorname{div} \boldsymbol{u}=0, \quad \frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\nu \Delta \boldsymbol{u},\left.\quad \boldsymbol{u}\right|_{t=0}=\overline{\boldsymbol{u}} . \tag{3}
\end{equation*}
$$

This relation is usually justified by carrying out a formal Chapman-Enskog expansion in ϵ (see, e.g., [11]).
In this article, our aim is to give a rigorous justification of the relation between the continuous version (1) of the lattice Boltzmann equation and the NavierStokes equation (3). This is a classical subject on the diffusive limit of discrete velocity kinetic equations [1, 3, 4, 5]. Our analysis will be in the spirit of $[9,1,2,10,3,4,5]$ but it differs from these results because we concentrate on the collision operators which are used in the lattice Boltzmann method. Our problem is also different from those in $[23,19,25]$ because our limit system consists of incompressible Navier-Stokes equations.
To fix ideas, we will work in a specific two-dimensional situation but the ideas can be transfered to other models and three dimensions. The spatial domain Ω will be the unit torus (i.e. the unit square with periodic boundary conditions) and the velocity set is chosen as in the D2Q9 model (nine velocities in two space dimensions - see Fig. 1) where $\mathcal{V}=\left\{\boldsymbol{c}_{0}, \ldots, \boldsymbol{c}_{8}\right\}$ with $\boldsymbol{c}_{0}=\mathbf{0}$ and

$$
\begin{array}{llll}
\boldsymbol{c}_{1}=\binom{1}{0} & \boldsymbol{c}_{2}=\binom{0}{1} & \boldsymbol{c}_{3}=\binom{-1}{0} & \boldsymbol{c}_{4}=\binom{0}{-1} \\
\boldsymbol{c}_{5}=\binom{1}{1} & \boldsymbol{c}_{6}=\binom{-1}{1} & \boldsymbol{c}_{7}=\binom{-1}{-1} & \boldsymbol{c}_{8}=\binom{1}{-1}
\end{array}
$$

Figure 1: Discrete velocities in the D2Q9 model

To simplify notation, we introduce the Euclidean vector space \mathcal{F} of real valued functions $f: \mathcal{V} \rightarrow \mathbb{R}$ with the canonical scalar product

$$
\langle f, g\rangle=\sum_{\boldsymbol{v} \in \mathcal{V}} f(\boldsymbol{v}) g(\boldsymbol{v}), \quad f, g \in \mathcal{F} .
$$

With the multiplication operators $V_{1}, V_{2}: \mathcal{F} \rightarrow \mathcal{F}$ defined by $\left(V_{i} f\right)(\boldsymbol{v})=$ $v_{i} f(\boldsymbol{v})$, we can form the vector $\boldsymbol{V}=\left(V_{1}, V_{2}\right)^{T}$ and rewrite (1) as equation for $f\left(t, \boldsymbol{x}, \boldsymbol{c}_{i}\right)=f_{i}(t, \boldsymbol{x})$:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{1}{\epsilon} \boldsymbol{V} \cdot \nabla f=\frac{1}{\epsilon^{2}} J(f) . \tag{4}
\end{equation*}
$$

The collision operator $J: \mathcal{F} \rightarrow \mathcal{F}$ is chosen as

$$
J(f)=\mathcal{A}\left(f^{e q}(f)-f\right)
$$

where $\mathcal{A}: \mathcal{F} \rightarrow \mathcal{F}$ is a linear mapping (with properties specified in section 2) and $f^{e q}: \mathcal{F} \rightarrow \mathcal{F}$ is the so-called equilibrium distribution which we choose as in [11]. It depends linearly on the average density $\rho=\langle 1, f\rangle$ and quadratically on the average momentum $\bar{\rho} \boldsymbol{u}=\langle 1, \boldsymbol{V} f\rangle$

$$
f^{e q}(f)=F_{\bar{\rho}}^{e q}(\langle 1, f\rangle,\langle 1, \boldsymbol{V} f\rangle)
$$

with

$$
F_{\bar{\rho}}^{e q}(\rho, \boldsymbol{u} ; \boldsymbol{v})=\left(\rho+3 \bar{\rho} \boldsymbol{u} \cdot \boldsymbol{v}+\bar{\rho}(3 \boldsymbol{u} \cdot \boldsymbol{v})^{2} / 2-3 \bar{\rho}|\boldsymbol{u}|^{2} / 2\right) f^{*}(\boldsymbol{v}) .
$$

The function $f^{*}=F_{\bar{\rho}}^{e q}(1, \mathbf{0})$ is defined by

$$
f^{*}\left(\mathbf{c}_{i}\right)= \begin{cases}4 / 9, & i=0 \\ 1 / 9, & i=1,2,3,4 \\ 1 / 36, & i=5,6,7,8\end{cases}
$$

In the following, we set $\bar{\rho}=1$. As initial data, we choose a small perturbation of the function f^{*}

$$
\begin{equation*}
\left.f\right|_{t=0}=F_{1}^{e q}(1, \epsilon \overline{\boldsymbol{u}})+O\left(\epsilon^{2}\right) \tag{5}
\end{equation*}
$$

where $\overline{\boldsymbol{u}}: \Omega \rightarrow \mathbb{R}^{2}$ is a smooth, divergence-free velocity field. The $O\left(\epsilon^{2}\right)$ term will be specified later to avoid initial-layers. We remark that in lattice Boltzmann simulations, the initial value typically lacks this correction, i.e. $\left.f\right|_{t=0}=F_{1}^{e q}(1, \epsilon \overline{\boldsymbol{u}})$ but we postpone a careful investigation of the resulting initial-layer effects to some future work.
With a careful analysis involving Hilbert expansions, we prove that the solution f^{ϵ} of the initial value problem (4), (5) has the property that $\boldsymbol{u}_{\epsilon} / \epsilon=\left\langle 1, f^{\epsilon}\right\rangle / \epsilon$ differs only by terms of order ϵ^{2} from the solution \boldsymbol{u} of the incompressible Navier-Stokes equation (3) with a viscosity parameter ν being related to an eigenvalue of the operator \mathcal{A}. This result is more precise (for our models) than those in $[1,3,4,5]$. See Theorem 4.1 (Section 4) for details.

2 Collision operator and stability structure

The idea to use collision operators of relaxation type $J(f)=\mathcal{A}\left(f^{e q}(f)-f\right)$ in the lattice Boltzmann approach goes back to [12, 20]. In the multiple-relaxationtime (or generalized) lattice Boltzmann model [13], the operator \mathcal{A} is set up by specifying an orthonormal basis of \mathcal{F} and assuming that \mathcal{A} diagonalizes
in this basis. This approach has shown to be more flexible and stable [18] than the widely used BGK collision operator, where \mathcal{A} is a multiple of the identity $[21,7]$. In the following, we will adopt the multiple-relaxation-time model where the linear operator \mathcal{A} is essentially determined by certain algebraic properties (which reflect physical symmetries and conservation): \mathcal{A} should be symmetric and positive semidefinite, it should commute with 90° rotations and reflections, and the kernel should be generated by the functions $p_{1}(\boldsymbol{v})=1$, $p_{2}(\boldsymbol{v})=v_{1}, p_{3}(\boldsymbol{v})=v_{2}$. Introducing rotation and reflection by the operators $(R f)(\boldsymbol{v})=f\left(-v_{2}, v_{1}\right),(S f)(\boldsymbol{v})=f\left(-v_{1}, v_{2}\right)$, these properties can be written as
i. $\langle\mathcal{A} f, g\rangle=\langle f, \mathcal{A} g\rangle$
ii. $\mathcal{A} R=R \mathcal{A}, \mathcal{A} S=S \mathcal{A}$
iii. \mathcal{A} is positive semidefinite
iv. $\left\{1, v_{1}, v_{2}\right\}$ generates the kernel of \mathcal{A}

It is possible to completely characterize operators \mathcal{A} which satisfy conditions (i) to (iv). This investigation is easily carried out in an orthonormal basis $\left\{q_{1}, \ldots, q_{9}\right\}$ of \mathcal{F} related to eigenvectors of the rotation operator R and the reflection operator S (up to the signs of q_{6}, q_{7}, q_{8} this is the basis used in [13]):

$$
\begin{array}{ll}
q_{1}(\boldsymbol{v})=\frac{1}{3} \\
q_{2}(\boldsymbol{v})=\frac{v_{1}}{\sqrt{6}}, & q_{3}(\boldsymbol{v})=\frac{v_{2}}{\sqrt{6}}, \\
q_{4}(\boldsymbol{v})=\frac{v_{1} v_{2}}{2}, & q_{5}(\boldsymbol{v})=\frac{v_{1}^{2}-v_{2}^{2}}{2}, \quad q_{6}(\boldsymbol{v})=\frac{3 v_{1}^{2}+3 v_{2}^{2}-4}{6}, \\
q_{7}(\boldsymbol{v})=\frac{3 v_{1} v_{2}^{2}-2 v_{1}}{2 \sqrt{3}}, & q_{8}(\boldsymbol{v})=\frac{3 v_{1}^{2} v_{2}-2 v_{2}}{2 \sqrt{3}}, \\
q_{9}(\boldsymbol{v})=\frac{3}{2} v_{1}^{2} v_{2}^{2}-v_{1}^{2}-v_{2}^{2}+\frac{2}{3}
\end{array}
$$

Introducing the orthogonal projectors $\left(Q_{i} f\right)=\left\langle f, q_{i}\right\rangle q_{i}$, we can write (the majority of) all operators satisfying (i) to (iv) in the form

$$
\begin{equation*}
\mathcal{A}=\sum_{i=1}^{9} \lambda_{i} Q_{i}, \quad \lambda_{1}, \lambda_{2}, \lambda_{3}=0, \quad \lambda_{7}=\lambda_{8}, \quad \lambda_{4}, \ldots, \lambda_{9}>0 \tag{6}
\end{equation*}
$$

For later use, we introduce the projection $Q=\sum_{i=1}^{3} Q_{i}$ onto the kernel of \mathcal{A}. Note that

$$
\begin{equation*}
Q f=0 \quad \Longleftrightarrow \quad\langle 1, f\rangle=0, \quad\langle 1, \boldsymbol{V} f\rangle=\mathbf{0} \tag{7}
\end{equation*}
$$

Since the remaining eigenvalues are strictly positive, we can define a pseudo inverse of \mathcal{A} using $P=I-Q$

$$
\mathcal{A}^{\dagger}:=\left(\left.\mathcal{A}\right|_{P(\mathcal{F})}\right)^{-1} P
$$

Note that $\mathcal{A}^{\dagger}: \mathcal{F} \rightarrow \mathcal{F}$ satisfies

$$
\begin{equation*}
Q \mathcal{A}^{\dagger}=\mathcal{A}^{\dagger} Q=0, \quad P \mathcal{A}^{\dagger}=\mathcal{A}^{\dagger} P=\mathcal{A}^{\dagger}, \quad \mathcal{A} \mathcal{A}^{\dagger}=P=\mathcal{A}^{\dagger} \mathcal{A} \tag{8}
\end{equation*}
$$

Another important property of P, Q, \mathcal{A}, and \mathcal{A}^{\dagger} is the preservation of even/odd symmetry. The reason is that all these operators commute with double rotations R^{2} - the building block for the odd/even projections

$$
S_{e}=\frac{1}{2}\left(I+R^{2}\right), \quad S_{o}=\frac{1}{2}\left(I-R^{2}\right)
$$

(note that $\left(S_{e} f\right)(\boldsymbol{v})=(f(\boldsymbol{v})+f(-\boldsymbol{v})) / 2$, and $\left.\left(S_{o} f\right)(\boldsymbol{v})=(f(\boldsymbol{v})-f(-\boldsymbol{v})) / 2\right)$. For example, we have

$$
S_{e} \mathcal{A}=\left(\mathcal{A}+R^{2} \mathcal{A}\right) / 2=\mathcal{A}\left(I+R^{2}\right) / 2=\mathcal{A} S_{e}
$$

so that \mathcal{A} applied to some even function f (i.e. $f=S_{e} f$) is again even: $S_{e} \mathcal{A} f=$ $\mathcal{A} S_{e} f=\mathcal{A} f$. Similarly, one shows that P, Q, \mathcal{A}, and \mathcal{A}^{\dagger} commute with S_{e}, S_{o} and thus preserve odd/even symmetry.
Next, we consider the equilibrium distribution $f^{e q}(f)=F_{1}^{e q}(\langle 1, f\rangle,\langle 1, \boldsymbol{V} f\rangle)$ which can be split into a linear and a quadratic part

$$
\begin{equation*}
f^{e q}(f)=f_{l i n}^{e q}(f)+f_{q u a d}^{e q}(f, f) \tag{9}
\end{equation*}
$$

where

$$
f_{\text {lin }}^{e q}(f)=F_{\text {lin }}^{e q}(\langle 1, f\rangle,\langle 1, \boldsymbol{V} f\rangle), \quad f_{\text {quad }}^{e q}(f, g)=F_{\text {quad }}^{e q}(\langle 1, \boldsymbol{V} f\rangle,\langle 1, \boldsymbol{V} g\rangle)
$$

and

$$
\begin{aligned}
& F_{l i n}^{e q}(\rho, \boldsymbol{u})=(\rho+3 \boldsymbol{u} \cdot \boldsymbol{V}) f^{*} \\
& F_{\text {quad }}^{e q}(\boldsymbol{u}, \boldsymbol{w})=((3 \boldsymbol{u} \cdot \boldsymbol{V})(3 \boldsymbol{w} \cdot \boldsymbol{V}) / 2-3 \boldsymbol{u} \cdot \boldsymbol{w} / 2) f^{*}
\end{aligned}
$$

The functions $F_{l i n}^{e q}, F_{q u a d}^{e q}$ are constructed in such a way that

$$
\begin{equation*}
\left\langle 1, F_{l i n}^{e q}(\rho, \boldsymbol{u})\right\rangle=\rho, \quad\left\langle 1, \boldsymbol{V} F_{l i n}^{e q}(\rho, \boldsymbol{u})\right\rangle=\boldsymbol{u}, \quad\left\langle 1, V_{i} V_{j} F_{l i n}^{e q}(\rho, \boldsymbol{u})\right\rangle=\frac{\rho}{3} \delta_{i j} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle 1,(1, \boldsymbol{V}) F_{q u a d}^{e q}(\boldsymbol{u}, \boldsymbol{w})\right\rangle=(0, \mathbf{0}), \quad\left\langle 1, V_{i} V_{j} F_{q u a d}^{e q}(\boldsymbol{u}, \boldsymbol{w})\right\rangle=\frac{u_{i} w_{j}+u_{j} w_{i}}{2} . \tag{11}
\end{equation*}
$$

Inspecting the definition of $F_{q u a d}^{e q}$, it easily follows that

$$
\begin{equation*}
f_{\text {quad }}^{e q}(f, g)=S_{e} f_{\text {quad }}^{e q}\left(S_{o} f, S_{o} g\right), \quad f_{\text {quad }}^{e q}(f, 0)=0 . \tag{12}
\end{equation*}
$$

Note that, in view of (7) and (10), we have $Q\left(f^{e q}(f)-f\right)=0$ so that for any $\tau>0, \mathcal{A}\left(f^{e q}(f)-f\right)=(Q / \tau+\mathcal{A})\left(f^{e q}(f)-f\right)$. Hence, if we choose $\lambda_{4}=\cdots=$ $\lambda_{9}=1 / \tau$, we obtain the so-called BGK collision operator $J(f)=\left(f^{e q}(f)-f\right) / \tau$ which is frequently used in $\operatorname{LBM}[21,7,8]$ and which will be covered by our considerations.
Introducing the linear part of the collision operator

$$
\begin{equation*}
J_{0}=\mathcal{A}\left(f_{l i n}^{e q}-I\right) \tag{13}
\end{equation*}
$$

we can write

$$
\begin{equation*}
J(f)=J_{0} f+\mathcal{A} f_{q u a d}^{e q}(f, f) \tag{14}
\end{equation*}
$$

We remark that the directional derivative of J at the point $f \in \mathcal{F}$ in direction $h \in \mathcal{F}$ is given by

$$
\begin{equation*}
D J(f) h=J_{0} h+2 \mathcal{A} f_{q u a d}^{e q}(f, h) \tag{15}
\end{equation*}
$$

Finally, let us concentrate on the stability structure of equation (2). We observe that (4) is a symmetric hyperbolic system. However, for stability reasons, we require also some symmetry and definiteness properties of the right-hand side. To achieve this, we need the following result.

Lemma 2.1

Let B_{0} be the positive definite multiplication operator $B_{0} f=f / f^{*}$ and let \mathcal{A} be of the form (6) with $\lambda_{6}=\lambda_{9}$. Then there exist linear operators $P_{k}: \mathcal{F} \rightarrow \mathcal{F}$, $k=1, \ldots, 9$ with adjoints P_{k}^{*} such that

$$
\begin{equation*}
P_{i}^{*} P_{k}=\delta_{i k} P_{k}^{*} P_{k}, \quad B_{0}=\sum_{k=1}^{9} P_{k}^{*} P_{k}, \quad B_{0} J_{0}=-\sum_{k=1}^{9} \lambda_{k} P_{k}^{*} P_{k} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i} J_{0}=0, \quad P_{i} J(f)=0, \quad i=1,2,3 \tag{17}
\end{equation*}
$$

Proof: We first show that $B_{0} J_{0}$ is a symmetric operator. To see this, we introduce the orthogonal subspaces
$U_{4}=\operatorname{span}\left\{q_{4}\right\}, U_{5}=\operatorname{span}\left\{q_{5}\right\}, U_{6}=\operatorname{span}\left\{q_{1}, q_{6}, q_{9}\right\}, U_{7}=\operatorname{span}\left\{q_{2}, q_{3}, q_{7}, q_{8}\right\}$,
and note that $3 f^{*}=q_{1}-q_{6}+q_{9} / 2 \in U_{6}, V_{i} f^{*} \in U_{7}$, and $B_{0} U_{k} \subset U_{k}$. Moreover, because of the assumption $\lambda_{6}=\lambda_{9}$, we have $\mathcal{A} U_{k} \subset U_{k}$. Using a subscript k on $f \in \mathcal{F}$ to denote the projection onto U_{k}, we find

$$
f^{e q}(f)-f=-f_{4}-f_{5}-\left(f_{6}-\left\langle 1, f_{6}\right\rangle f_{6}^{*}\right)-\left(f_{7}-3\left\langle 1, \boldsymbol{V} f_{7}\right\rangle \cdot\left(\boldsymbol{V} f^{*}\right)_{7}\right)
$$

Since

$$
\left\langle f_{6}-\left\langle 1, f_{6}\right\rangle f_{6}^{*}, q_{1}\right\rangle=0, \quad\left\langle f_{7}-3\left\langle 1, \boldsymbol{V} f_{7}\right\rangle \cdot\left(\boldsymbol{V} f^{*}\right)_{7}, q_{i}\right\rangle=0, \quad i=2,3
$$

we conclude

$$
\begin{equation*}
J_{0} f=-\lambda_{4} f_{4}-\lambda_{5} f_{5}-\lambda_{6}\left(f_{6}-\left\langle 1, f_{6}\right\rangle f^{*}\right)-\lambda_{7}\left(f_{7}-3\left\langle 1, \boldsymbol{V} f_{7}\right\rangle \cdot \boldsymbol{V} f^{*}\right) . \tag{18}
\end{equation*}
$$

To show symmetry of $B_{0} J_{0}$ we recall that U_{k} are invariant, orthogonal subspaces of $B_{0} J_{0}$ so that

$$
\left\langle B_{0} J_{0} f, g\right\rangle=\sum_{k=4}^{7}\left\langle B_{0} J_{0} f_{k}, g_{k}\right\rangle
$$

Thus, it remains to show that $\left\langle B_{0} J_{0} f_{k}, g_{k}\right\rangle$ are symmetric expressions in g_{k} and f_{k}. For $k=4,5$ this follows immediately from

$$
\left\langle B_{0} J_{0} f_{k}, g_{k}\right\rangle=-\lambda_{k}\left\langle B_{0} f_{k}, g_{k}\right\rangle=-\lambda_{k}\left\langle B_{0}^{\frac{1}{2}} f_{k}, B_{0}^{\frac{1}{2}} g_{k}\right\rangle, \quad k=4,5
$$

For the other subspaces, we have with $B_{0} f^{*}=1$

$$
\left\langle B_{0} J_{0} f_{6}, g_{6}\right\rangle=-\lambda_{6}\left\langle B_{0}^{\frac{1}{2}} f_{6}, B_{0}^{\frac{1}{2}} g_{6}\right\rangle+\lambda_{6}\left\langle 1, f_{6}\right\rangle\left\langle 1, g_{6}\right\rangle
$$

and

$$
\left\langle B_{0} J_{0} f_{7}, g_{7}\right\rangle=-\lambda_{7}\left\langle B_{0}^{\frac{1}{2}} f_{7}, B_{0}^{\frac{1}{2}} g_{7}\right\rangle+\lambda_{7}\left\langle 1, \boldsymbol{V} f_{7}\right\rangle \cdot\left\langle 1, \boldsymbol{V} g_{7}\right\rangle
$$

We remark that the eigenvectors and eigenvalues of J_{0} can easily be read off from (18). Obvious eigenvectors are q_{4}, \ldots, q_{9} with eigenvalues $-\lambda_{4}, \ldots,-\lambda_{9}$. The remaining three eigenvectors belong to the eigenvalue zero: $f^{*}, V_{1} f^{*}, V_{2} f^{*}$. Using the fact that

$$
B_{0}^{\frac{1}{2}} J_{0} B_{0}^{-\frac{1}{2}}=B_{0}^{-\frac{1}{2}} B_{0} J_{0} B_{0}^{-\frac{1}{2}}
$$

is symmetric and has the same eigenvalues $-\lambda_{k}$ as the operator J_{0}, we can find a basis of orthonormal eigenvectors r_{k}. Using the corresponding orthogonal projectors $R_{k} f=\left\langle f, r_{k}\right\rangle r_{k}$, we have $\sum_{k=1}^{9} R_{k}=I$, and

$$
B_{0}^{\frac{1}{2}} J_{0} B_{0}^{-\frac{1}{2}}=-\sum_{k=1}^{9} \lambda_{k} R_{k}
$$

Defining $P_{k}=R_{k} B_{0}^{\frac{1}{2}}$, relations (16) follow immediately. Finally, to show (17), we observe for $i=1,2,3$

$$
P_{i} J_{0}=R_{i} B_{0}^{\frac{1}{2}} J_{0} B_{0}^{-\frac{1}{2}} B_{0}^{\frac{1}{2}}=-\sum_{k=1}^{9} \lambda_{k} R_{i} R_{k} B_{0}^{\frac{1}{2}}=-\lambda_{i} R_{i} B_{0}^{\frac{1}{2}}=0
$$

In view of (14)

$$
P_{i} J(f)=P_{i} J_{0} f+P_{i} \mathcal{A} f_{q u a d}^{e q}(f, f)=P_{i} \mathcal{A} f_{q u a d}^{e q}(f, f)=R_{i} B_{0}^{\frac{1}{2}} \mathcal{A} f_{\text {quad }}^{e q}(f, f)
$$

Since r_{i} is, for $i=1,2,3$, in the kernel of $J_{0} B^{-\frac{1}{2}}$, we have with suitable coefficients $\alpha_{i}, \boldsymbol{\beta}_{i}$

$$
r_{i}=B_{0}^{\frac{1}{2}}\left(\alpha_{i}+\boldsymbol{\beta}_{i} \cdot \boldsymbol{V}\right) f^{*}=B_{0}^{-\frac{1}{2}}\left(\alpha_{i}+\boldsymbol{\beta}_{i} \cdot \boldsymbol{V}\right) 1
$$

so that with $g=f_{\text {quad }}^{e q}(f, f)$ and the structure of the kernel of \mathcal{A}

$$
\begin{aligned}
P_{i} J(f) & =\left\langle B_{0}^{\frac{1}{2}} \mathcal{A} g, B_{0}^{-\frac{1}{2}}\left(\alpha_{i}+\boldsymbol{\beta}_{i} \cdot \boldsymbol{V}\right) 1\right\rangle r_{i} \\
& =\left\langle\left(\alpha_{i}+\boldsymbol{\beta}_{i} \cdot \boldsymbol{V}\right) 1, \mathcal{A} g\right\rangle=\left\langle\mathcal{A}\left(\alpha_{i}+\boldsymbol{\beta}_{i} \cdot \boldsymbol{V}\right) 1, g\right\rangle=0
\end{aligned}
$$

3 Formal asymptotic expansion

In this section, we generally assume that \mathcal{A} is of the form (6) with $\lambda_{4}=\lambda_{5}=$ $1 /(3 \nu)>0$ for some $\nu>0$. To investigate the asymptotic behavior of initial value problems for (4) in the limit $\epsilon \rightarrow 0$, we introduce a regular expansion $f_{\epsilon} \sim f_{0}+\epsilon f_{1}+\epsilon^{2} f_{2}+\ldots$ with $f_{0}=f^{*}$. Plugging the expansion into (4) and setting $f_{m}=0$ for $m<0$, we obtain in order $\epsilon^{k}, k \geq-1$

$$
\begin{equation*}
\frac{\partial f_{k}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{k+1}-\mathcal{A}\left(f_{l i n}^{e q}\left(f_{k+2}\right)-f_{k+2}+\sum_{p+q=k+2} f_{q u a d}^{e q}\left(f_{p}, f_{q}\right)\right)=0 \tag{19}
\end{equation*}
$$

from which we can determine the expansion coefficients f_{i}. First, we note that in view of (7), (10), and (11),

$$
Q\left(f_{l i n}^{e q}\left(f_{k+2}\right)-f_{k+2}\right)=0, \quad Q f_{q u a d}^{e q}\left(f_{n}, f_{m}\right)=0
$$

Hence,

$$
P\left(f_{l i n}^{e q}\left(f_{k+2}\right)-f_{k+2}\right)=f_{l i n}^{e q}\left(f_{k+2}\right)-f_{k+2}, \quad P f_{q u a d}^{e q}\left(f_{n}, f_{m}\right)=f_{q u a d}^{e q}\left(f_{n}, f_{m}\right)
$$

so that an application of the pseudo inverse \mathcal{A}^{\dagger} to (19), yields in view of (8) for any $k \in \mathbb{Z}$

$$
\begin{equation*}
f_{k}=f_{l i n}^{e q}\left(f_{k}\right)+\sum_{p+q=k} f_{q u a d}^{e q}\left(f_{p}, f_{q}\right)-\mathcal{A}^{\dagger}\left(\frac{\partial f_{k-2}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{k-1}\right) \tag{20}
\end{equation*}
$$

We remark that (20) does not specify f_{k} completely since f_{k} also appears on the right-hand side as argument of $f_{l i n}^{e q}$. Due to the structure of $f_{l i n}^{e q}$, we can also say that (20) determines f_{k} up to the moments $\rho_{k}=\left\langle 1, f_{k}\right\rangle$ and $\boldsymbol{u}_{k}=\left\langle 1, \boldsymbol{V} f_{k}\right\rangle$. To fix these remaining degrees of freedom, we apply Q to (19) which yields $Q\left(\partial_{t} f_{k}+\boldsymbol{V} \cdot \nabla f_{k+1}\right)=0$. In view of (7), we can express this equation also in terms of the moments $\rho_{k}, \boldsymbol{u}_{k}$

$$
\begin{align*}
& \frac{\partial \rho_{k}}{\partial t}+\operatorname{div} \boldsymbol{u}_{k+1}=0 \tag{21}\\
& \frac{\partial \boldsymbol{u}_{k}}{\partial t}+\operatorname{div}\left\langle 1, \boldsymbol{V} \otimes \boldsymbol{V} f_{k+1}\right\rangle=\mathbf{0} \tag{22}
\end{align*}
$$

Here, the symmetric tensor product $\boldsymbol{a} \otimes \boldsymbol{b}$ is defined as the matrix with components $\left(a_{i} b_{j}+a_{j} b_{i}\right) / 2$ and the divergence is applied row-wise.
In order to carry out the expansion, the following result is crucial.

Lemma 3.1

Assume $\left.\rho_{2 m-1}\right|_{t=0}=0,\left.\boldsymbol{u}_{2 m}\right|_{t=0}=\mathbf{0}$ for $m=1,2, \cdots$. Then the expansion coefficients satisfy $S_{e} f_{2 m}=f_{2 m}$, and $S_{o} f_{2 m-1}=f_{2 m-1}$, i.e. $f_{2 m}$ are even functions and $f_{2 m-1}$ are odd functions for all $m \in \mathbb{Z}$. The moments $\rho_{2 m}$ and $\boldsymbol{u}_{2 m-1}$ are solutions of the equation

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}_{2 m-1}}{\partial t}+c_{2 m-1} \operatorname{div} \boldsymbol{u}_{2 m-1} \otimes \boldsymbol{u}_{1}+\frac{1}{3} \nabla \rho_{2 m}=\nu \Delta \boldsymbol{u}_{2 m-1}+\boldsymbol{G}_{2 m-1} \tag{23}
\end{equation*}
$$

with the divergence condition $\operatorname{div} \boldsymbol{u}_{2 m-1}=-\partial_{t} \rho_{2 m-2}$. In the case $m=1$, we have $c_{1}=1$ and $\boldsymbol{G}_{1}=\mathbf{0}$. Otherwise, $c_{2 m-1}=2$ and the source terms $\boldsymbol{G}_{2 m-1}$, $m>1$, depend only on derivatives of $\rho_{k}, \boldsymbol{u}_{k}$ with $k<2 m-1$.

Proof: We prove the symmetry result by induction over m, where we add the additional statement $\rho_{2 m+1}=0$ (which follows from $S_{o} f_{2 m-1}=f_{2 m-1}$ once the proof is carried out and therefore does need to be stated in the lemma). The induction base $m=0$ is quite simple because $f_{-1}=0$ is odd and $f_{0}=f^{*}$ is even. To show that $\rho_{1}=0$, we first exploit relation (20). Taking $k=1$ and keeping in mind that $f_{m}=0$ for $m<0$ as well as (12) with $f_{0}=f^{*}=S_{e} f^{*}$, we conclude $f_{1}=f_{\text {lin }}^{e q}\left(f_{1}\right)$. In view of (10) and the fact that $\boldsymbol{u}_{0}=\left\langle 1, \boldsymbol{V} f^{*}\right\rangle=\mathbf{0}$, (22) yields $\nabla \rho_{1}=\mathbf{0}$ so that ρ_{1} is independent of \boldsymbol{x}. Integrating (21) over the unit torus Ω, we thus get with the help of the divergence theorem

$$
|\Omega| \frac{d \rho_{1}}{d t}=-\int_{\Omega} \operatorname{div} \boldsymbol{u}_{2} d \boldsymbol{x}=0
$$

Since $\rho_{1}=0$ initially, we conclude that $\rho_{1}=0$ for all $t \geq 0$ which completes the base of induction.
The induction step starts with the observation that $f_{2 m+1}$ is odd. This follows from (20) with $k=2 m+1$ because all terms on the right-hand side are odd functions: $f_{\text {lin }}^{e q}\left(f_{2 m+1}\right)$ is odd since $\rho_{2 m+1}=0$ by induction assumption; all quadratic terms $f_{\text {quad }}^{e q}\left(f_{p}, f_{q}\right)$ vanish in view of (12) because if $p+q=2 m+1$ is odd, either p or q has to be even so that $S_{o} f_{q}=0$ or $S_{o} f_{p}=0$; since $f_{2 m-1}$ is odd, the same holds for $\partial_{t} f_{2 m-1}$ and the even symmetry of $f_{2 m}$ leads to odd symmetry of $\boldsymbol{V} \cdot \nabla f_{2 m}$. The fact that \mathcal{A}^{\dagger} preserves the symmetry thus shows that $f_{2 m+1}$ is odd. Using similar arguments in the case $k=2 m+2$ (note that $f_{q u a d}^{e q}\left(f_{p}, f_{q}\right)$ is even according to (12)), we find that $f_{2 m+2}$ is even if and only if $\boldsymbol{u}_{2 m+2}=\mathbf{0}$. Thus, to finish the induction proof, it remains to show that $\boldsymbol{u}_{2 m+2}=\mathbf{0}$ and $\rho_{2 m+3}=0$.
Equation (20) with $k=2 m+3$ and the fact that $f_{2 n}$ are even for $n \leq m$ imply

$$
f_{2 m+3}=f_{l i n}^{e q}\left(f_{2 m+3}\right)+2 f_{q u a d}^{e q}\left(f_{2 m+2}, f_{1}\right)-\mathcal{A}^{\dagger}\left(\frac{\partial f_{2 m+1}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{2 m+2}\right)
$$

In view of (22), we multiply this equation with $v_{i} v_{j}$ and apply $\langle 1, \cdot\rangle$. Using (10), (11), and summation convention for the repeated indices k, l, we obtain

$$
\begin{aligned}
\left\langle 1, V_{i} V_{j} f_{2 m+3}\right\rangle= & \frac{\rho_{2 m+3}}{3} \delta_{i j}+\left(\boldsymbol{u}_{2 m+2}\right)_{i}\left(\boldsymbol{u}_{1}\right)_{j}+\left(\boldsymbol{u}_{2 m+2}\right)_{j}\left(\boldsymbol{u}_{1}\right)_{i} \\
& -\frac{\partial\left(\boldsymbol{u}_{2 m+2}\right)_{k}}{\partial x_{l}}\left\langle 1, V_{i} V_{j} \mathcal{A}^{\dagger}\left(3 V_{k} V_{l} f^{*}\right)\right\rangle
\end{aligned}
$$

By direct calculation, one finds

$$
\begin{array}{ll}
\left\langle\mathcal{A}^{\dagger} V_{1}^{2} 1,3 V_{1}^{2} f^{*}\right\rangle=\frac{1}{3 \lambda_{5}}=\nu, & \left\langle\mathcal{A}^{\dagger} V_{1}^{2} 1,3 V_{2}^{2} f^{*}\right\rangle=-\frac{1}{3 \lambda_{5}}=-\nu, \\
\left\langle\mathcal{A}^{\dagger} V_{2}^{2} 1,3 V_{1}^{2} f^{*}\right\rangle=-\frac{1}{3 \lambda_{5}}=-\nu, & \left\langle\mathcal{A}^{\dagger} V_{2}^{2} 1,3 V_{2}^{2} f^{*}\right\rangle=\frac{1}{3 \lambda_{5}}=\nu, \\
\left\langle\mathcal{A}^{\dagger} V_{1} V_{2} 1,3 V_{1} V_{2} f^{*}\right\rangle=\frac{1}{3 \lambda_{4}}=\nu, &
\end{array}
$$

and $\left\langle\mathcal{A}^{\dagger} V_{i} V_{j} 1,3 V_{k} V_{l} f^{*}\right\rangle=0$ for all other choices of i, j, k and l. We conclude

$$
\operatorname{div}\left\langle 1, \boldsymbol{V} \otimes \boldsymbol{V} f_{2 m+3}\right\rangle=\frac{1}{3} \nabla \rho_{2 m+3}+2 \operatorname{div} \boldsymbol{u}_{2 m+2} \otimes \boldsymbol{u}_{1}-\nu \Delta \boldsymbol{u}_{2 m+2}
$$

Using $\rho_{2 m+1}=0$ from the previous step, we find with (21), (20) that $\rho_{2 m+3}$, $\boldsymbol{u}_{2 m+2}$ are obtained as solutions of the Oseen problem

$$
\operatorname{div} \boldsymbol{u}_{2 m+2}=0, \quad \frac{\partial \boldsymbol{u}_{2 m+2}}{\partial t}+2 \operatorname{div} \boldsymbol{u}_{2 m+2} \otimes \boldsymbol{u}_{1}+\frac{1}{3} \nabla \rho_{2 m+3}=\nu \Delta \boldsymbol{u}_{2 m+2} .
$$

Since the initial data $\left.\rho_{2 m+3}\right|_{t=0}$ and $\left.\boldsymbol{u}_{2 m+2}\right|_{t=0}$ are assumed to be zero, we conclude that $\rho_{2 m+3}=0, \boldsymbol{u}_{2 m+2}=\mathbf{0}$ is the unique solution of this problem (see Lemma 5.1). This completes the induction.
Finally, let us derive the equation satisfied by $\boldsymbol{u}_{2 m-1}$ and $\rho_{2 m}$. The divergence condition is an immediate consequence of (21). To evaluate (22), we note that with (20) applied to $k=2 m$ and $k=2 m-1$

$$
f_{2 m}=\rho_{2 m} f^{*}+c_{2 m-1} f_{\text {quad }}^{e q}\left(f_{2 m-1}, f_{1}\right)-\frac{\partial\left(\boldsymbol{u}_{2 m-1}\right)_{k}}{\partial x_{l}} \mathcal{A}^{\dagger}\left(3 V_{k} V_{l} f^{*}\right)+g_{2 m-1}
$$

where we have collected all terms involving f_{k} with $k<2 m-1$ in

$$
\begin{aligned}
g_{2 m-1}= & \sum_{k=2}^{2 m-2} f_{\text {quad }}^{e q}\left(f_{k}, f_{2 m-k}\right) \\
& -\mathcal{A}^{\dagger}\left(\frac{\partial f_{2 m-2}}{\partial t}-\boldsymbol{V} \cdot \nabla \mathcal{A}^{\dagger}\left(\frac{\partial f_{2 m-3}}{\partial t}-\boldsymbol{V} \cdot \nabla f_{2 m-2}\right)\right) .
\end{aligned}
$$

Introducing the field $\boldsymbol{G}_{2 m-1}=\operatorname{div}\left\langle 1, \boldsymbol{V} \otimes \boldsymbol{V} g_{2 m-1}\right\rangle$, the result follows from (22).

To determine $\boldsymbol{u}_{2 m-1}$ for $m \geq 1$ from (23), appropriate initial conditions are needed. In view of (5), we take

$$
\begin{equation*}
\boldsymbol{u}_{1}(0, \boldsymbol{x})=\overline{\boldsymbol{u}}(\boldsymbol{x}), \quad \boldsymbol{u}_{2 m-1}(0, \boldsymbol{x})=\mathbf{0}, \quad m=2,3, \cdots . \tag{24}
\end{equation*}
$$

To determine $\rho_{2 m}$ for $m \geq 1$ from (23) and thus the expansion, we recall (21) and the periodicity of the data and impose

$$
\begin{equation*}
\int_{\Omega} \rho_{2 m}(t, \boldsymbol{x}) d \boldsymbol{x}=0 . \tag{25}
\end{equation*}
$$

In addition, we remark that (23) is essentially an Oseen problem for the modified velocity field

$$
\tilde{\boldsymbol{u}}_{2 m-1}=\boldsymbol{u}_{2 m-1}-\nabla \Phi, \quad \Delta \Phi=-\partial_{t} \rho_{2 m-2}
$$

which satisfies the incompressibility condition $\operatorname{div} \tilde{\boldsymbol{u}}_{2 m-1}=0$.
By the above formal process, the expansion f_{ϵ} can be constructed completely. However, we do not know how to show the convergence of the expansion. Instead, we are interested in truncated expansions of the form

$$
f_{\epsilon}^{r}=f^{*}+\epsilon f_{1}+\cdots+\epsilon^{r+1} f_{r+1}
$$

with r a positive integer and f_{k} defined by (20) (setting $f_{0}=f^{*}, f_{p}=0$ for $p<0$), where the moments $\left(\boldsymbol{u}_{k}, \rho_{k+1}\right)$ are either set to zero (if k is even) or taken as solution of equation (23) with (24)-(25) (see the appendix for existence and uniqueness results). Inserting the truncated expansion into (4), we find in order ϵ^{k} the left-hand side of (19) where now $f_{p}=0$ for $p>r+1$. By construction of f_{k}, this expression vanishes exactly as long as $k+2 \leq r+1$. Thus, f_{ϵ}^{r} satisfies

$$
\begin{equation*}
\frac{\partial f_{\epsilon}^{r}}{\partial t}+\frac{1}{\epsilon} \boldsymbol{V} \cdot \nabla f_{\epsilon}^{r}-\frac{1}{\epsilon^{2}} J\left(f_{\epsilon}^{r}\right)=\epsilon^{r} \hat{R}_{r} \tag{26}
\end{equation*}
$$

with

$$
\begin{aligned}
& \hat{R}_{r}=\frac{\partial f_{r}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{r+1}-\sum_{p+q=r+2} \mathcal{A} f_{q u a d}^{e q}\left(f_{p}, f_{q}\right) \\
& +\epsilon\left(\frac{\partial f_{r+1}}{\partial t}-\sum_{p+q=r+3} \mathcal{A} f_{q u a d}^{e q}\left(f_{p}, f_{q}\right)\right)-\sum_{k=r+2}^{2 r} \epsilon^{k-r} \sum_{p+q=k+2} \mathcal{A} f_{q u a d}^{e q}\left(f_{p}, f_{q}\right)
\end{aligned}
$$

The averages $\boldsymbol{u}_{\epsilon}^{r}=\left\langle 1, \boldsymbol{V} f_{\epsilon}^{r}\right\rangle$ and $\rho_{\epsilon}^{r}=\left\langle 1, f_{\epsilon}^{r}\right\rangle$ have expressions (because of even/odd symmetry of the coefficients f_{k})

$$
\boldsymbol{u}_{\epsilon}^{r}=\epsilon \boldsymbol{u}_{1}+\epsilon^{3} \boldsymbol{u}_{3}+\ldots, \quad \rho_{\epsilon}^{r}=1+\epsilon^{2} \rho_{2}+\epsilon^{4} \rho_{4}+\ldots
$$

Note that, in view of (23) with $m=1,\left(\boldsymbol{u}_{1}, \rho_{2} / 3\right)$ is the solution of the NavierStokes equation (3).
To investigate the regularity of the truncated expansion, we introduce some notation related to the Sobolev spaces H^{s} with s a non-negative integer. $L^{2}=H^{0}$ is the space of square integrable $\left(\mathcal{F}\right.$ - or \mathcal{F}^{2}-valued) functions on the unit torus Ω. Its norm is denoted by $\|\cdot\|$. For $s>0, H^{s}$ is defined as the space of functions which are in L^{2} together with their distributional \boldsymbol{x}-derivatives of order $\leq s$. We use $\|\cdot\|_{s}$ to denote the norm. In addition, we use $C\left(0, T ; H^{s}\right), A C\left(0, T ; H^{s}\right)$ and $L^{1}\left(0, T ; H^{s}\right)$ to denote the Banach spaces of H^{s}-valued continuous, (locally if $T=+\infty$) absolutely continuous, and (locally if $T=+\infty$) L^{1}-integrable functions on the time interval $[0, T]$, respectively.
For simplicity, we consider only the case where $r=3$. Furthermore, we will often use the following well-known fact (see, e.g., [17]).

Lemma 3.2

Let s_{1}, s_{2} be two non-negative integers and $s_{3}=\min \left\{s_{1}, s_{2}, s_{1}+s_{2}-\sigma_{d}\right\} \geq 0$ where $\sigma_{d}=\lfloor d / 2\rfloor+1=2$ for our two-dimensional case $d=2$. Then the product of functions from $H^{s_{1}}$ and $H^{s_{2}}$ is in $H^{s_{3}}$, i.e.

$$
H^{s_{1}} H^{s_{2}} \subset H^{s_{3}}
$$

where the inclusion symbol \subset indicates the continuity of the embedding.

Lemma 3.3

Assume $s \geq 2$ and $\overline{\boldsymbol{u}} \in H^{s+5}$ with $\operatorname{div} \overline{\boldsymbol{u}}=0$. Then $f_{\epsilon}^{3} \in C\left(0, \infty ; H^{s}\right), \hat{R}_{3} \in$ $L^{1}\left(0, \infty ; H^{s}\right)$, and for every $T>0, \sup _{t \leq T}\left\|\boldsymbol{u}_{\epsilon}^{3}(t)\right\|_{s}=O(\epsilon)$ and $\int_{0}^{T}\left\|\hat{R}_{3}(t)\right\|_{s} d t=$ $O(1)$ as $\epsilon \rightarrow 0$.

Proof: \quad Since $f_{\epsilon}^{3}=\sum_{k=0}^{4} \epsilon^{k} f_{k}, \boldsymbol{u}_{\epsilon}^{3}=\left\langle 1, \boldsymbol{V} f_{\epsilon}^{3}\right\rangle$ and

$$
\hat{R}_{3}=\frac{\partial f_{3}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{4}+\epsilon\left(\frac{\partial f_{4}}{\partial t}-\mathcal{A}^{\dagger} f_{\text {quad }}^{e q}\left(f_{3}, f_{3}\right)\right),
$$

it suffices to show that

$$
\begin{gather*}
f_{1}, f_{2} \in C\left(0, \infty ; H^{s}\right), \quad f_{3} \in A C\left(0, \infty ; H^{s}\right), \tag{27}\\
f_{4} \in A C\left(0, \infty ; H^{s}\right) \cap L^{1}\left(0, \infty ; H^{s+1}\right) .
\end{gather*}
$$

Note that $f_{0}=f^{*}$ is independent of (t, \boldsymbol{x}) and thereby in $C\left(0, \infty ; H^{s}\right)$. In addition, Lemma 3.2 can be used to show that the quadratic term $f_{\text {quad }}^{e q}\left(f_{3}, f_{3}\right)$ is in $C\left(0, \infty ; H^{s}\right)$ if so is f_{3}. To show (27), we consider the equations for $\boldsymbol{u}_{1}, \rho_{2}$, and $\boldsymbol{u}_{3}, \rho_{4}$.
Denote by Π the orthogonal projection of L^{2} onto its closed subspace consisting of all solenoidal vectors. Then the equations for $\left(\boldsymbol{u}_{1}, \rho_{2}\right)$ can be rewritten as

$$
\begin{align*}
\partial_{t} \boldsymbol{u}_{1}+\Pi\left(\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}\right)=\nu \Delta \boldsymbol{u}_{1}, & \Delta \rho_{2}=-3 \operatorname{div}\left(\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}\right), \\
\boldsymbol{u}_{1}(0, \boldsymbol{x})=\overline{\boldsymbol{u}}(\boldsymbol{x}), & \int_{\Omega} \rho_{2}(t, \boldsymbol{x}) d \boldsymbol{x}=0 . \tag{28}
\end{align*}
$$

Because $\overline{\boldsymbol{u}} \in H^{s+5}$ with $\operatorname{div} \overline{\boldsymbol{u}}=0$, we deduce easily from the existence theory in [22] for incompressible Navier-Stokes equations (see also the proof of Lemma 5.1) that

$$
\begin{align*}
& \boldsymbol{u}_{1} \in A C\left(0, \infty ; H^{s+4}\right) \cap C\left(0, \infty ; H^{s+5}\right) \cap L^{1}\left(0, \infty ; H^{s+6}\right), \\
& \rho_{2} \in L^{1}\left(0, \infty ; H^{s+6}\right) \tag{29}
\end{align*}
$$

This implies that $\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1} \in A C\left(0, \infty ; H^{s+3}\right)$, since

$$
\left\|\partial_{t}\left(\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}\right)\right\|_{s+3} \leq C\left\|\partial_{t} \boldsymbol{u}_{1}\right\|_{s+3}\left\|\boldsymbol{u}_{1}\right\|_{s+4}+C\left\|\boldsymbol{u}_{1}\right\|_{s+3}\left\|\partial_{t} \boldsymbol{u}_{1}\right\|_{s+4}
$$

due to Lemma 3.2. Thus, from the equations in (28) and the familiar fact $\left\|\rho_{2}\right\|_{2} \leq C\left\|\Delta \rho_{2}\right\|$ we see that

$$
\begin{equation*}
\rho_{2} \in A C\left(0, \infty ; H^{s+4}\right) \quad \text { and } \quad \partial_{t} u_{1} \in A C\left(0, \infty ; H^{s+2}\right) \tag{30}
\end{equation*}
$$

Similarly, we have $\partial_{t}\left(\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}\right) \in A C\left(0, \infty ; H^{s+1}\right)$ and differentiating the equations in (28) with respect to t gives

$$
\begin{equation*}
\partial_{t} \rho_{2} \in A C\left(0, \infty ; H^{s+2}\right) \quad \text { and } \quad \partial_{t}^{2} \boldsymbol{u}_{1} \in A C\left(0, \infty ; H^{s}\right) ; \tag{31}
\end{equation*}
$$

moreover, $\partial_{t}^{2}\left(\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}\right) \in A C\left(0, \infty ; H^{s-1}\right)$ and

$$
\begin{equation*}
\partial_{t}^{2} \rho_{2} \in A C\left(0, \infty ; H^{s}\right) \tag{32}
\end{equation*}
$$

Now (29) and (30) immediately give

$$
\begin{align*}
& f_{1}=3 \boldsymbol{u}_{1} \cdot \boldsymbol{V} f^{*} \in A C\left(0, \infty ; H^{s+4}\right) \cap L^{1}\left(0, \infty ; H^{s+6}\right), \\
& \partial_{t} f_{1} \in A C\left(0, \infty ; H^{s+2}\right) \tag{33}
\end{align*}
$$

Recall that $f_{2}=\rho_{2} f^{*}+f_{\text {quad }}^{e q}\left(f_{1}, f_{1}\right)-\mathcal{A}^{\dagger}\left(\boldsymbol{V} \cdot \nabla f_{1}\right)$. By using Lemma 3.2, it is easy to see from (29) and (30) that

$$
\begin{aligned}
f_{q u a d}^{e q}\left(f_{1}, f_{1}\right) & \in A C\left(0, \infty ; H^{s+4}\right) \cap C\left(0, \infty ; H^{s+5}\right) \\
\partial_{t} f_{\text {quad }}^{e q}\left(f_{1}, f_{1}\right) & \in A C\left(0, \infty ; H^{s+2}\right)
\end{aligned}
$$

Thus it follows from (29), (30), (33) and (31) that

$$
\begin{align*}
& f_{2} \in A C\left(0, \infty ; H^{s+3}\right) \cap L^{1}\left(0, \infty ; H^{s+5}\right) \\
& \partial_{t} f_{2} \in A C\left(0, \infty ; H^{s+1}\right) \tag{34}
\end{align*}
$$

Next we turn to the equations for \boldsymbol{u}_{3} and ρ_{4} :

$$
\begin{aligned}
\operatorname{div} \boldsymbol{u}_{3}=-\partial_{t} \rho_{2}, & \partial_{t} \boldsymbol{u}_{3}+2 \operatorname{div} \boldsymbol{u}_{3} \otimes \boldsymbol{u}_{1}+\nabla \rho_{4} / 3=\nu \Delta \boldsymbol{u}_{3}+\boldsymbol{G}_{3} \\
\boldsymbol{u}_{3}(0, \boldsymbol{x})=0, & \int_{\Omega} \rho_{4}(t, \boldsymbol{x}) d \boldsymbol{x}=0
\end{aligned}
$$

Let ϕ be such that $\Delta \phi=-\partial_{t} \rho_{2}$ and $\int_{\Omega} \phi(t, \boldsymbol{x}) d \boldsymbol{x}=0$. It follows from (30)-(32) that

$$
\phi \in A C\left(0, \infty ; H^{s+4}\right) \cap L^{1}\left(0, \infty ; H^{s+6}\right), \quad \partial_{t} \phi \in A C\left(0, \infty ; H^{s+2}\right)
$$

Set $\boldsymbol{w}=\boldsymbol{u}_{3}-\nabla \phi$ and $p=\rho_{4} / 3+\partial_{t} \phi+\nu \partial_{t} \rho_{2}$. Then we have

$$
\begin{array}{r}
\operatorname{div} \boldsymbol{w}=\operatorname{div} \boldsymbol{u}_{3}-\Delta \phi=\operatorname{div} \boldsymbol{u}_{3}+\partial_{t} \rho_{2}=0 \\
\partial_{t} \boldsymbol{w}+2 \operatorname{div} \boldsymbol{w} \otimes \boldsymbol{u}_{1}+\nabla p=\nu \Delta \boldsymbol{w}+\boldsymbol{G}_{3}-2 \operatorname{div}\left(\nabla \phi \otimes \boldsymbol{u}_{1}\right) \tag{35}\\
\boldsymbol{w}(0, \boldsymbol{x})=-\nabla \phi(0, \boldsymbol{x}) \in H^{s+3}, \quad \int_{\Omega} p(t, \boldsymbol{x}) d \boldsymbol{x}=0
\end{array}
$$

This is the Oseen problem with an external force $\boldsymbol{h}=\boldsymbol{G}_{3}-2 \operatorname{div}\left(\nabla \phi \otimes \boldsymbol{u}_{1}\right)$. Recall that $\boldsymbol{G}_{3}=\operatorname{div}\left\langle 1, \boldsymbol{V} \otimes \boldsymbol{V} g_{3}\right\rangle$ with

$$
g_{3}=-\mathcal{A}^{\dagger}\left(\frac{\partial f_{2}}{\partial t}-\boldsymbol{V} \cdot \nabla \mathcal{A}^{\dagger}\left(\frac{\partial f_{1}}{\partial t}-\boldsymbol{V} \cdot \nabla f_{2}\right)\right)
$$

We see from (33)-(34) that $\boldsymbol{h} \in A C\left(0, \infty ; H^{s}\right) \cap L^{1}\left(0, \infty ; H^{s+2}\right)$. Thus Lemma 5.1 gives

$$
\boldsymbol{w} \in A C\left(0, \infty ; H^{s+1}\right) \cap L^{1}\left(0, \infty ; H^{s+3}\right), \quad p \in L^{1}\left(0, \infty ; H^{s+3}\right)
$$

On the other hand, $\boldsymbol{w} \otimes \boldsymbol{u}_{1} \in A C\left(0, \infty ; H^{s+1}\right)$ follows from Lemma 3.2 and (29). Taking divergence of (35) gives $\Delta p=\operatorname{div}\left(\boldsymbol{h}-2 \operatorname{div} \boldsymbol{w} \otimes \boldsymbol{u}_{1}\right)$. Thus we also have

$$
p \in A C\left(0, \infty ; H^{s+1}\right)
$$

Recall that $\nabla \phi \in A C\left(0, \infty ; H^{s+3}\right) \cap L^{1}\left(0, \infty ; H^{s+5}\right)$ and that $\partial_{t} \phi+\nu \partial_{t} \rho_{2} \in$ $A C\left(0, \infty ; H^{s+2}\right) \cap L^{1}\left(0, \infty ; H^{s+4}\right)$. Then we have
$\boldsymbol{u}_{3}=\boldsymbol{w}+\nabla \phi, \quad \rho_{4} / 3=p-\left(\partial_{t} \phi+\nu \partial_{t} \rho_{2}\right) \in A C\left(0, \infty ; H^{s+1}\right) \cap L^{1}\left(0, \infty ; H^{s+3}\right)$.

Together with (33) and (34), this gives

$$
\begin{aligned}
& f_{3}=3 \boldsymbol{u}_{3} \cdot \boldsymbol{V} f^{*}-\mathcal{A}^{\dagger}\left(\frac{\partial f_{1}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{2}\right) \in A C\left(0, \infty ; H^{s+1}\right) \cap L^{1}\left(0, \infty ; H^{s+3}\right) \\
& f_{4}=\rho_{4} f^{*}+2 f_{\text {quad }}^{e q}\left(f_{1}, f_{3}\right) \\
&-\mathcal{A}^{\dagger}\left(\frac{\partial f_{2}}{\partial t}+\boldsymbol{V} \cdot \nabla f_{3}\right) \in A C\left(0, \infty ; H^{s}\right) \cap L^{1}\left(0, \infty ; H^{s+2}\right)
\end{aligned}
$$

Hence (27) is verified.
We conclude this section with a more detailed description of f_{ϵ}^{3}.

Lemma 3.4

The truncated expansion f_{ϵ}^{3} coincides up to terms of order ϵ^{3} with the ChapmanEnskog distribution $F_{C E}(p, \boldsymbol{u})$ corresponding to the solution (\boldsymbol{u}, p) of the Navier Stokes equation (3),

$$
F_{C E}(p, \boldsymbol{u})=F_{1}^{e q}(1, \epsilon \boldsymbol{u})+\epsilon^{2}\left(3 p-\frac{9}{2} \nu S[\boldsymbol{u}]:\left(\boldsymbol{V} \otimes \boldsymbol{V}-|\boldsymbol{V}|^{2} / 2\right)\right) f^{*},
$$

where $S_{i j}[\boldsymbol{u}]=\partial_{x_{j}} u_{i}+\partial_{x_{i}} u_{j}$ is the viscous stress tensor and : denotes the matrix scalar product $A: B=\sum_{i j} A_{i j} B_{i j}$.

Proof: According to our construction, $f_{\epsilon}^{3}=f_{0}+\epsilon f_{1}+\epsilon^{2} f_{2}+\mathcal{O}\left(\epsilon^{3}\right)$ with

$$
f_{0}=f^{*}, \quad f_{1}=3 \boldsymbol{u} \cdot \boldsymbol{V} f^{*}, \quad f_{2}=3 p f^{*}+f_{q u a d}^{e q}\left(f_{1}, f_{1}\right)-\mathcal{A}^{\dagger}\left(\boldsymbol{V} \cdot \nabla f_{1}\right)
$$

Since $f_{0}+\epsilon f_{1}=F_{\text {lin }}^{e q}(1, \epsilon \boldsymbol{u})$ and $\epsilon^{2} f_{\text {quad }}^{e q}\left(f_{1}, f_{1}\right)=F_{q u a d}^{e q}(\epsilon \boldsymbol{u}, \epsilon \boldsymbol{u})$, we thus have

$$
f_{\epsilon}^{3}=F_{1}^{e q}(1, \epsilon \boldsymbol{u})+\epsilon^{2}\left(3 p f^{*}-\mathcal{A}^{\dagger}\left(\boldsymbol{V} \cdot \nabla f_{1}\right)+\mathcal{O}\left(\epsilon^{3}\right)\right.
$$

An explicit calculation of $\mathcal{A}^{\dagger}\left(\boldsymbol{V} \cdot \nabla f_{1}\right)$ yields

$$
\mathcal{A}^{\dagger}\left(\boldsymbol{V} \cdot \nabla f_{1}\right)=\nabla \boldsymbol{u}: \mathcal{A}^{\dagger}\left(3 \boldsymbol{V} \otimes \boldsymbol{V} f^{*}\right)=9 \nu \nabla \boldsymbol{u}:\left(\boldsymbol{V} \otimes \boldsymbol{V}-|\boldsymbol{V}|^{2} / 2\right) f^{*}
$$

Since $\boldsymbol{v} \otimes \boldsymbol{v}-|\boldsymbol{v}|^{2} / 2$ is a symmetric matrix, we can replace the Jacobian $\nabla \boldsymbol{u}$ also by its symmetric part $\left(\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}\right) / 2=S[\boldsymbol{u}] / 2$ without changing the matrix scalar product. This completes the proof.

4 Justification of formal approximations

Having constructed formal asymptotic approximations f_{ϵ}^{r} for initial-value problems of (4), we prove in this section the validity of the approximations. The main result is

Theorem 4.1

Suppose $s \geq 2$ is an integer, $\overline{\boldsymbol{u}} \in H^{s+5}$ with $\operatorname{div} \overline{\boldsymbol{u}}=0, \bar{p}$ is the solution of $\Delta p=$ $-\operatorname{div}(\overline{\boldsymbol{u}} \cdot \nabla \overline{\boldsymbol{u}})$ and $\int_{\Omega} p d \boldsymbol{x}=0$, and $T_{0}>0$ is any given finite number. Then the lattice Boltzmann model (4), with \mathcal{A} of the form (6), $\lambda_{4}=\lambda_{5}=1 /(3 \nu)$, $\lambda_{6}=\lambda_{9}$, and initial data

$$
\left.f^{\epsilon}\right|_{t=0}=F_{1}^{e q}(1, \epsilon \overline{\boldsymbol{u}})+\epsilon^{2}\left(3 \bar{p}-\frac{9}{2} \nu S[\overline{\boldsymbol{u}}]:\left(\boldsymbol{V} \otimes \boldsymbol{V}-|\boldsymbol{V}|^{2} / 2\right)\right) f^{*}
$$

has a unique solution $f^{\epsilon} \in C\left(0, T_{0} ; H^{s}\right)$. Moreover, there exist $\epsilon_{0}=\epsilon_{0}\left(T_{0}\right)>0$ and $K=K\left(T_{0}\right)>0$ such that for all positive $\epsilon<\epsilon_{0}$

$$
\left\|f_{\epsilon}^{3}(t)-f^{\epsilon}(t)\right\|_{s} \leq K \epsilon^{3}, \quad t \in\left[0, T_{0}\right]
$$

In particular, the velocity field $\boldsymbol{u}_{\epsilon} / \epsilon=\left\langle 1, \boldsymbol{V} f^{\epsilon}\right\rangle / \epsilon$ coincides with the solution \boldsymbol{u} of the Navier-Stokes equation (3) up to order ϵ^{2} and $\left(\left\langle 1, f^{\epsilon}\right\rangle-1\right) /\left(3 \epsilon^{2}\right)$ with the pressure p up to $O(\epsilon)$:

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{\epsilon} / \epsilon\right\|_{s} \leq K \epsilon^{2}, \quad\left\|p-\left(\left\langle 1, f^{\epsilon}\right\rangle-1\right) /\left(3 \epsilon^{2}\right)\right\|_{s} \leq K \epsilon
$$

The proof of Theorem 4.1.

Since $f^{\epsilon}(0, \cdot) \in H^{s}$ with $s>d / 2=1$, by the local existence theory for IVPs of symmetrizable hyperbolic systems (see [17]), there is a time interval $[0, T]$ so that (4) has a unique H^{s}-solution

$$
f^{\epsilon} \in C\left([0, T], H^{s}\right)
$$

Define

$$
\begin{equation*}
T_{\epsilon}=\sup \left\{T>0: f^{\epsilon} \in C\left([0, T], H^{s}\right)\right\} \tag{36}
\end{equation*}
$$

Namely, $\left[0, T_{\epsilon}\right)$ is the maximal time interval of H^{s} existence. Thanks to the convergence-stability lemma in [24, 25], it suffice to prove the error estimate for $t \in\left[0, \min \left\{T_{0}, T_{\epsilon}\right\}\right)$. Indeed, once the estimate is proved, the lemma can be used to show $T_{\epsilon}>T_{0}$.
To this end, we compute from equations (4) and (26) that the error $E=f_{\epsilon}^{3}-f^{\epsilon}$ satisfies

$$
\frac{\partial E}{\partial t}+\frac{1}{\epsilon} \boldsymbol{V} \cdot \nabla E=\frac{J\left(f_{\epsilon}^{3}\right)-J\left(f^{\epsilon}\right)}{\epsilon^{2}}+\epsilon^{3} \hat{R}_{3}
$$

We differentiate this equation with ∇^{α} (in \boldsymbol{x}) for a multi-index α satisfying $|\alpha| \leq s$ to get with $E_{\alpha}=\nabla^{\alpha} E$

$$
\begin{equation*}
\frac{\partial E_{\alpha}}{\partial t}+\frac{1}{\epsilon} \boldsymbol{V} \cdot \nabla E_{\alpha}=\frac{1}{\epsilon^{2}} J_{0} E_{\alpha}+F_{\alpha}+H_{\alpha} \tag{37}
\end{equation*}
$$

where

$$
F_{\alpha}=\frac{1}{\epsilon^{2}} \nabla^{\alpha}\left(J\left(f_{\epsilon}^{3}\right)-J\left(f^{\epsilon}\right)-J_{0} E\right), \quad H_{\alpha}=\epsilon^{3} \nabla^{\alpha} \hat{R}_{3}
$$

For the sake of clarity, we divide the following arguments into lemmas.

Lemma 4.2

Under the conditions of Theorem 4.1, we have

$$
\frac{d}{d t} \int_{\Omega}\left\langle B_{0} E_{\alpha}, E_{\alpha}\right\rangle d \boldsymbol{x}+C \frac{\left\|P_{I I} E_{\alpha}\right\|^{2}}{\epsilon^{2}} \leq C \epsilon^{3}\left\|E_{\alpha}\right\|\left\|\nabla^{\alpha} \hat{R}_{3}\right\|+C \epsilon^{2}\left\|F_{\alpha}\right\|^{2}
$$

Here $P_{I I}=\sum_{k=4}^{9} P_{k}$, and C denotes a generic constant.

Proof: Applying B_{0} to equation (37) as well as $\left\langle\cdot, E_{\alpha}\right\rangle$ we find (using the fact that B_{0} and $B_{0} V_{j}$ are multiplication operators and thus self-adjoint)

$$
\begin{align*}
& \frac{1}{2} \frac{\partial}{\partial t}\left\langle B_{0} E_{\alpha}, E_{\alpha}\right\rangle+\frac{1}{2 \epsilon} \sum_{j=1}^{d} \frac{\partial}{\partial x_{j}}\left\langle B_{0} V_{j} E_{\alpha}, E_{\alpha}\right\rangle \tag{38}\\
= & \frac{1}{\epsilon^{2}}\left\langle B_{0} J_{0} E_{\alpha}, E_{\alpha}\right\rangle+\left\langle B_{0} F_{\alpha}, E_{\alpha}\right\rangle+\left\langle B_{0} H_{\alpha}, E_{\alpha}\right\rangle .
\end{align*}
$$

Thanks to relations (16) and the fact that $\lambda_{1}, \lambda_{2}, \lambda_{3}=0$, it follows that

$$
\left\langle B_{0} J_{0} E_{\alpha}, E_{\alpha}\right\rangle=-\sum_{k=4}^{9} \lambda_{k}\left\langle P_{k} E_{\alpha}, P_{k} E_{\alpha}\right\rangle \leq-\lambda_{\min }\left\langle P_{I I} E_{\alpha}, P_{I I} E_{\alpha}\right\rangle
$$

where $\lambda_{\text {min }}=\min \left\{\lambda_{k}: k=4, \ldots, 9\right\}$. Setting $P_{I}=\sum_{k=1}^{3} P_{k}$, (17) implies $P_{I} F_{\alpha} \equiv 0$. Thanks to (16), we have

$$
\begin{equation*}
\left\langle B_{0} F_{\alpha}, E_{\alpha}\right\rangle=\sum_{k=4}^{9}\left\langle P_{k} F_{\alpha}, P_{k} E_{\alpha}\right\rangle \leq \frac{\lambda_{\min }}{2} \frac{\left\langle P_{I I} E_{\alpha}, P_{I I} E_{\alpha}\right\rangle}{\epsilon^{2}}+C \epsilon^{2}\left\langle F_{\alpha}, F_{\alpha}\right\rangle \tag{39}
\end{equation*}
$$

Finally,

$$
\left\langle B_{0} H_{\alpha}, E_{\alpha}\right\rangle \leq C\left|E_{\alpha}\right|\left|H_{\alpha}\right|
$$

Thus, integrating (38) with respect to \boldsymbol{x} over Ω, the result follows.

The next Lemma is used to estimate F_{α}.

Lemma 4.3

Set $\triangle(t)=\|E(t)\|_{s} / \epsilon=\left\|f_{\epsilon}^{3}(t)-f^{\epsilon}(t)\right\|_{s} / \epsilon$. Then we have under the conditions of Theorem 4.1 for $|\alpha| \leq s$

$$
\begin{equation*}
\epsilon\left\|F_{\alpha}(t)\right\| \leq C(1+\triangle(t))\|E(t)\|_{s} \tag{40}
\end{equation*}
$$

Proof: Observe

$$
J\left(f_{\epsilon}^{3}\right)-J\left(f^{\epsilon}\right)-J_{0} E=\int_{0}^{1}\left(D J(f(\theta))-J_{0}\right) E d \theta
$$

with $f(\theta)=f_{\epsilon}^{3}+(1-\theta)\left(f^{\epsilon}-f_{\epsilon}^{3}\right)$. From (15), the definition of $F_{q u a d}^{e q}$, and Lemma 3.2, it follows that

$$
\left\|\left(D J(f(\theta))-J_{0}\right) E\right\|_{s} \leq C\|\boldsymbol{u}(\theta)\|_{s}\|E\|_{s}, \quad \boldsymbol{u}(\theta)=\langle 1, \boldsymbol{V} f(\theta)\rangle
$$

Since $\|\boldsymbol{u}(\theta)\|_{s} \leq\left\|\boldsymbol{u}_{\epsilon}^{3}\right\|_{s}+\left\|\boldsymbol{u}^{\epsilon}-\boldsymbol{u}_{\epsilon}^{3}\right\|_{s} \leq C \epsilon+C \epsilon \triangle$, we obtain

$$
\left\|\nabla^{\alpha}\left(J\left(f_{\epsilon}^{3}\right)-J\left(f^{\epsilon}\right)-J_{0} E\right)\right\| \leq C \int_{0}^{1}\|\boldsymbol{u}(\theta)\|_{s} d \theta\|E\|_{s} \leq C \epsilon(1+\triangle)\|E\|_{s}
$$

Hence $\left\|F_{\alpha}\right\| \leq \frac{C(1+\Delta)}{\epsilon}\|E\|_{s}$ and (40) follows.

Substituting (40) into the inequality in Lemma 4.2 yields

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}\left\langle B_{0} E_{\alpha}, E_{\alpha}\right\rangle d x \leq C \epsilon^{3}\left\|E_{\alpha}\right\|\left\|\nabla^{\alpha} \hat{R}_{3}\right\|+C\left(1+\triangle^{2}\right)\|E\|_{s}^{2} \tag{41}
\end{equation*}
$$

Note that $C^{-1}\left\langle E_{\alpha}, E_{\alpha}\right\rangle \leq\left\langle B_{0} E_{\alpha}, E_{\alpha}\right\rangle \leq C\left\langle E_{\alpha}, E_{\alpha}\right\rangle$. We integrate (41) from 0 to T with $[0, T] \subset\left[0, \min \left\{T_{\epsilon}, T_{0}\right\}\right)$ to obtain

$$
\left\|E_{\alpha}(T)\right\|^{2} \leq C \epsilon^{6}+C \epsilon^{3} \int_{0}^{T}\left\|E_{\alpha}(t)\right\|\left\|\nabla^{\alpha} \hat{R}_{3}(t)\right\| d t+C \int_{0}^{T}\left(1+\triangle^{2}\right)\|E(t)\|_{s}^{2} d t
$$

Here we have used $\|E(0)\|_{s}=O\left(\epsilon^{3}\right)$. Summing up this inequality for the multiindex α with $|\alpha| \leq s$, we get

$$
\|E(T)\|_{s}^{2} \leq C \epsilon^{6}+C \epsilon^{3} \int_{0}^{T}\|E(t)\|_{s}\left\|\hat{R}_{3}(t)\right\|_{s} d t+C \int_{0}^{T}\left(1+\triangle^{2}\right)\|E(t)\|_{s}^{2} d t
$$

Denote by $F(T)$ the square root of the right-hand side of the last inequality. We have $\|E(t)\|_{s} \leq F(t), F(0)=O\left(\epsilon^{3}\right)$ and

$$
F(t) F^{\prime}(t)=C \epsilon^{3}\|E(t)\|_{s}\left\|\hat{R}_{3}(t)\right\|_{s}+C\left(1+\triangle^{2}\right)\|E(t)\|_{s}^{2}
$$

Moreover, we have

$$
\begin{equation*}
F^{\prime}(t) \leq C \epsilon^{3}\left\|\hat{R}_{3}(t)\right\|_{s}+C\left(1+\triangle^{2}\right) F(t) \tag{42}
\end{equation*}
$$

Recall from Lemma 3.3 that $\int_{0}^{T_{0}}\left\|\hat{R}_{3}(t)\right\|_{s} d t=O(1)$. We apply Gronwall's lemma to (42) to obtain

$$
\begin{equation*}
F(T) \leq C \epsilon^{3} \exp \left[C \int_{0}^{T}\left(1+\triangle^{2}\right) d t\right] \tag{43}
\end{equation*}
$$

Since $F \geq\|E\|_{s}=\epsilon \triangle$, it follows from (43) that

$$
\begin{equation*}
\triangle(T) \leq C \epsilon^{2} \exp \left[C \int_{0}^{T}\left(1+\triangle^{2}\right) d t\right] \equiv \Phi(T) \tag{44}
\end{equation*}
$$

Thus,

$$
\Phi^{\prime}(t)=C\left(1+\triangle^{2}\right) \Phi(t) \leq C \Phi(t)+C \Phi^{3}(t)
$$

Applying the nonlinear Gronwall-type inequality in [23] to the last inequality yields

$$
\Phi(t) \leq \exp \left(C T_{0}\right),
$$

for $t \in\left[0, \min \left\{T_{\epsilon}, T_{0}\right\}\right)$ if we choose ϵ so small that

$$
\Phi(0)=C \epsilon^{2} \leq e^{-C T_{0}} .
$$

Because of (44), there exists a constant c, independent of ϵ, such that

$$
\begin{equation*}
\triangle(T) \leq c \tag{45}
\end{equation*}
$$

for any $T \in\left[0, \min \left\{T_{\epsilon}, T_{0}\right\}\right)$. Finally, the theorem is concluded from (43) with (45) and $\|E\|_{s} \leq F$. This completes the proof of the theorem 4.1.

5 Appendix

Here we slightly modify a proof in [16] to formulate an existence theorem for the Oseen problem

$$
\begin{align*}
\operatorname{div} \boldsymbol{u}=0, & \frac{\partial \boldsymbol{u}}{\partial t}+\operatorname{div} \boldsymbol{u} \otimes \boldsymbol{u}_{1}+\nabla p=\nu \Delta \boldsymbol{u}+\boldsymbol{h}, \\
\boldsymbol{u}(0, \boldsymbol{x})=\overline{\boldsymbol{u}}(\boldsymbol{x}), & \int_{\Omega} p(t, \boldsymbol{x}) d \boldsymbol{x}=0 . \tag{46}
\end{align*}
$$

in a periodic domain. Here $\boldsymbol{u}_{1}, \boldsymbol{h}, \overline{\boldsymbol{u}}$ are given functions which are periodic in \boldsymbol{x}, and $\operatorname{div} \overline{\boldsymbol{u}}=0$.

Lemma 5.1

Let $m \geq 0$ be an integer and $T>0$ a real number. Assume $\boldsymbol{u}_{1} \in C\left(0, T ; H^{s+1}\right)$ with $s \geq \max \left\{m, \sigma_{d}\right\}, \boldsymbol{h} \in L^{1}\left(0, T ; H^{m}\right)$ and $\overline{\boldsymbol{u}} \in H^{m}$ with $\operatorname{div} \overline{\boldsymbol{u}}=0$. Then the Oseen problem (46) has a unique solution (\boldsymbol{u}, p) satisfying

$$
\begin{aligned}
& \boldsymbol{u} \in A C\left(0, T ; H^{m-1}\right) \cap C\left(0, T ; H^{m}\right) \cap L^{1}\left(0, T ; H^{m+1}\right), \\
& p \in L^{1}\left(0, T ; H^{m+1}\right) .
\end{aligned}
$$

Proof: Denote by H_{σ}^{m} the closed subspace of H^{m} consisting of all solenoidal vectors. We decouple (46) as

$$
\begin{array}{rc}
\frac{d \boldsymbol{u}}{d t}+A \boldsymbol{u}=\boldsymbol{F}\left(\boldsymbol{u}, \boldsymbol{u}_{1}\right)+\Pi \boldsymbol{h}(t), & \boldsymbol{u}(0, \boldsymbol{x})=\overline{\boldsymbol{u}}(\boldsymbol{x}) \\
\Delta p=\operatorname{div}\left(\boldsymbol{h}-\operatorname{div} \boldsymbol{u} \otimes \boldsymbol{u}_{1}\right), & \int_{\Omega} p(t, \boldsymbol{x}) d \boldsymbol{x}=0 \tag{47}
\end{array}
$$

Here $A=-\nu \Delta$ is a nonnegative self-adjoint operator in $H_{\sigma} ; \Pi$ is the orthogonal projection of H^{m} onto H_{σ}^{m}; and \boldsymbol{F} is a bilinear operator

$$
\boldsymbol{F}\left(\boldsymbol{u}, \boldsymbol{u}_{1}\right)=-\Pi \operatorname{div} \boldsymbol{u} \otimes \boldsymbol{u}_{1} .
$$

We firstly show the existence of \boldsymbol{u}. According to [16], it suffices to construct a solution to the integral equation

$$
\begin{equation*}
\boldsymbol{u}(t) \equiv G \boldsymbol{u}(t)=e^{-t A} \overline{\boldsymbol{u}}+\int_{0}^{t} e^{-(t-s) A}\left[\boldsymbol{F}\left(\boldsymbol{u}, \boldsymbol{u}_{1}\right)+\Pi \boldsymbol{h}\right] d s \tag{48}
\end{equation*}
$$

To this end we shall use the method of contraction map.
For simplicity we write $X_{m}=C\left(0, T^{\prime} ; H_{\sigma}^{m}\right), Y_{m}=L^{1}\left(0, T^{\prime} ; H_{\sigma}^{m}\right)$ and set $Z=$ $X_{m} \cap Y_{m+1}$. Here $T^{\prime}>0$ is to be determined later. For the norm in Z we choose

$$
\|\boldsymbol{w}\|_{Z}=\max \left\{\|\boldsymbol{w}\|_{X_{m}}, L^{-1}\|\boldsymbol{w}\|_{Y_{m+1}}\right\}
$$

where $L>0$ is also to be determined later.
Since Π has norm one in any H^{m}, we use Lemma 3.2 to obtain

$$
\begin{aligned}
\left\|\boldsymbol{F}\left(\boldsymbol{u}, \boldsymbol{u}_{1}\right)\right\|_{m} & \leq\left\|\operatorname{div} \boldsymbol{u} \otimes \boldsymbol{u}_{1}\right\|_{m} \\
& \leq C\left(\|\boldsymbol{u}\|_{m}\left\|\nabla \boldsymbol{u}_{1}\right\|_{s}+\left\|\boldsymbol{u}_{1}\right\|_{s}\|\nabla \boldsymbol{u}\|_{m}\right) \\
& \leq C\|\boldsymbol{u}\|_{m+1}\left\|\boldsymbol{u}_{1}\right\|_{s+1}=C\|\boldsymbol{u}\|_{m+1}
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\left\|\boldsymbol{F}\left(\boldsymbol{u}, \boldsymbol{u}_{1}\right)\right\|_{Y_{m}} \leq C\|\boldsymbol{u}\|_{Y_{m+1}} \tag{49}
\end{equation*}
$$

Next we compute $G \boldsymbol{u}-G \boldsymbol{w}$ for $\boldsymbol{u}, \boldsymbol{w} \in Z$. We have

$$
G \boldsymbol{u}(t)-G \boldsymbol{w}(t)=\int_{0}^{t} e^{-(t-s) A} F\left(\boldsymbol{u}-\boldsymbol{w}, \boldsymbol{u}_{1}\right) d s
$$

Since $e^{-t A}$ has norm one as an operator in H^{m}, we conclude

$$
\begin{equation*}
\|G \boldsymbol{u}-G \boldsymbol{w}\|_{X_{m}} \leq\left\|\boldsymbol{F}\left(\boldsymbol{u}-\boldsymbol{w}, \boldsymbol{u}_{1}\right)\right\|_{Y_{m}} \leq C\|\boldsymbol{u}-\boldsymbol{w}\|_{Y_{m+1}} \tag{50}
\end{equation*}
$$

Since $e^{-t A}$ has norm $(\pi t)^{-1 / 2}$ as an operator from H^{m} to H^{m+1}, it follows that $\|G \boldsymbol{u}-G \boldsymbol{w}\|_{m+1}$ is majorized by the convolution of $\left\|\boldsymbol{F}\left(\boldsymbol{u}-\boldsymbol{w}, \boldsymbol{u}_{1}\right)\right\|_{m}$ and $(\pi t)^{-1 / 2}$. Hence

$$
\begin{equation*}
\|G \boldsymbol{u}-G \boldsymbol{w}\|_{Y_{m+1}} \leq 2\left(T^{\prime} / \pi\right)^{1 / 2} C\|\boldsymbol{u}-\boldsymbol{w}\|_{Y_{m+1}} \tag{51}
\end{equation*}
$$

We now take $L=2\left(T^{\prime} / \pi\right)^{1 / 2}$. Recalling the definition of $\|\cdot\|_{Z}$ and comparing (50) and (51), we thus obtain

$$
\begin{equation*}
\|G \boldsymbol{u}-G \boldsymbol{w}\|_{Z} \leq C L\|\boldsymbol{u}-\boldsymbol{w}\|_{Z} \tag{52}
\end{equation*}
$$

A similar (and simpler) computation gives

$$
\|G \mathbf{0}\|_{Z} \leq B \equiv\|\overline{\boldsymbol{u}}\|_{m}+\int_{0}^{T^{\prime}}\|\boldsymbol{h}(t)\|_{m} d t
$$

These results show that G maps Z into itself. Moreover, if T^{\prime} is sufficiently small, we have $C L<1$.

With such choices of T^{\prime} and L, G maps Z into Z. At the same time, we see from (52) that G is a strict contraction map on Z. Therefore G has a unique fixed point \boldsymbol{u} in Z, which is a local solution of the integral equation (48).
Since T^{\prime} depends only on $\left\|\boldsymbol{u}_{1}\right\|_{s+1}$, the solution can be directly extended to $[0, T]$. Moreover, from the equation in (47) and the estimate in (49) we see that $\boldsymbol{u} \in A C\left(0, T ; H^{m-1}\right)$.
Finally, we turn to the Poisson equation in (47) for p. Since $\|\nabla p\|$ is a norm equivalent to $\|p\|_{1}$ in the closed subspace $S \subset H^{1}$:

$$
S:=\left\{p \in H^{1}: \int_{\Omega} p(\boldsymbol{x}) d \boldsymbol{x}=0\right\}
$$

the Poisson equation has a unique solution $p \in S$ satisfying

$$
\|p\|_{m+1} \leq C\left\|\operatorname{div}\left(\boldsymbol{h}-\operatorname{div} \boldsymbol{u} \otimes \boldsymbol{u}_{1}\right)\right\|_{m-1} \leq C\left(\|\boldsymbol{h}\|_{m}+\left\|\boldsymbol{u}_{1}\right\|_{s+1}\|\boldsymbol{u}\|_{m+1}\right)
$$

Therefore p is in $L^{1}\left(0, T ; H^{m+1}\right)$.

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through the DFG-Schwerpunktprogramm $A N u m E$ and the DFG-project Analyse von Lattice Boltzmann Methoden Ju440/1-1.

References

[1] C. Bardos \& F. Golse \& C. Levermore, Fluid dynamic limits of discrete velocity kinetic equations, in Advances in Kinetic Theory and Continuum Mechanics, Proceedings of a Symposium Held in Honour of Henri Cabannes, eds R. Gatignol and Soubbaramayer, Springer (1991) 57-72.
[2] C. Bardos \& F. Golse \& C. Levermore, Fluid dynamic limits of kinetic equations. II: convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math. 46 (1993) 667-753.
[3] A. Bellouquid, The hydrodynamical limit of the nonlinear Boltzmann equation, Transp. Theory Stat. Phys. 28 (1999), 57-82.
[4] A. Bellouquid, Limite hydrodynamique de quelques modèles de la théorie cinétique discrète, C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 951956.
[5] A. Bellouquid, The Navier-Stokes limit of the nonlinear discrete velocity kinetic equations, to appear in J. of Nonlinear Mathematical Physics.
[6] R. Benzi \& S. Succi \& M. Vergassola, The Lattice-Boltzmann equation: Theory and applications, Physics Reports 222 (1992) 145-197.
[7] H. Chen \& S. Chen \& M. Matthaeus, Recovery of the Navier-Stokes equations using a Lattice-gas Boltzmann method, Physical Review A 45 (1992) 5339-5342.
[8] S. Chen \& G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Ann. Rev. Fluid Mech. 30 (1998) 329-364.
[9] A. De Masi \& R. Esposito \& J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Commun. Pure Appl. Math. 42 (1989) 1189-1214.
[10] R. Esposito \& J. L. Lebowitz \& R. Marra, On the derivation of hydrodynamics form the Boltzmann equation, Phys. Fluids 11 (1999) 2354-2366.
[11] X. He \& L.-S. Luo, Lattice Boltzmann model for the incompressible NavierStokes equation, J. Stat. Phys. 88 (1997) 927-944.
[12] F. Higuera \& S. Succi \& R. Benzi, Lattice Gas Dynamics with Enhanced Collisions, Europhysics Letters 9 (1989) 663-668.
[13] D. d'Humières, Generalized lattice Boltzmann equations, in Rarefied Gas Dynamics: Theory and Simulations (eds B.D. Shizgal \& D.P. Weaver), Progress in Astronautics and Aeronautics 159 (1992) 450-458.
[14] M. Junk, A Finite Difference Interpretation of the Lattice Boltzmann Method, Numer. Methods Partial Differ. Equations 17 (2001) 383-402.
[15] M. Junk \& A. Klar, Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann Method, SIAM Jounal on Scientific Computing 22 (2000) 1-19.
[16] T. Kato, Nonstationary flows of viscous and ideal fluids in \mathbf{R}^{3}, J. Funct. Anal. 9 (1972) 296-305.
[17] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Analysis 58 (1975) 181-205.
[18] P. Lallemand \& L.-S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E 61 (2000) 6546-6562.
[19] C. Lattanzio \& W.-A. Yong, Hyperbolic-parabolic singular limits for firstorder nonlinear systems, Commun. in Partial Differ. Equations 26 (2001) 939-964.
[20] G. R. McNamara \& G. Zanetti, Use of the Boltzmann equation to Simulate Lattice-Gas Automata, Phys. Rev. Lett. 61 (1988) 2332-2335.
[21] Y. H. Qian \& D. d'Humieres \& P. Lallemand, Lattice BGK Models for the Navier Stokes equation, Europhys. Letters 17 (1992) 479-484.
[22] R. Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Reg. Conf. Ser. Appl. Math. 41, 1983.
[23] W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations 155 (1999) 89-132.
[24] W.-A. Yong, Basic aspects of hyperbolic relaxation systems, H. Freistühler (ed.) et al, Recent Advances in the Theory of Shock Waves. Boston: Birkhäuser, Birkhäuser Series Progress in Nonlinear Differential Equations and Their Applications 47, 259-305 (2001).
[25] W.-A. Yong, Relaxation Limit of multi-dimensional isentropic hydrodynamical models for semiconductors, submitted.

[^0]: *FB Mathematik, Universität Kaiserslautern, Erwin-Schrödingerstraße, 67663 Kaiserslautern, Germany,(junk@mathematik.uni-kl.de).
 ${ }^{\dagger}$ IWR, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany, (yong.wen-an@iwr.uni-heidelberg.de).

