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Analysis of lattice Boltzmann boundary conditions

The correct implementation of Navier-Stokes boundary conditions in the framework of lattice Boltzmann schemes is

complicated by the non-availability of analytical methods to assess the consistency of such discretizations. To close

this gap, we propose a simple direct asymptotic analysis which is readily applicable to finite difference discretizations

of initial boundary value problems in general and to lattice Boltzmann methods in particular. Results of the analysis

applied to the classical lattice Boltzmann scheme with bounce back boundary condition are reported.

Generally speaking, the lattice Boltzmann method is a finite difference method to construct approximate solutions
of the Navier-Stokes equation

∂tv + v · ∇v + ∇p = ν∆v, divv = 0, in Ω (1)

together with initial and boundary values, such as

v(0,x) = ψ(x) x ∈ Ω, v(t,x) = φ(x) x ∈ ∂Ω. (2)

In the following we consider in particular the D2Q9 lattice Boltzmann scheme as reported in [2] and we restrict
ourselves to problems posed on the unit square Ω = [0, 1]2. As space time grid, we choose (tj ,xk) = (h2j, hk) with
j ∈ IN0, k ∈ ZZ

2 and xk ∈ Ω. The particle population at xk and tj corresponding to velocity ci ∈ {−1, 0, 1}2 is
denoted fi(j,k). Then, the lattice Boltzmann algorithm is

fi(j + 1,k + ci) = fi(j,k) + Ci(f)(j,k) (3)

where

Ci(f)(j,k) =
1

τ
(feq

i (ρ(j,k),u(j,k)) − fi(j,k)) , ρ =
∑

i

fi, u =
∑

i

fici

and feq
i is the equilibrium distribution reported in [2]. The initial value is assumed of the form fi(0,k) =

feq
i (1, hψ(xk)) and at terminal nodes where a neighbor in direction ci∗ = −ci is missing, the bounce back up-

date rule is used

fi(j + 1,k) = fi∗(j,k) + Ci∗(f)(j,k) + hαi 〈ci, φ(x̄)〉 . (4)

Here αi = 6feq
i (1, 0), and x̄ is the closest boundary point from xk in direction ci∗ , i.e. x̄ = xk+qihci∗ with qi ∈ [0, 1).

In order to analyse the consistency of (3), (4) to the problem (1), (2), we follow the approach described in [5].
Specifically, we insert a regular expansion with smooth, h-independent coefficients

fi(j,k) = f
(0)
i (tj ,xk) + hf

(1)
i (tj ,xk) + h2f

(2)
i (tj ,xk) + . . . (5)

into (3) and (4). Then, we perform a Taylor expansion and equate the expressions in the different h-orders separately
to zero. It turns out that the coefficients f (m) are completely determined by their moments

ρm =
∑

i

f
(m)
i , um =

∑

i

f
(m)
i ci

which satisfy certain partial differential equations with initial and boundary values (see also [4] for the case of
periodic boundaries). In leading order, we have

∇ · u0 = 0,
1

3
∇ρ0 + u0(∇u0) = 0, u0(0,x) = 0 x ∈ Ω, u0(t,x) = 0 x ∈ ∂Ω. (6)

The solution of this stationary Navier-Stokes problem is given by u0 = 0 and ∇ρ0 = 0. As a consequence, the
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equations

∂ρ0

∂t
= ∇ · u1, ∇ρ1 = 0, ρ1(0,x) = 0 x ∈ Ω (7)

imply that ρ0 = 1 if u1|∂Ω = φ and ρ1 is a constant in space which may still depend on time. From the further
condition

∂ρ1

∂t
= ∇ · u2, (8)

we can then conclude by integration over Ω that ρ1 = 0 if
∫

∂Ω u2 ·n = 0. Next, the pair u1, ρ2 gives rise to a solution

of the Navier-Stokes problem (1), (2) upon setting v = u1 and p = ρ2/3, and ν = 1
3 (τ − 1

2 ). The second order
velocity u2 and the third order density ρ3 satisfy a homogeneous Oseen-type equation

∂u2

∂t
+

1

3
∇ρ3 + u1(∇u2) + u2(∇u1) =

1

3
(τ −

1

2
)4u2 (9)

with initial value u2|t=0 = 0 and ρ3|t=0 = 0. As boundary condition on u2, we find

〈u2(x̄), ci〉 = κi(1 − 2qi) 〈S[u1](x̄)ci, ci〉 , x̄ ∈ ∂Ω (10)

where ci are the incoming directions at the boundary point x̄ and S[u1] = ∇u1 + (∇u1)
T is the viscous stress

tensor. Finally, the equations satisfied by u3, ρ4 is again of Oseen-type but now with a source term depending on
the Navier-Stokes solution u1, ρ2. Hence, u3, ρ4 are generally different from zero so that

1

h
u(j,k) − u1(tj ,xk) = hu2(tj ,xk) + O(h2),

1

h2
(ρ(j,k) − 1) − ρ2(tj ,xk) = hρ3(tj ,xk) + O(h2).

Obviously, a second order accurate velocity and 1st order pressure of the original Navier-Stokes problem are obtained
with the lattice Boltzmann solution ρ,u if u2 vanishes which, in view of (9), happens when u2(x̄) = 0 for all x̄ ∈ ∂Ω.
As examples for this situation, we mention the cases S[u1] = 0 on ∂Ω, or q1 = 1/2, i.e. all terminal nodes have
distance h/2 from the boundary. Then (10) implies that u2(x̄) = 0 for all x̄ ∈ ∂Ω because the incoming directions
always include two linear independent directions. In general, however, condition (10) does not imply that u2 vanishes
on the boundary. Worse than that, the condition (10) can typically not be satisfied at all because the left hand side
of (10) is linear in ci and the right hand side is quadratic! To demonstrate this problem, we consider a stationary
linear Navier-Stokes flow in the unit square Ω

v(x) = Ax, p(x) =
〈

A2x,x
〉

, A =

(

4 1
1 −4

)

. (11)

On the right hand side of the unit square, the incoming directions are c3 = (−1, 0)T , c6 = (−1, 1)T , and c7 =
(−1,−1)T . Hence, (10) gives rise to three conditions on u2 = (ux

2 , u
y
2)

T

ux
2 = −2, ux

2 + uy
2 = −1, ux

2 − uy
2 = 1. (12)

By adding the second and the third condition, we find ux
2 = 0 which obviously contradicts the first condition.

This contradiction indicates that our original expansion (5) is not appropriate. In fact, from the classical theory of
Boltzmann equation it is well known that rarefied gas flows typically exhibit boundary layers – so called Knudsen
layers [3] – with a thickness proportional to the Knudsen number. Since the Knudsen number is coupled to the
discretization parameter in the lattice Boltzmann method we expect a boundary layer of thickness O(h) and hence,
the assumption of h-independent expansion coefficients f (m) is in general not sufficient to describe the numerical
solution. Instead, we have to work with a more general expansion, as for example

fi(j,k) = f
(0)
i (tj ,xk) + hf

(1)
i (tj ,xk) + h2(f

(2)
i (tj ,xk) + f̃

(2)
i (j,k)) + . . . (13)

where the new coefficient f̃ (2) can incorporate the boundary layer effect (a more careful approach uses a matched
asymptotic expansion to resolve the boundary layer). In any case, the additional term f̃ (2) with moments ũ2, ρ̃2

leads to

1

h
u(j,k) − u1(tj ,xk) = hũ2(j,k) = O(h),
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1

h2
(ρ(j,k) − 1) − ρ2(tj ,xk) = ρ̃2(j,k) = O(1)

which implies that, in general, the velocity is only first order accurate and the pressure is inconsistent when using

the bounce back rule. Note that the velocity u2 corresponding to f
(2)
i vanishes because it satisfies (9) with zero

boundary and initial values.

To illustrate the predictions of the analysis, we apply the Lattice Boltzmann bounce back algorithm to the
flow (11), i.e. we take ψ(x) = Ax and φ(x) = Ax. In figure 1, a numerical convergence analysis is given for the case
qi = 1/2 and qi = 0.
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Figure 1: Double logarithmic plots of the maximal absolute error in pressure (left) and velocity (right) versus h.
The solid line refers to grids with qi = 0 (terminal points are located on the boundary) and the dashed line to grids
with qi = 1/2 (terminal points have distance h/2 from the boundary).

The inconsistency of the lattice Boltzmann pressure (ρ− 1)/3h2 can also be seen from the left part of figure 2 where
a comparison with the exact pressure is shown. Note that the numerical pressure has strong gradients in the corners
which indicates the non-regular behavior of ρ̃2. In contrast to this, the velocity field is consistent and shows the
correct behavior.
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Figure 2: Left: isolines of the lattice Boltzmann pressure (ρ − 1)/3h2 (green) versus isolines of the exact pressure
(black). Right: the lattice Boltzmann velocity is identical to the exact velocity within plotting accuracy.

An inspection of the numerical error (u/h − u1)/h, which coincides in leading order with ũ2, shows the predicted
boundary layers (figure 3).
We close our discussion of the bounce back condition with the remark that the asymptotic analysis can also be used
constructively. Once the condition (10) has been identified as source for the unwanted term f̃ (2), this knowledge can
be used to improve the bounce back rule simply by subtracting the expression

fi(j + 1,k) = fi∗(j,k) + Ci∗(f)(j,k) + hαi 〈ci, φ(x̄)〉 − h2κi(1 − 2qi) 〈S[u1](x̄)ci, ci〉 .

With a suitable discretization of the derivatives in S[u1], this boundary scheme leads to a second order accurate
velocity and first order accurate pressure. The same accuracy is also obtained with the method reported in [1]. The
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Figure 3: Components of the velocity error along several cuts in the domain. Left: x-component along cuts in
y-direction. Right: y-components along cuts in y-direction.

analysis proceeds along the same lines as outlined above. Details will be given in a forthcoming paper.
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