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Abstract

In this article, we use a general method for the analysis of finite difference schemes to
investigate lattice Boltzmann algorithms for Navier-Stokes problems with Dirichlet
boundary conditions. Several link based boundary conditions for commonly used
lattice Boltzmann BGK models are considered. With our method, the accuracy of
the algorithms can be exactly predicted. Moreover, the analytical results can be
used to construct new algorithms which is demonstrated with a corrected bounce
back rule that requires only local evaluations but still yields second order accuracy
for the velocity. The analysis is applicable to general geometries and instationary
flows.
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1 Introduction

Among the numerical approximation methods for the incompressible Navier-
Stokes equation, the lattice Boltzmann method seems to be particular be-
cause it relies on an indirect approach to continuum equations via kinetic
theory. Mathematically, the kinetic equation is asymptotically connected to
the Navier-Stokes system by a singular limit. A consequence of this some-
what involved relation is that numerical approximations on the kinetic level
influence the approximate Navier-Stokes solution in a way which is difficult to
predict. For example, if Dirichlet boundary conditions are to be implemented,
one cannot prescribe directly the flow velocity at boundary nodes but one has
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to set certain variables in the kinetic equation in such a way that the aver-
age velocity satisfies the required conditions. Typically, the required number
of kinetic conditions exceeds the available conditions from the Navier-Stokes
problems. This indicates already that the kinetic conditions have to be chosen
carefully in order to avoid the appearance of extra conditions on the Navier-
Stokes level which would render the problem ill posed (leading to an unwanted
behavior on the grid scale like boundary layers, oscillations etc.).

In order to decide whether a specific lattice Boltzmann algorithm leads to
the desired Navier-Stokes boundary conditions, we propose a method which
is based on a straight forward asymptotic analysis and which is generally
applicable to any finite difference method [1]. In fact, such expansions are
widely used in the theory of ordinary differential equations and also frequently
applied to PDEs in connection with Richardson’s extrapolation or deferred
correction methods (see [1] for a review). In other words, lattice Boltzmann
algorithms can be fully analyzed with standard tools so that the approach
is only special because it involves a singular asymptotic limit. But even this
aspect is not uncommon. It appears, for example, as central idea in relaxation
schemes which originated in the work [2] and which shares several features
with lattice Boltzmann algorithms.

With our approach, we divert from the Chapman Enskog analysis which is
usually taken as basis for the analysis of lattice Boltzmann schemes (see for
example [3–8]). Compared to the Chapman Enskog approach which is usually
based on the resolution of two time scales (the diffusive and the acoustic time
scale), we restrict to the diffusive scaling only. In this way, we can investigate
directly the relation between the lattice Boltzmann method and the incom-
pressible Navier-Stokes equation which is our main goal (note that with this
point of view, acoustic effects are considered as numerical errors of the lattice
Boltzmann method).

The technical advantages of the advocated method are twofold. First, only
a single time scale expansion is necessary and it is simpler than a two-scale
expansion because the expansion coefficients and the corresponding equations
depend on one variable fewer. Second, the expansion coefficients depend di-
rectly on the aspired solution of the incompressible Navier-Stokes problem and
not on the solution of a different problem (the compressible equation). Having
this direct dependence, it is straight forward to relate the numerical solution
to the exact solution, for example, to obtain error estimates.

An obvious difference between the classical Chapman-Enskog analysis and our
approach here is the relation ∆t = ∆x2 between the scaled time and space step
which deviates from ∆t = ∆x in the Chapman-Enskog case. This difference
can easily be traced back to the choice of the time scale in the two approaches.
To illustrate this point, let us think of a flow through a channel of length L
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with typical velocity U . If the grid spacing is δx, we generally assume that
∆x = δx/L is sufficiently small so that the grid resolution is good. In the
classical scaling, velocities are measured in terms of a typical particle speed c
which gives rise to the time unit T = L/c. The relation δx = cδt between space
and time step then translates into ∆x = ∆t for the scaled grid parameters
∆x = δx/L and ∆t = δt/T . We stress that the time unit T is natural for the
investigation of acoustic effects. If low Mach number flows are considered, the
typical flow velocity U must be small compared to c. More precisely, one needs
U/c ∼ ∆x to approach the incompressible limit for ∆x → 0. Consequently,
the dimensionless time required for a volume of fluid to traverse the channel
is proportional to L/(UT ) = O(1/∆x) and thus diverges for ∆x → 0 while
the flow velocity tends to zero. Exactly to avoid this technical inconvenience,
we divert with our scaling from the classical choice.

Specifically, we measure velocities in units of U and, accordingly, time in units
of L/U . In this scaling, the flow velocity is of order one and a volume of
fluid needs always the same non-dimensional time to traverse the channel,
independent of ∆x. The relation δx = cδt transforms into ∆x = c∆t/U where
∆t is now δt scaled by L/U . The low Mach-number assumption U/c = ∆x
then leads to ∆t = ∆x2. Note however, that ∆t differs in the two approaches
by a different scaling of the time step δt.

We remark that the direct asymptotic analysis using the diffusive scaling has
first been considered by Sone in [9] and earlier works for the classical Boltz-
mann equation and has been applied to lattice Boltzmann in [10–13]. Note,
however, that knowledge about these kinetic methods is not required in our ap-
proach. In the same spirit, we do not introduce other physical non-dimensional
parameters like the Mach and Knudsen number (which would both be propor-
tional to our nondimensional grid spacing h = ∆x). As far as the treatment of
boundary conditions is concerned, we will comment on the connections of our
method to the approach in [22,15,14] which uses Chapman-Enskog analysis.

The introduction is concluded with an outline of the article. In Section 2 we
specify the basic lattice Boltzmann algorithms with bounce back rule which are
used to demonstrate our method. The detailed asymptotic analysis is given
in Section 3. Finally, we use the information obtained from the asymptotic
analysis to improve the bounce back rule and to investigate other existing
link-based boundary conditions [18,22,15,14].

2 The lattice Boltzmann algorithm on domains with boundaries

We consider the incompressible Navier-Stokes equation on a domain Ω ⊂
R

d with initial and Dirichlet boundary values. Our aim is to find numerical
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approximations of the fields u : [0, T ]×Ω → R
d and p : [0, T ]×Ω → R, which

satisfy

∇·u = 0, ∂tu+ (u · ∇)u+ ∇p = ν∇
2u+G, u|t=0 = ψ (1)

with

u(t,x) = φ(t,x), t ∈ [0, T ], x ∈ ∂Ω (2)

where ψ,φ and G are given functions, functions ψ : R
d → R

d and G :
[0, T ] × R

d → R
d represent a divergence free initial velocity field and a force

term respectively.

We assume (1) and (2) to be in non-dimensional form, i.e. the domain Ω is
scaled by a typical length (say the diameter is equal to one) and the data of
the problem (φ,ψ,G) is scaled in such a way that the typical velocity u is
also of order one. Defining the time scale using the velocity and space scale as
indicated in the introduction, the viscosity parameter ν is actually the inverse
of the Reynolds number.

Lattice Boltzmann methods for the problem (1) are based on a simplified mi-
croscopic model of the fluid in which particles travel with discrete velocities
in the directions c0, . . . , cb over a regular spatial lattice in such a way that
their average velocity approximately satisfies (1). The lattice should be com-
patible with the velocities in the sense that neighboring nodes are connected
by vectors hci where h > 0 is a small dimensionless parameter which regu-
lates the grid resolution. The basic quantities f̂i(n, j) denote the mass den-
sities of particles having discrete velocity ci at the lattice node labeled with
j ∈ Z

d (corresponding to xj(h) = hj) and time step n ∈ N0 (corresponding to

tn(h) = h2n). Given the particle mass densities f̂i for the different velocities,
the total mass density ρ̂ is simply the sum

ρ̂(n, j) =
∑

i

f̂i(n, j). (3)

Since in our set up, ρ̂ will always be close to one (incompressible flow) the
values f̂i approximately form a discrete probability distribution so that

û(n, j) =
∑

i

f̂i(n, j)ci (4)

is essentially the average particle velocity (in our notation, a hat superscript
indicates a discrete function of the grid labels). As a result of our analysis, we
will see that the field û approximates the scaled Navier-Stokes solution hu.

We remark that time and space variables are non-dimensionalized using the
same scales as in the Navier-Stokes problem (1). This usage differs slightly from
the classical approach but has certain advantages if one wants to investigate
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the connection of the lattice Boltzmann method to the incompressible Navier-
Stokes equation in the limit h → 0 (see also the comments in the introduction).

The evolution of the particles consists of two phases, a transport step and
a collision and forcing step. The latter simulates a spatially local particle
interaction at the lattice nodes and the effect of the force field on the particles.
It has the form

f̂ c
i (n, j) = f̂i(n, j) + Ci[f̂ ](n, j) + ĝi(n, j) (5)

where the so called collision operator is of relaxation type

Ci[f̂ ](n, j) =
1

τ

(

f eq
i (ρ̂(n, j), û(n, j)) − f̂i(n, j)

)

, τ =
1

2
+ 3ν

and ρ̂ and û depend on f̂ according to (3), (4). As equilibrium distribution
function we use

f eq
i (ρ,u) =

[

ρ + 3u · ci +
9

2
(u · ci)

2 −
3

2
|u|2

]

f ∗
i

which works in connection with the D2Q9, D3Q15, D3Q19, and D3Q27 models
(for details see [15]). In our context, they differ only in the underlying velocity
set and the weights f ∗

i = f eq
i (1, 0) defining the equilibrium distribution. The

function ĝi in (5) models the influence of the force term. Its relation to G in
(1) is

ĝi(n, j) = 3h3f ∗
i ci ·G(tn(h),xj(h)). (6)

We remark that only by scaling G with h3 we can ensure that, in the limit
h → 0, the force term acts on the velocity according to equation (1). The
physical reason is that in a time step of length h2, the Navier-Stokes velocity u
changes proportional to h2G and since û ≈ hu, the average lattice Boltzmann
velocity only changes proportional to hh2G which explains the factor h3.

During collision, the original particle distribution function f̂i transforms into
the post-collisional state f̂ c

i . After that, the particles simply move undisturbed
with their velocities to the neighboring lattice sites. This transport step is
described by the update rule

f̂i(n + 1, j + ci) = f̂ c
i (n, j). (7)

Since the particles travel a distance h in a single time step of size h2, the
associated particle speed is actually h/h2 = 1/h. This reflects the low Mach
number assumption in our scaling where the flow speed is scaled to one so
that the quotient between flow and particle speed can only become small if
the particle speed diverges.

Obviously the update rule (7) determines f̂i(n + 1, j) only at interior nodes
xj(h) whose neighbors in all directions are also in the computational domain.
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The labels of the remaining nodes (so-called boundary nodes) are collected
in the set Jbdr(h) They require a modified update rule. For example, if node
j ∈ Jbdr(h) has a missing neighbor in direction −ci, then the population
f̂i(n + 1, j) cannot be filled with the usual update rule (7). Classically, the
bounce back rule is used to define these populations

f̂i(n + 1, j) = f̂ b
i∗(n, j) = f̂ c

i∗(n, j) + 6hf ∗
i ci · φ(tn,xji) (8)

which is employed for j ∈ Jbdr(h) and the incoming velocities with indices in

Vj = {i : xj − hci 6∈ Ω}.

The velocity index i∗ is defined by ci∗ = −ci. The boundary value φ is eval-
uated at the point xji = xj − hqjici ∈ ∂Ω where qji ∈ [0, 1) represents the
distance to the boundary along direction ci∗ = −ci in units of |ci| (see figure
1). To start the evolution, we use the initialization proposed in [18]

PSfrag replacements

log10 h

log10error

∂Ω

xj

h hqji

ci ci∗

xji = xj + hqjici∗

Fig. 1. Intersection of links and boundary give rise to xji ∈ ∂Ω.

f̂i(0, j) = f eq
i (1 + 3h2p(0,xj), hψ(xj)) − 3h2τci · ∇(ci ·ψ)(xj) (9)

where p(0,x) is the pressure corresponding to the initial velocity field ψ. It is
obtained by solving the Poisson equation

∆p = −∇· (ψ · ∇ψ) + ∇·G.

3 Asymptotic analysis

From an abstract point of view, the complete lattice Boltzmann algorithm
presented in the previous section constitutes a finite set of equations for the
unique determination of the quantities f̂i(n, j). Since these equations depend
on an additional small parameter h, it is natural to use tools from asymptotic
analysis to understand the behavior of f̂i(n, j). In particular, we want to know
how well the average velocity û approximates the solution of the Navier-Stokes

6
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problem (1). An answer to this question is obtained once we understand how
the coefficients in the expansion

û(n, j) = u0(tn,xj) + hu1(tn,xj) + h2u2(tn,xj) + . . .

relate to the solution of (1). In fact, it will turn out that u0 = 0 and u1 is the
solution of the Navier-Stokes equation (1), while u2,u3, . . . can be viewed as
contributions to the veocity error.

More generally, we try to express the lattice Boltzmann variables through a
regular expansion

f̂i(n, j) = f
(0)
i (tn,xj) + hf

(1)
i (tn,xj) + h2f

(2)
i (tn,xj) + . . . (10)

with smooth and h independent functions f
(k)
i . Inserting the expansion into

all equations of the lattice Boltzmann method, performing Taylor expansions
and equating the expressions appearing in different orders of h separately to
zero, a set of conditions on the expansion coefficients arises which can be used
to determine the functions f

(k)
i . The expansion coefficients of the moments

ρm =
∑

i

f
(m)
i , um =

∑

i

f
(m)
i ci

then follow from our knowledge of f (m). The resulting explicit information
about the h dependence of density and average velocity ρ̂, û constitutes the
main difference to the Chapman-Enskog analysis where ρ̂ and û are approx-
imately described through the solutions of differential equations which carry
h as a parameter. In particular, with (10) we can derive the relation between
the numerical values ρ̂, û and the solution of the incompressible Navier-Stokes
equation while the Chapman-Enskog analysis establishes a link to some inter-
mediate compressible Navier-Stokes equation.

Formally, expansion (10) differs from the Chapman-Enskog expansion in that
the mass and velocity averages of the expansion coefficients f (k) with k ≥ 1
are generally non-zero. Also, the Chapman-Enskog expansion usually employs
an additional time scale which is relevant for analyzing acoustic effects. In our
approach, acoustic effects are also recoverd but they typically appear only in
the higher order terms (for example, u3 is not divergence free which reflects
the weak compressibility of the nuemrical solution). In cases where the lattice
Boltzmann solution contains acoustic effects at leading order (for example,
in connection with a poor initialization), our single scale expansion will fail
because sound waves imply very large time derivatives in our diffusive scaling
which ultimately lead to singular behavior for h → 0.

Hence, expansion (10) can only describe the regular part of the LB solution
f̂i(n, j) because of our smoothness assumption on the coefficients. If the nu-
merical solution exhibits fast oscillations (sound waves) or strong gradients at

7
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the boundaries (Knudsen layers) the expansion (10) will fail at a certain order
because the strong derivatives (proportional to 1/h or larger) associated to
such effects cannot be represented with smooth coefficients. More precisely,
if we find a contradiction in the process of determining the coefficient f (m),
for example f (m) turns out to be discontinuous or the condition to deter-
mine f (m) has no solution, then we can conclude that f̂ can be described by
f (0) + · · · + hm−1f (m−1) and that the next order contribution will not be reg-
ular. While it is possible to study irregular behavior in detail, for example
with the help of a multi-scale expansion instead of (10), we should keep in
mind that the irregular effects have to be interpreted as numerical errors as
far as the approximation of equation (1) is concerned because they are related
to physical situations which are not captured in the model (1). Therefore, we
will restrict ourselves to the expansion (10) in this article. In fact, we will use
the more specific form

f̂i(n, j) = f
(0)
i (tn,xj) + hf

(1)
i (tn,xj) + h2f

(2)
i (tn,xj) + . . .

f
(0)
i = f ∗

i , ρ1 = 0.
(11)

This expansion restricts us to lattice Boltzmann solutions which are pertur-
bations of the equilibrium distribution f ∗

i = f eq
i (1, 0) with unit density ρ0 = 1

and zero velocity u0 = 0 (reflecting the low Mach number situation). Together
with the second assumption ρ1 = 0 it implies that the density has the form
ρ̂ = 1+h2ρ2 + · · · . Both assumptions are compatible with the presented algo-
rithm and can actually be derived (at the expense of some technical arguments,
see for example [16,13]).

3.1 Asymptotic analysis of the update rule

Let us start with the update rule of the algorithm. Inserting (11) into the left
hand side of the transport step (7), we find expressions of the form

f
(k)
i (tn+1(h),xj+ci

(h)) = f
(k)
i (tn(h) + h2,xj(h) + hci).

Since the functions f
(k)
i are assumed to be smooth, we can perform a Taylor

expansion around the point (tn,xj). After dropping the argument h of tn and
xj for brevity, we formally obtain an infinite series

f
(k)
i (tn + h2,xj + hci) = f

(k)
i (tn,xj) +

∞
∑

r=1

hrDr(∂t, ci · ∇)f
(k)
i (tn,xj) (12)

where Dr(θ, σ) are polynomials like

D1(θ, σ) = σ, D2(θ, σ) = θ + σ2/2, D3(θ, σ) = σ(θ + σ2/6), . . .

8
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The general expression is

Dr(θ, σ) =
∑

2a+b=r

θaσb

a!b!
, r ≥ 0, (13)

where θ replaces the time derivative and σ the directional space derivative
ci · ∇. Altogether, the expansion of the left hand side of (7) is

f̂i(n + 1, j + ci) =
∑

m≥0

hm

(

f
(m)
i (tn,xj) +

m−1
∑

k=0

Dm−k(∂t, ci · ∇)f
(k)
i (tn,xj)

)

,

(14)
Next, we have to expand the right hand side of (7) with the substitution of
f̂i by the expansion (11). Due to the nonlinear term in the collision operator,
a mixing of orders occurs. If we denote the moments of f (m) by ρm and um

respectively, we first find from (11) by summation

ρ̂(n, j) = 1 + h2ρ2(tn,xj) + . . .

û(n, j) = hu1(tn,xj) + h2u2(tn,xj) + . . .

Inserting these expansions into f eq
i , we obtain

f eq
i (ρ̂(n, j), û(n, j)) = f

eq,(0)
i (tn,xj) + hf

eq,(1)
i (tn,xj) + h2f

eq,(2)
i (tn,xj) + . . .

with f
eq,(0)
i = f ∗

i and

f
eq,(m)
i = f ∗

i

{

ρm + 3um · ci +
9

2

∑

k+l=m

[

(uk · ci)(ul · ci) −
1

3
uk · ul

]}

.

Thus, the right hand side of (7) turns out to be

∑

m≥0

hm

[

f
(m)
i +

1

τ
(f

eq,(m)
i − f

(m)
i ) + giδm3

]

(tn,xj) (15)

where δij is the Kronecker delta and

gi(t,x) = 3f ∗
i ci ·G(t,x).

Equating (14) and (15) we obtain in order m

f
(m)
i +

m−1
∑

k=0

Dm−k(∂t, ci · ∇)f
(k)
i = f

(m)
i +

1

τ
(f

eq,(m)
i − f

(m)
i ) + giδm3 (16)

If we solve (16) for f
(m)
i , we find that f

(m)
i can be expressed as a sum of f

eq,(m)
i

and derivatives of lower order coefficients f
(k)
i . In particular, we can use (16)

to successively replace the lower order coefficients by equilibrium coefficients.

9
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Eventually, we find

f
(m)
i = f

eq,(m)
i +

m−1
∑

k=0

Em−k(τ, ∂t, ci · ∇)f
eq,(k)
i + Fm(τ, ∂t, ci · ∇)gi (17)

with recursively defined polynomials Ek and Fk (details are given in appendix

A). Inspecting (17) more closely, we notice that it actually defines f
(m)
i once

we know the moments ρ0, . . . , ρm and u0, . . . ,um which make up the equilib-
rium functions f

eq,(k)
i . Equations for these moments are obtained by taking

corresponding averages of (17). Since

∑

i

f
(m)
i = ρm =

∑

i

f
eq,(m)
i ,

∑

i

f
(m)
i ci = um =

∑

i

f
eq,(m)
i ci

we see that (17) gives rise to partial differential equations for ρ0, . . . , ρm−1 and
u0, . . . ,um−1 because the moments of order m drop out. General expressions
for the differential operators in these equations are again given in the appendix.
Here we just list the results related to the relevant orders.

In order (m = 1), we find the trivial condition 0 = 0 which reflects the fact

that our assumption f
(0)
i = f ∗

i in (11) does not lead to a contradiction. In
order (m = 2), we obtain

∇ρ1 = 0, ∇· u1 = 0 (18)

which is an incompressibility condition on u1 and ∇ρ1 = 0 is in accordance
with our assumption ρ1(t,x) = 0. The equations for the next order are

∂tu1 + u1 · ∇u1 +
1

3
∇ρ2 = ν∆u1 +G, ∇· u2 = 0. (19)

i.e. u1 is a solution of the incompressible Navier-Stokes equation with ρ2/3
as associated pressure. Proceeding to the case m = 4, the following equations
occur

∂tu2 + u1 · ∇u2 + u2 · ∇u1 +
1

3
∇ρ3 = ν4u2,

∇· u3 = −∂tρ2 −
1

2
∇·G

(20)

where the divergence condition for u3 has been simplified using the fact that
u1 satisfies the Navier-Stokes equation. Together with the second condition
of (19), this is a homogeneous generalized Oseen problem for u2 and ρ3. In
particular, if initial and boundary conditions for u2 vanish, the coefficients
u2 and ρ3 are zero. Moreover, we see from the divergence condition that u3

is non-zero whenever the Navier-Stokes pressure is time dependent (reflecting
the compressible nature of the lattice Boltzmann algorithm). Keeping in mind
that the average velocity has the expansion û = hu1 + h2u2 + h3u3 + · · · ,
we conclude that û/h yields a second order accurate approximation of the

10
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Navier-Stokes velocity if u2 = 0 because h2u3 then acts as error term added
to u1. Similarly, we can access the Navier-Stokes pressure using (ρ̂− 1)/(3h2)
to second order accuracy if ρ3 = 0 which also happens if u2 has zero initial
and boundary values. We want to stress that these conclusions only apply if
the regular expansion (11) correctly describes the lattice Boltzmann solution
up to order h3. In section 3.3, we show that this assumption is violated when
the bounce back rule is used. In this case, additional irregular coefficients need
to be added to the expansion which may reduce the accuracy of pressure and
velocity predicted in the regular case.

Information about the behavior of the coefficients at t = 0 and ∂Ω will be
extracted from the initial and boundary part of the LB algorithm. However,
before we proceed to this analysis, we summarize our observations and specify
the structure of the leading order coefficients using (17) and the detailed form
of the operators Ek (see appendix A),

f
(0)
i = f ∗

i ,

f
(1)
i = f

eq,(1)
i = 3ci · u1f

∗
i ,

f
(2)
i = f

eq,(2)
i − τci · ∇f

(1)
i

= ρ2f
∗
i + 3ci · u2f

∗
i +

3

2
(3(ci · u1)

2 − |u1|
2)f ∗

i − τci · ∇f
(1)
i .

(21)

3.2 Asymptotic analysis of the initial condition

In order to find information about the initial values of the expansion coeffi-
cients (21), we insert the expansion (11) into (9). Noting that

f eq
i (1 + 3h2p, hψ) = f ∗

i (1 + 3hci ·ψ + h2(3p + 3ci · u2 +
3

2
(3(ci ·ψ)2 − |ψ|2))

a comparison of equal orders yields

u1(0,x) = ψ(x), u2(0,x) = 0, ρ2(0,x) = 3p(0,x)

so that u1, ρ2/3 satisfies (1).

3.3 Asymptotic analysis of the bounce back rule

It remains to derive the boundary values of the relevant moments which we
obtain by inserting expansion (11) into (8) and later using the specific form
(21) of the coefficients.

11
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Expanding around the point (tn,xji) the computations are very similar to the
analysis of the update rule and we can use the same operators Dk. Taking
into account that xji = xj + hqjici, the directional derivative is now qjici · ∇
instead of ci · ∇. In accordance with (14) we have (defining D0(θ, σ) = 1)

f̂i(n + 1, j) =
∑

m≥0

hm
m
∑

k=0

Dm−k(∂t, qjici · ∇)f
(k)
i (tn,xji).

The right hand side f̂ b
i∗(n, j) of (8) has a structure similar to the collision

product. Expanding also around xji = xj + hqjici, we arrive at

f̂ b
i∗(n, j) = hβi(tn,xji)

+
∑

m≥0

hm
m
∑

k=0

Dm−k(0, qjici · ∇)
[

f
(k)
i∗ +

1

τ
(f

eq,(k)
i∗ − f

(k)
i∗ ) + giδm3

]

(tn,xji).

where we have set

βi(t,x) = 6f ∗
i ci ·φ(t,x), x ∈ ∂Ω.

Finally, collecting terms of equal order hm in the bounce back rule, we get

βi(tn,xji)δm1 +
m
∑

k=0

(

−Dm−k(∂t, qjici · ∇)f
(k)
i

+ Dm−k(0, qjici · ∇)
[

f
(k)
i∗ +

1

τ
(f

eq,(k)
i∗ − f

(k)
i∗ ) + giδm3

]

)

(tn,xji) = 0. (22)

With (21), the h0-contribution again leads to the trivial condition 0 = 0

because f
(0)
i = f ∗

i = f
eq,(0)
i and f ∗

i∗ = f ∗
i . In the first order we have f

(1)
i =

f
eq,(1)
i , f

(1)
i∗ = −f

(1)
i so that (22) amounts to

6f ∗
i ci · (φ(tn,xji) − u1(tn,xji)) = 0.

From this condition, we can conclude u1(t,x) = φ(t,x) because at points
close to a regular boundary point x ∈ ∂Ω, the incoming directions include
d linearly independent vectors. Only at irregular boundary points with sharp
corners we may find less than d independent directions. Altogether, u1, ρ2/3
turn out to be the solution of the full boundary value problem (1), (2).

Proceeding to order h2, we find

6f ∗
i ci · u2(tn,xji) = f ∗

i (6qji − 3)(ci · ∇)ci · u1(tn,xji). (23)

Here it is important to notice that for general geometries the values qji cannot
be written as smooth functions of the points xji because the difference between
the values qji corresponding to neighboring nodes xji is generally of order one
while the distance between the nodes is of order h. Consequently, (23) cannot

12
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be satisfied by any smooth function u2. According to our observation at the
beginning of section 3, this tells us that the lattice Boltzmann solution f̂i

generally exhibits irregular behavior at the order h2 because f
(2)
i cannot be

determined as a smooth function. We thus face an expansion of the form

f̂i(n, j) = f
(0)
i (tn,xj) + hf

(1)
i (tn,xj) + h2δ̂i(n, j) (24)

with a grid function δ̂i(n, j) in second order. For the averages of f̂i this implies

ρ̂(n, j) = 1 + h2
∑

i

δi(n, j)

û(n, j) = hu1(tn,xj) + h2
∑

i

δi(n, j)ci

(25)

Since δi(n, j) generally has non-zero averages (examples are given in section
3.4), we conclude that the Navier-Stokes velocity u1 can only be extracted
from û with first order accuracy and that the pressure is no longer recoverable
from ρ̂ (inconsistent pressure).

While this describes the general behavior of the bounce back algorithm, the
situation may be better in the case of specific geometries where qji is con-
stant (and thus smooth) along connected components of the boundary ∂Ω.
For example, in the particular case qji = 1/2 where the boundary is located
half a link distance away from the boundary nodes, condition (23) leads to
u2(t,x) = 0 at the boundary. As explained above, this implies that the mo-
ments u2, ρ3 of the regular part of the expansion vanish. However, by carrying
out the expansion to order three, we find that the third order coefficient can-
not be described by a smooth function which indicates irregular behavior (the
situation is similar to the one explained for general constant qji below). Since
the irregular third order contribution generally has a non-zero average, the
pressure will be only first order accurate. More specifically, the expansion of
f̂i has the form

f̂i(n, j) = f
(0)
i (tn,xj) + hf

(1)
i (tn,xj) + h2f

(2)
i (tn,xj) + h3η̂i(n, j).

where now irregular behavior is found one order later (this can be checked
analytically by carrying out the expansion to order three). Computing the
averages, we thus have

(ρ̂(n, j) − 1)/h2 = ρ2(tn,xj) + h
∑

i

ηi(n, j)

û(n, j)/h = u1(tn,xj) + h2
∑

i

ηi(n, j)ci

i.e. pressure can be recovered with first order and velocity with second order
accuracy in the case qji = 1/2.

However, for other constant values of qji, the situation turns out to be quite

13
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different. Despite the fact that the right hand side of (23) is now a smooth
function, (23) can typically not be satisfied by any smooth u2. This is due to
the fact that ci · u2 is linear in ci while (ci · ∇)ci · u1 is quadratic which, in
general, leads to conflicts if equality is required for a linearly dependent set of
vectors ci. To give a specific example, we consider a stationary linear flow in
a half space Ω = (−∞, 0) × R

u(x) = Ax, p(x) = −
1

2
xTA2x, A =







4 1

1 −4





 . (26)

Using the D2Q9 model, the incoming directions at the boundary ∂Ω are
(−1, 0)T, (−1, 1)T, and (−1,−1)T. If we assume, for example, qji = 0 then
the following three conditions on u2 = (ux

2, u
y
2)

T follow from (23)

ux
2 = −2, ux

2 + uy
2 = −1, ux

2 − uy
2 = 1. (27)

However, by adding the second and the third condition, we find ux
2 = 0 which

obviously contradicts the first condition. Consequently, we cannot construct
a regular coefficient f

(2)
i and the expansion has the form (24) which implies

inconsistent pressure and first order accurate velocity.

We conclude with the remark that within the special case of geometries hav-
ing constant qji there are some rare cases in which the linear and quadratic
ci-dependence in (23) does not lead to incompatibilities. One such very spe-
cial situation is the famous Poiseuille flow in an axis parallel channel which
therefore is a rather inadequate test case for the general behavior of boundary
algorithms.

In the following section, numerical examples are used to illustrate the theo-
retically predicted behavior of the lattice Boltzmann algorithm with bounce
back rule, i.e. first order accurate velocity and an inconsistent pressure fields
for general flows.

3.4 Numerical tests

We apply the lattice Boltzmann method with bounce back rule to several
boundary value problems for which exact solutions are known. The first prob-
lem is the stationary linear problem (26) described in the last section which
we now restrict to the unit square. The second problem is also a stationary
linear problem on the unit square

u(x) = Bx, p(x) = −
1

2
xTB2x, B =







0 1

1 0





 . (28)

14
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The third problem is the decaying Taylor vortex flow described in [18] and
restricted to the unit square with parameters A = π

2
and B = π

2
. The last two

problems are taken from [19]. One is the Poiseuille flow driven by the body
force in an inclined channel, another is the circular flow in a disk with radius
R = 1. Their exact solutions are given in [19], but the slope of the channel used
here is 3/10. The pressure of the circular flow is given by integrated Bessel
functions. We calculate it using a second order accurate numerical integration.

For the circular flow, we initialize the velocity to the exact value at time
t = 0.5. For all other test problems, the initial velocity is the exact value at
time t = 0. The termination time is T = 1. Boundary conditions are specified
by evaluating the exact velocity on the boundary ∂Ω.

The numerical tests are carried out on a sequence of grids with grid size
h ∈ { 1

10
, 1

20
, 1

30
, 1

40
, 1

50
}. The viscosity parameter is fixed as ν = 0.1. The error

between exact and numerical values is measured in terms of

M∞ = max
0≤tn≤T

max
xj∈Ω

‖M̂(n, j) −M(tn,xj)‖∞,

where, M̂ and M represent the numerical and exact values respectively (M
is either pressure or velocity with corresponding M̂ given by (ρ̂ − 1)/(3h2)
and û/h).

For the flows in the unit square the boundary nodes are located exactly on the
boundary, i.e. qji = 0 for all boundary nodes. Of course, one would normally
take qji = 1/2 in this geometry because the bounce back rule performs better
in that case as we have seen in the previous section. However, we are interested
in the behavior of the bounce back rule for general geometries where it is
impossible to enforce qji = 1/2 at all nodes. In this sense, qji = 0 in connection
with the unit square serves as a simple model for more complicated geometries.
Clearly, for the other geometries (the circular flow and inclined Poiseuille flow)
the boundary nodes inevitably exhibit many different qji ∈ [0, 1) no matter
how the grids are laid out.

Figure 2 shows the logarithmic error of velocity against the logarithmic grid
size, which decreases while the grid becomes finer. The least squares slopes
have values around 1, which demonstrates that the bounce back rule can
bring out first order accurate velocities in general. A similar plot for pressure
is given in figure 3 but here the error increases with decreasing grid size, and
the slopes are around zero or even negative, which means the pressure is zero
order accurate. The tremendous difference between exact pressure and lattice
Boltzmann approximation for the test case (28) is presented in the right plot
of figure 3. In fact, what we see is essentially the error term

∑

i δ̂i(n, j) in (25)
which is irregular in the corners.

15
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Fig. 2. Logarithmic error of velocity versus log10 h for different test problems using
bounce back rule: (∗) linear flow (26), (◦) linear flow (28), (+) Taylor vortex, (�)
circular flow and (O) Poiseuille flow. The error is of order h.
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Fig. 3. Left: logarithmic pressure error vs. log10 h for various test problems show
that the bounce back rule leads to an inconsistent pressure. Right: pressure contour
lines compared with exact solution (black) for the flow (28).

3.5 Modifications of the basic algorithm

Since the accuracy of the lattice Boltzmann scheme with bounce back rule is,
in general, restricted to first order for velocity and zeroth order for pressure,
there is a need to improve the scheme. This is achieved by enforcing u2 = 0 on
the boundary. In view of (23) we modify the bounce back rule (8) according
to

f̂i(n + 1, j) = f̂ b
i (n, j) − h2f ∗

i (6qji − 3)(ci · ∇)(ci · u1(tn,xji)) (29)

so that the correction term removes the unwanted right hand side of (23).
Note, however, that the rule cannot be implemented in that form because
(ci ·∇)ci ·u1 involves normal derivatives of the Navier-Stokes solution u1 and

16
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these derivatives cannot explicitly be written in terms of the boundary data φ.
We first have to replace the space derivatives by a suitable discretization. This
discretization is by far not unique so that additional constraints are important
in the design like stability and simplicity. Below we present several algorithms
which realize approximations of the required derivative terms. The asymptotic
analysis of these schemes always follows the same pattern. We have to insert
the expansion (11) into the condition, use the structure (21) and check whether
u2 = 0 at the boundary. If we write the conditions as additive corrections to
the bounce back scheme, we can use the results of section 3.3 and just analyze
the additive correction. For one of the methods, we give an example of this
analysis in the appendix.

Finite difference approach (FD)

A straightforward idea is to approximate the derivatives in (ci · ∇)ci · u1 by
means of finite differences (this has also been used in [18]). One choice is

ci · ∇ci · u1(tn,xji) ≈ ϕ̂i(n, j) =



































[

û(n, j + ci) − φ(tn,xji)
]

· ci

(1 + qji)h
qji ≤

1
2

[

û(n,xj) − φ(tn,xji)
]

· ci

qjih
qji > 1

2

where the reason to use two different expressions depending on qji ≤ 1/2 or
qji > 1/2 is for the sake of stability. The corresponding boundary algorithm is

f̂i(n + 1, j) = f̂ b
i (n, j) − h2f ∗

i (6qji − 3)ϕ̂i(n, j)

Note that, in general geometries, extra considerations are required if for some
boundary node a neighbor is missing in the incoming direction, or in other
words, if there exist two opposing incoming directions at the same node. This
happens, for example, at corners in 2D and 3D, at edges in 3D, but also along
smooth boundaries at nodes where incoming links are almost tangential to the
boundary. In such situations the algorithm above is not applicable if qji ≤ 1/2
so that the corresponding directional derivatives of u1 are missing. However,
the derivatives can be computed from the boundary values in these cases by
using appropriate finite differences along the boundary. In our test case on
the square geometry, for example, we can get the first derivatives of u1 in the
corners by taking one-sided derivatives of the boundary values along the edges
of the square.

To analyze the proposed FD scheme, we write û in the formula for ϕ̂i as
∑

i f̂ici and insert the expansion. In leading order, we recover the required
derivative term and in connection with (23) which takes care of the analysis
of the bounce back part f̂ b

i , we conclude that u2 = 0 at the boundary. Since

17
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u2 = 0 is also compatible with the corner treatment, we conclude that FD
leads to first order accurate pressure and second order accurate velocity fields.

We remark that all non-local link-based boundary schemes face the same prob-
lem as FD at boundary nodes with opposing incoming directions although the
problem is rarely addressed in literature. In the examples BFL, MLS below,
we use the FD approach for the corners described here (note that simply ap-
plying the bounce back rule for the two opposing incoming directions in the
corners inevitably reduces the accuracy of the whole method).

Bouzidi’s rule (BFL)

This boundary algorithm has been numerically demonstrated to give second
order accurate velocity in [19]. Therefore it is not surprising that BFL can be
viewed as a corrected bounce back rule with a particular discretization of the
required derivative (ci · ∇)ci · u1. To see this, we write BFL in the form

f̂i(n + 1, j) = f̂ b
i∗(n, j) + ∆±

i (n, j)

with

∆−
i (n, j) = (1 − 2qji)

[

f̂ c
i∗(n, j + ci) − f̂ c

i∗(n, j)
]

, qji ≤ 1/2,

∆+
i (n, j) = (1 − 2qji)

[

f̂i(n + 1, j) − f̂ c
i∗(n, j)

]

, qji > 1/2.

With asymptotic analysis we find that the leading order of ∆±
i (n, j) is precisely

the required term 3f ∗
i ci ·∇ci ·u1. We can thus conclude that the BFL rule gives

rise to a second order accurate velocity and a first order accurate pressure
(if the nodes with opposing incoming directions are properly treated – see
comments for FD).

The boundary-fitting method (FH) and its improvement (MLS)

The so-called boundary-fitting method (FH) proposed in [22], is based on a
linear combination of f̂ c

i∗ and f eq
i∗ at the boundary node without reference to

neighboring nodes. As outlined above, we write it as a correction of the bounce
back rule which gives rise to

f̂i(n + 1, j) = f̂ b
i∗(n, j) + θ̂i(n, j)

with

θ̂i(n, j) = −χji(f̂
c
i∗(n, j) − f̂ eq

i∗ (n, j) + 3f ∗
i v̄i(n, j) · ci),

18
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where v̄i(n, j) = (hφ(tn,xji)−û(n, j))/qji for qji ≥ 1/2 and zero for qji < 1/2.
This method has an intrinsic disadvantage because the parameter χji

χji =







(2qji − 1)/τ, qji ≥
1
2

(2qji − 1)/(τ − 1), qji < 1
2

depends on 1/(τ − 1) which eventually leads to instability when τ ≈ 1.

In [15] an improvement (MLS) of FH is achieved by using the next neighbor
along the link to calculate v̄i(n, j) = û(n, j+ci)− û(n, j) for qji < 1/2. Then
χji becomes a function of 1/(τ − 2) which enlarges the region of stability but
does not overcome the inherent drawback of FH. Moreover, this modification
is not defined for opposing incoming directions.

To motivate the boundary conditions FH and MLS, a Chapman-Enskog anal-
ysis is used in [15]. However, apart from the structural assumptions related
to the Chapman-Enskog approach, it requires the additional assumption that
the intrinsic time scale of the unsteady flow must be large compared with the
advection time on the lattice scale. In our analysis, this assumption is built
in from the beginning and we can show the accuracy order without any extra
assumption (see appendix B). An interesting behavior of the method FH is
observed in the case when opposing incoming directions are present in the case
qji = 0. Then the accuracy reduces from second to first order for velocity and
from first order to inconsistency for pressure. This behavior can be explained
with the analysis presented in appendix B. A simple fix of FH at such nodes
is given by applying the method POP0 (see below) to the opposing incoming
directions. With this choice the method FH is still a local method. In our
numerical tests, we used this slight modification of FH.

Link-averaged one point approach (POPθ)

This discretization uses the fact that the coefficient f
(2)
i in (21) carries infor-

mation about the required derivative. In fact

ci · ∇f
(1)
i = 3f ∗

i ci · ∇ci · u1

and from our expansion, we can see that ci · ∇f
(1)
i can approximately be

recovered from the numerical values

−
1

h2
(f̂i − f̂ c

i + ĝi) = ci · ∇f
(1)
i + O(h). (30)

Instead of using this relation directly, we combine it with an averaging step
over all links, which leads to

h2f ∗
i (3 − 6qji)(ci · ∇)ci · u1 = −

∑

k

Kik(f̂k − f̂ c
k + ĝk) + O(h3). (31)
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where the coefficients Kik are defined as

Kik = −
3

2
(3 − 6qji)f

∗
i

(

(ci · ck)
2 − |ci|

2/3 − c2
iα(|ck|

2 − 1)
)

.

Here α ∈ {1, . . . , d} is any index (we take α = d). For reasons of stability, it
is favorable to evaluate the right hand side of (31) in a semi-implicit form.
Eventually, we arrive at the following one-point algorithm at the boundary
node xj for which the incoming directions are i ∈ Vj:

• compute Kik for all pairs of velocity indices
• select θ ∈ [0, 1]
• compute Lik = δik + θKik for indices i, k ∈ Vj of the incoming directions
• determine the inverse of Lik

• evaluate σk(n, j) = f̂ c
k(n, j) − ĝk(n, j) − (1 − θ)f̂k(n, j) for all directions k

• noting that f̂k(n+1, j) is available for non-incoming directions k 6∈ Vj after
the transport step, compute for all i ∈ Vj

ri(n, j) = f b
i∗(n, j) −

∑

k 6∈Vj

θKikf̂k(n + 1, j) −
∑

k

Kikσ̂k(n, j)

• determine the required incoming populations f̂k(n + 1, j) by solving the
linear system (here the inverse of the small matrix Lik is needed)

∑

k∈Vj

Likf̂k(n + 1, j) = ri(n, j), i ∈ Vj

Similar to the original bounce back rule, this algorithm is completely local
(no neighbor node needs to be accessed for the evaluation). However, it is not
link-based, i.e. the incoming population in direction ci is computed not only
by using information concerning directions ci and ci∗, because averaging over
all velocities is involved in (31). In fact, this averaging has a stabilizing effect.

Before running the scheme, the inverse of Lik has to be assembled (if θ > 0)
for each boundary node (note that the first four steps of the algorithm can be
done in a pre-processing step if the boundary is non-moving). Invertibility of
the matrix Lik can always be guaranteed with a suitable choice of θ ∈ [0, 1]. In
fact, the parameter θ controls the location of the eigenvalues of θKik and up
to a finite number of choices the spectrum will not contain −1. Consequently,
Lik = δik + θKik is invertible for all but finitely many choices of θ.

Multi-reflection method (MR)

In contrast to the algorithms above, the multi-reflection method MR presented
in [14] is not a modification of the bounce back rule, i.e. it does not reduce to
bounce back if qji = 1/2 for all nodes. In general, it uses three nodes (i.e. two
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neighbors) along the incoming directions

f̂i(n + 1, j) = κ1f̂
c
i∗(n, j) + κ0f̂

c
i∗(n, j + ci) + κ−1f̂

c
i∗(n, j + 2ci) + κ̄−1f̂

c
i (n, j)

+ κ̄−2f̂
c
i (n, j + ci) + 3wif

∗
i hφ(tn,xji) · ci + 3f ∗

i F p.c.
i (n, j).

In [14], two sets (MR1 and MR2) of parameters κ1, κ0, κ−1, κ̄−1, κ̄−2, wi and
F p.c.

i are given.

At boundary nodes where only one neighbor is available (i.e. the neighbor
j + 2ci is missing), a modification is suggested in [14] to replace f c

i∗(n, j +
2ci) by f c

i∗(n, j + ci). However, in the case of opposing incoming directions
when both neighbors are not available, an algorithm is only given for the case
qji = 1/2 when bounce back can be used. In the case of more general qji we
have extended the proposed treatment for one missing neighbor to the case
of two missing neighbors, i.e. we replace f c

i∗(n, j + ci) with f c
i∗(n, j). Another

possibility is to use the FD approach which works well in connection with FD,
FH, MLS, and BFL.

According to our asymptotic analysis, when each boundary node has two
neighbors along the link, the method MR yields u2 = 0 at the boundary so
that second order velocity and first order accurate pressure fields are certainly
obtained (if the case of missing neighbors is properly treated). Expanding to
higher orders, we even find that MR implies smooth boundary values for u3. In
principle, this guarantees a smooth coefficient f (3) so that irregular behavior
would only appear at fourth order. This explains the terminology third order
kinetic accuracy used in [14] from the point of view of the asymptotic expan-
sion approach. However, smoothness of f (3) also requires proper initialization
up to third order terms which is difficult for general initial value problems.
In fact, the initial value for u3 depends on the initial time derivative of the
pressure (see (20)) which is generally not known and has to be determined by
solving additional Poisson equations. Secondly, the treatment of the boundary
nodes having less than two neighbors may also destroy the smoothness of f (3)

so that the pressure is only first order accurate.

If these problems do not appear, like in the case of Poiseuille flow where
always two neighbors are available and where the initialization of u3 is easy,
the method MR yields indeed second order accuracy for both velocity and
pressure (or even the exact pressure which is constant in the case of Poiseuille
flow). We could reproduce this result with our code. Also for the stationary
linear problem (26) on the unit square, MR1 yields the exact solution if the
populations are initialized correctly up to fourth order and if the incoming
populations at the corners and the adjacent nodes are prescribed exactly up
to order four. If the initial and corner populations are only exact up to third
order, we recover both second order pressure and velocity. However, if we do
not use the exact populations as boundary values (they are only available
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Table 1
Convergence rates for the Taylor vortex flow from section 3.4 computed with differ-
ent boundary algorithms.

FD POP0 POP1 POP0.7 BFL FH

pressure 1.011 1.138 0.999 1.172 1.088 1.288

velocity 1.979 2.008 1.992 2.023 1.975 1.923

in simple cases) but any of the other corner treatments described above, we
find unstable solutions (this may be partly due to the fact that we work with
the BGK collision operator and not the multiple relaxation time approach).
Only the combination with the bounce back rule in the case qji = 1/2 worked
satisfactorily.

3.6 Numerical tests

In the following, we use the decaying Taylor vortex solution with the same
parameters as in section 3.4 to test and compare the boundary schemes. Since
the method MR does not yield stable solutions with the available corner treat-
ments for general values qji, we split the comparison. First we consider those
schemes which are modifications of the bounce back rule for q = 0 and q = 0.1
(where q is the common value of qji at lower and left boundary of the square).
In the case q = 1/2, all these schemes reduce to the bounce back rule and
a comparison with MR is now possible because, for qji = 1/2, MR works in
combination with the bounce back rule at the corners and gives rise to a first
order accurate pressure and a second order accurate velocity.

The numerical convergence rates for pressure and velocity are summarized in
table 1 and the corresponding error plots can be found in figure 4. Tables 2 and
3 give an impression on the stability of the different boundary schemes. Here
we compare the maximal error in velocity for a computation on a grid with
h = 1/50 and viscosities ranging from 1/100 to 10. The letter N is used if no
error value could be obtained because of instability. In the general case q > 0
(table 3 is a representative case), we can see that FH, POP1 and BFL have
the best stability among the modifications of the bounce back rule where FH
is very inaccurate or suffers from instability if τ ≈ 1. Only when q = 0, BFL
is slightly more stable than POP1 which in turn has a slightly smaller error.
However, on rectangular domains, the best choice of q with respect to stability
is certainly q = 1/2 in which case all the considered methods turn into the
simple bounce back rule. A comparison with MR for this case is given in table
4. We have also compared the new method POPθ with BFL for the circular
flow problem. In this case, the geometry coefficients qji range in the whole
interval [0, 1). On two grids (h = 1/50, 1/100) with termination time T = 1
we have varied the viscosity. Down to ν = 0.0001 both schemes are stable
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Fig. 4. Double logarithmic error plots of pressure (left) and velocity (right) ver-
sus grid size. The boundary schemes are FD (∗), POP0 (◦), POP1(+), POP0.7(�),
BFL(O), and FH(�)

Table 2
Maximal velocity error on a fixed grid (h = 1/50) with nodes on the boundary
(q = 0) for varying viscosity. The letter N indicates instability.

viscosity 1/100 1/50 1/10 1/6 1 10

FD N N 0.00019 0.00028 0.00195 N

FH 0.00014 0.00015 0.00023 N 0.00335 0.15157

POP0 N 0.00006 0.00016 0.00027 0.00278 0.07660

POP0.7 N 0.00007 0.00015 0.00027 0.00278 0.07651

POP1 N 0.00008 0.00011 0.00027 0.00278 0.07675

BFL 0.00014 0.00015 0.00023 0.00038 0.00272 0.07516

Table 3
Maximal velocity error on a fixed grid (h = 1/50) with nodes not on the boundary
(q = 0.1) for varying viscosity. The letter N indicates instability.

viscosity 1/100 1/50 1/10 1/6 1 10

FD N 0.00014 0.00019 0.00031 0.00379 N

FH 0.00014 0.00015 0.00023 N 0.00335 0.15157

POP0 N N N 0.00025 0.00235 0.07480

POP0.7 N N 0.00015 0.00025 0.00235 0.07510

POP1 0.00003 0.00003 0.00015 0.00025 0.00235 0.07516

BFL 0.00011 0.00010 0.00021 0.00036 0.00232 0.07425
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Table 4
Maximal velocity error on a fixed grid (h = 1/50) with nodes half way from the
boundary (q = 1/2) for varying viscosity. The letter N indicates instability.

viscosity 0.01 0.02 0.03 0.1 1 10

BB 0.00009 0.00007 0.00006 0.00010 0.00252 0.07457

MR 0.00002 0.00003 0.00004 0.00014 N N
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Fig. 5. Double logarithmic error plots of pressure (left) and velocity (right) versus
grid size using POP1: (∗) linear flow (26), (◦) linear flow (28), (+) Taylor vortex,
(�) circular flow and (O) Poiseuille flow

in the sense that they produce bounded solutions. Finally, we have applied
the proposed method POP1 to the set of problems introduced in section 3.4.
While the bounce back algorithm has only low accuracy for these test cases
(see figure 3), our algorithm shows the predicted second oder accurate velocity
and first order accurate pressure (see figure 5).

4 Conclusion

In this article, we have shown that the asymptotic analysis which has been
successfully used in the consistency analysis of numerical methods for differ-
ential equations [1] can also be applied to lattice Boltzmann schemes. The
analysis gives rise to analytic details about the behavior of the numerical so-
lution which allows to access the accuracy of the lattice Boltzmann moments
as approximations to the Navier-Stokes fields.

As we have demonstrated, the analysis of conditions apart from the evolution
equations (like initial conditions, boundary conditions, but also coupling con-
ditions, etc.) is straight forward. It is clear that the analysis presented here
is more general than the one in [20] where different boundary algorithms are
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investigated for a particular class of flows (Poiseuille flows). We only require
smooth solutions of the underlying Navier-Stokes problem but even if the so-
lution exhibits singularities one can analyze the method in a similar way using
appropriate tools from asymptotic analysis.

In [21,14], the analysis is based on the Chapman-Enskog (CE) expansion
which establishes (at some order) a connection between the lattice Boltzmann
method and the weakly compressible isothermal Navier-Stokes equation. This
naturally leads to different expansion coefficients for the LB variables (for ex-
ample, the coefficients depend on the grid size and they are not specified in
terms of the incompressible Navier-Stokes solution as in our expansion) but
apart from that the formal steps in the analysis of the boundary conditions and
in the construction of new algorithms are very similar: the truncated expan-
sion is inserted into the boundary scheme, Taylor expansions around boundary
points are performed and the leading order term is analyzed to derive schemes
of higher accuracy. However, the work [21,14] is restricted to stationary flows.

We have also constructed a new local boundary condition (POPθ) based on
the results of our analysis. The numerical tests indicate that it may be an
interesting alternative to existing methods.

The same methodology that has been used to analyze and construct boundary
conditions which are consistent to Dirichlet conditions on the Navier-Stokes
level can also be used to investigate and formulate other conditions like Neu-
mann conditions or normal stress conditions. This will be the subject of future
work.

A Details concerning the expansion

A.1 Recursively defined operators

The polynomials Ek in (17) are defined recursively by E0(τ, θ, σ) = 1 and

Ek(τ, θ, σ) =
k−1
∑

r=0

(−τ)Dk−r(θ, σ)Er(τ, θ, σ), k ≥ 1,

where Dk−r are given by (13). The polynomials Fm are simply

Fm(τ, θ, σ) = τEm−3(τ, θ, σ)

25



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

if we define Ek = 0 for k < 0. Using these definitions, the equality of (16) and
(17) can easily be proved by induction. Explicitly, we have

E0(τ, θ, σ) = 1,

E1(τ, θ, σ) = −τσ,

E2(τ, θ, σ) = τ(τ −
1

2
)σ2 − τθ,

E3(τ, θ, σ) = −τ(τ 2 − τ +
1

6
)σ3 + τ(2τ − 1)θσ,

E4(τ, θ, σ) = τ(τ 3 −
3

2
τ 2 +

7

12
τ −

1

24
)σ4 − τ(3τ 2 − 3τ +

1

2
)θσ2 + τ(τ −

1

2
)θ2.

A.2 Operators in the moment equations

The equations for the moments ρk, uk are obtained by taking corresponding
moments of (17). In order to obtain a compact notation, we first rewrite f

eq,(k)
i

using the symmetric tensor product and the matrix scalar product

(α⊗ β)ij =
1

2
(αiβj + αjβi) A : B =

∑

i,j

AijBij

leading to

f
eq,(k)
i = f ∗

i



ρk + 3ci · uk +
∑

r+s=k

(

9

2
(ci ⊗ ci −

1

3
I) : ur ⊗ us

)



 .

Inserting this relation into (17) and summing over i after multiplication with
1 resp. ci, we obtain differential equations for the moments which are of the
general form

m−1
∑

k=0



am−kρk + bm−k · uk + qm−k :
∑

r+s=k

ur ⊗ us



+ τbm−3 ·G = 0

m−1
∑

k=0



Am−kρk + Bm−kuk + Qm−k

∑

r+s=k

ur ⊗ us



+ τBm−3G = 0.

In these expressions, the differential operators ak(τ, ∂t,∇), bk(τ, ∂t,∇), etc.
result from weighted averages of the operators Ek(τ, ∂t, ci ·∇). Specifically, we
find the polynomials

ak(τ, θ, ξ) =
∑

i

f ∗
i Ek(τ, θ, ci · ξ), Ak(τ, θ, ξ) =

∑

i

f ∗
i Ek(τ, θ, ci · ξ)ci.

where θ, ξ have to be replaced by ∂t,∇ to obtain the operators. Examples are

a1 = 0, a2 =
1

3
τ(τ −

1

2
)|ξ|2 − τθ, a3 = 0
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and

A1 = −
1

3
τξ, A2 = 0, A3 =

τ

3

((

−
1

6
+ τ − τ 2

)

|ξ|2 + (2τ − 1) θ
)

ξ, A4 = 0.

Accordingly, the operators acting on the velocities are given by

bk(τ, θ, ξ) =
∑

i

3f ∗
i Ek(τ, θ, ci · ξ)ci, Bk(τ, θ, ξ) =

∑

i

3f ∗
i Ek(τ, θ, ci · ξ)ci ⊗ ci

and relevant examples are

b1 = −τξ, b2 = 0, b3 = τ
((

−
1

6
+ τ − τ 2

)

|ξ|2 + (2τ − 1) θ
)

ξ, b4 = 0

and

B0 = I, B1 = 0, B2 = τν|ξ|2I + τ 22νξ ⊗ ξ − τθI, B3 = 0.

To give an example, we show how B2 acts on a smooth vector field

B2(τ, ∂t,∇)u = τν∆u + τ 22ν∇∇· u− τ∂tu

which are exactly the linear u derivatives in the Navier-Stokes equation (note
that ∇∇· u = 0 for divergence free fields).

Finally, the averaged operator for the quadratic term is a second rank tensor

qk(τ, θ, ξ) =
∑

i

9

2
f ∗

i Ek(τ, θ, ci · ξ)(ci ⊗ ci −
1

3
I)

and the velocity-weighted average leads to a third order tensor

Qαβγ
k (τ, θ, ξ) =

∑

i

9

2
f ∗

i Ek(τ, θ, ci · ξ)(ciβciγ −
1

3
δβγ)ciα

where the tensor product Qkur ⊗us abbreviates summation over the last two
indices. Relevant examples are

q1 = 0, q2 = τ(τ −
1

2
)ξ ⊗ ξ, q3 = 0

and

Qαβγ
1 (τ, θ, ξ) = −

1

2
τ(ξβδαγ + ξγδαβ), Q2 = 0.

B Asymptotic analysis of the boundary fitting method FH

A detailed description of the method is given in section 3.5. To analyze the al-
gorithm, we insert the regular expansion with the coefficients (21) into the ex-
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pression for θ̂i(n, j) and perform a Taylor expansion around the node (tn,xji).
This gives rise to

θ̂i(n, j) = −χji

[

(1 −
1

τ
)(f̂i∗ − f eq

i∗ )(n, j) + 3f ∗
i v̄i(n, j) · ci

]

= −χji(1 −
1

τ
)
∑

p=0

∑

m=0

hm+pDp(0, qjici · ∇)(f
(m)
i∗ − f

eq,(m)
i∗ )(tn,xji)

− 3χjif
∗
i (hφ(tn,xji) −

∑

p=0

∑

m=0

hm+pDp(0, qjici · ∇)um(tn,xji) · ci,

and up to third order explicitly

θ̂i = −3hχjif
∗
i /qji(φ− u1) · ci + h2(1 − 2qji)(ci · ∇)f

(1)
i + O(h3)

Combined with the expansion (22) of the bounce back part in the FH condi-
tion, we get

h

(

6 − 3
χji

qji

)

f ∗
i /qji(φ− u1) · ci − 6h2f ∗

i u2 · ci = O(h3)

from which we conclude u1 = φ and u2 = 0 on ∂Ω.

However, in the case qji = 0 the method FH introduces additional conditions
at nodes with two opposing incoming directions which generally cannot be
satisfied with a smooth coefficient f

(2)
i . Thus our regular expansion breaks

down at second order which indicates that pressure will be inconsistent and
velocity only first order accurate.

To derive the additional condition, we consider opposing incoming directions
ci and ci∗ = −ci in the case qji = 0

f̂i(n + 1, j) = f̂i∗(n, j) + 6f ∗
i hφ · ci, f̂i∗(n + 1, j) = f̂i(n, j) + 6f ∗

i hφ · ci∗,

Adding the equations, we obtain

f̂i(n + 1, j) + f̂i∗(n + 1, j) = f̂i(n, j) + f̂i∗(n, j)

so that the quantity f̂i(n, j) + f̂i∗(n, j) = C is constant in time. Inserting the
expansion into this relation and expanding around (tn,xji), we find in second
order

∂

∂t
[ρ2 +

3

2
(3(u1 · c)

2 − |u1|
2) − τ(ci · ∇)(u1 · ci)] = 0

which is, in general, incompatible with the fact that ρ2/3,u1 solve the Navier-
Stokes problem (1).
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